Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Постановка задачи В данной курсовой работе необходимо решить дифференциальное уравнениес заданными на

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.11.2024

Введение


1.Постановка задачи

В данной курсовой работе необходимо решить дифференциальное уравнение

с заданными начальными значениями
x0=1, xk=2, y0=1, h=0.1. Для проверки точности результатов дано общее решение данного уравнения
.Данное уравнение необходимо решить методом Эйлера и Эйлера модифицированного, а также сравнить результаты и сделать вывод об эффективности методов, построить  их графики.

Численное решение задачи Коши сводится к табулированию искомой функции.

График решения дифференциального уравнения называется интегральной кривой.

Геометрический смысл задачи:

 y=f(x,y) – тангенс угла наклона касательной к графику решения в точке (x,y) к оси OX,- угловой коэффициент (рис. 1).

 y      

 

                                                                                                                      

                                                                                         α 

0                                                                                                                                х

                                                                       Рис. 1                                                                                                                                   

                                           Существование решения:

Если правая часть f(x;y) непрерывна в некоторой области R, определяемой неравенствами x-x0<a и y-y0<b   , то существует, по меньшей мере, одно решение y=y(x), определенное в окрестности  x-x0<h    , где h- положительное число.

Это решение единственно, если в R выполнено условие Липшица

, где N - некоторая постоянная (константа Липшица), зависящая, в общем случае, от а и b. Если f(x;y) имеет ограниченную производную fy=(x;y)  в R, то можно положить N=max  при (x;y)R


2.Метод Эйлера

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

Пусть дано дифференциальное уравнение 1-го порядка

y=f(x;y)

с начальным условием

y(x0)=y0

Выберем шаг h и введем обозначения:

xi=x0+i*h и, где i = 0, 1, 2, …,

                                               xi-узлы сетки,

                                               yi- значение интегральной функции в узлах         

Проведем прямую АВ через точку (x0;y0)

x1=x0+h

Рассмотрим треугольник АВС, он прямоугольный, в этом треугольнике известен tan α,и

,  выражаем , , с другой стороны , левые части выражений равны, значит равны и правые, т.е.. Выразим или , найдем точку В(x1; y1),

x1=1+0.1=1.2

y1=1+0,1*3,72=2,372.

Обобщим формулу для решения дифференциальных уравнений методом Эйлера:


3.Эйлер модифицированный

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Пусть дано дифференциальное уравнение первого порядка

y=f(x;y)

с начальным условием

y(x0)=y0

Выберем шаг h и введём обозначения:

xi=x0+i*h и, где i = 0, 1, 2, …,  

xi -узлы сетки,

                                        yi- значение интегральной функции в узлах         

При использовании модифицированного метода Эйлера шаг h делится на два отрезка.

Проведем решение в несколько этапов.

1. Обозначим точки: А(), B()  и C(x 1;y 1).

2. Через точку А, с координатами (1;1) проведем прямую под углом , где

3. На этой прямой найдем точку B (), получим B(1,05;1,186)

4. Через точку B проведем прямую под углом, где

5. Через точку А проведем прямую, параллельную последней прямой.

6. Найдем точку C(x1;y1).Координаты точки С: х10+h, x1=1.1; y1=yB+ *f(xB;yB), y1=

7.После проведения вычислений, аналогичных вычислениям, описанным в методе Эйлера, получим формулу для определения значения xi, yi:

         Модифицированный метод Эйлера дает меньшую погрешность. На рисунке это хорошо видно. Так величина  характеризует погрешность метода Эйлера, а– погрешность метода Эйлера Модифицированного.


4.Блок-схемы основных процедур




5.Листинг программы на языке Visual Basic



6.Формы программы в Visual Basic

 


7.Проверка в MathCad


Заключение



End

Yi=Yi-1+h*F(xi-1; yi-1)

xi=x0+i*h

i=0,…,N-1

h=(xk-x0)/n

Eiler (x0, xk, y0, N, Y)

Eiler M (x0, xk, y0, N, Y)

Yi=Yi-1+h*F(xi+h/2; yi-1+h/2*F(xi-1; yi-1))

End

X=x0+i*h

h=(xk-x0)/n

i=0,…,N-1

chastnoe

C=ex+1-y*x




1. Тема 4. Планування капіталовкладень та капітального будівництва 4
2. вариантом развития скелета балансом мышц и особенностью высшей нервной деятельности включая характер чел
3. Отчет по лабораторной работе 3 по курсу основы теории автоматического управления Вариант 1
4. Основная заработная плата начисляется за фактически отработанное время или выполненные работы и услуги с
5. 5 ~олд-ды- сап-~ к~рс-р арас-~ы байл ты~-н ан-у ~шін 6 орт жай т~рі есептеледі- 6 орт салм-~ан т~р е
6. Докладчик- студент II курса лечебного факультета 213 гр
7. «Историческая наука» в постсоветских азиатских государствах
8. Східного валу. Визволення Києва Командування вермахту у своїх планах розраховувало на те що Дніпро як ба
9. .3013.00 Джаз Body Bllet Ю.
10. Август тот самый потерявший сознание от парижской вони решил с запахами бороться единственным доступным е
11. Бог предвічний народивс
12. Название ткани Подвиды Особенности структуры ткан
13. Экология ж~не т~ра~ты даму п~ні бойынша тест с~ра~тары 1.html
14. Работает ли система управления качеством- десять тестов
15. Когнитивные парадигмы пространства культуры
16. реферат дисертації на здобуття наукового ступеня кандидата технічних наук Хер
17. потому говоритъ- отецъ архимандритъ въ святомъ град~ Іерусалим~ намъ наказывалъ вс~мъ разсказывать о том
18. Сердечная садхана гуру устраняющая все препятствия Молитва коренному ламе ОГ МИН ЧО КЬИ ЙИНГ КЬИ ПХО
19. историческое время
20. в конце 19 века возрастная психология оформилась как самостоятельная область науки