У вас вопросы?
У нас ответы:) SamZan.net

Обработать выборку полученную по результатам статистических наблюдений

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

Задача 8. Обработать выборку, полученную по результатам статистических наблюдений.

Выборка годовых объемов привлеченных депозитов 100 коммерческих банков представлена в таблице (усл. ед.):

57,3

75,1

78,1

69,3

60,1

77,3

66,1

69,5

72,1

68,7

81,1

69,4

63,1

67,4

77,1

82,6

64,8

72,5

62,5

8/0,7

77,6

65,8

78,3

57,7

80,7

64,4

82,8

67,3

83,1

70,6

75,3

58,0

60,7

81,3

67,1

69,6

82,4

62,3

66,9

80,6

62,7

73,8

68,9

83,8

57,0

72,6

65,6

78,7

59,5

70,0

73,5

58,1

64,0

83,9

84,0

63,5

74,1

77,7

68,5

80,5

66,3

73,0

79,1

71,1

80,4

62,1

66,7

83,7

76,8

59,3

71,3

63,7

71,2

78,9

65,2

77,9

74,9

69,1

70,8

74,8

71,6

72,9

61,9

71,5

75,4

71,7

59,9

74,3

76,1

70,9

61,3

71,4

71,8

65,0

67,8

75,5

71,9

64,9

74,7

62,9

Требуется:

а) представить объем привлеченных депозитов в виде вариационного ряда;

б) найти размах варьирования ряда и разбить его на 9 интервалов;

в) построить полигон частот, гистограмму относительных частот и график эмпирической функции распределения;

г) найти числовые характеристики выборки , , S2 , S, S0, коэффициент вариации v;

д) выдвинуть гипотезу о виде закона распределения годового объема привлеченных депозитов коммерческих банков и проверить ее по критерию Пирсона на уровне значимости =0,025.

е) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения для годовых объемов привлеченных депозитов с надежностью =0,95;

Решение

а) Для построения вариационного ряда результаты наблюдений ранжируем (100 чисел запишем в порядке возрастания).

57.0

57.3

57.7

58.0

58.1

59.3

59.5

59.9

60.1

60.7

61.3

61.9

62.1

62.3

62.5

62.7

62.9

63.1

63.5

63.7

64.0

64.4

64.8

64.9

65.0

65.2

65.6

65.8

66.1

66.3

66.7

66.9

67.1

67.3

67.4

67.8

68.5

68.7

68.9

69.1

69.3

69.4

69.5

69.6

70.0

70.6

70.8

70.9

71.1

71.2

71.3

71.4

71.5

71.6

71.7

71.8

71.9

72.1

72.5

72.6

72.9

73.0

73.5

73.8

74.1

74.3

74.7

74.8

74.9

75.1

75.3

75.4

75.5

76.1

76.8

77.1

77.3

77.6

77.7

77.9

78.1

78.3

78.7

78.9

79.1

80.4

80.5

80.6

80.7

80.7

81.1

81.3

82.4

82.6

82.8

83.1

83.7

83.8

83.9

84.0

б) Объем выборки большой, поэтому построим интервальный вариационный ряд. Найдем:

1) = 57,  = 84.  

2) Размах выборки: =8457=27.

3) Величину каждого из 9 интервалов:.

4) Определим границы интервалов :

; ; ; ; ; ; ; ; ;  .

5) Учитывая, что элемент, совпадающий с верхней границей интервала, относится к последующему интервалу, запишем полученные интервалы:

6) Рассчитаем интервальную частоту – число вариант, попадающих в соответствующий интервал, пользуясь таблицей пункта 1).

7) Найдем середины интервалов по формуле

8) Вычислим относительную частоту интервалов по формуле .

9) Вычислим накопленную частоту и относительную накопленную частоту  для построения эмпирической функции распределения (кумуляты).

10) Для построения гистограммы относительных частот найдем высоты прямоугольников .

11) Все полученные данные представим в таблице, где также рассчитываем ,

№ интервала

Интервалы

Середина интервала

Частота интервала

Относительная частота

Накопленная частота

Относительная накопленная частота

1

[57-60)

58.5

8

0.08

8

0.08

0.026

468

3422.25

27378

2

[60-63)

61.5

9

0.09

17

0.17

0.03

553.53

3782.25

34040.25

3

[63-66)

64.5

11

0.11

28

0.28

0.036

709.5

4160.25

45762.75

4

[66-69)

67.5

11

0.11

39

0.39

0.036

742.5

4556.25

50118.75

5

[69-72)

70.5

18

0.18

57

0.57

0.06

1269

4970.25

89464.5

6

[72-75)

73.5

12

0.12

69

0.69

0.04

882

5402.25

64827

7

[75-78)

76.5

11

0.11

80

0.8

0.036

841.5

5852.25

64374.75

8

[78-81)

79.5

10

0.1

90

0.9

0.033

795

6320.25

63202.5

9

[81-84)

82.5

10

0.1

100

1

0.033

825

6806.25

68062.5

100

1

7086

507231

в) Построим полигон частот, откладывая по оси абсцисс середины интервалов , а по оси ординат – соответствующие частоты

Построим гистограмму относительных частот, состоящих из прямоугольников, откладывая по оси абсцисс 9 интервалов, каждый длинной , а по оси ординат – соответствующие высоты прямоугольников

Можно предположить, что годовые объемы привлеченных депозитов коммерческих банков распределены по нормальному закону с оценочными значениями параметров (найдены по графику) и , т.к. .

Построим кумуляту (аналог эмпирической функции распределения F*(x)).

По оси абсцисс откладываем середины интервалов выборки хi, а по оси ординат – относительную накопленную частоту .


г) Рассчитаем:

Выборочную среднюю

Выборочную дисперсию

Исправленную выборочную дисперсию

Исправленное выборочное среднее квадратическое отклонение

д) Согласно критерию Пирсона, необходимо сравнить эмпирические и теоретические частоты. Эмпирические частоты даны. Найдем теоретические частоты. Для этого перейдем от с.в. Х к с.в.  и вычислим концы интервалов , , причем наименьшее значение z, т.е. z1 положим стремящимся к , а наибольшее – к . Результаты занесем в таблицу с учетом, что , :

инт.

1

57

60

8

– 1,51

– 0,5

– 0,4345

0,0655

6,55

1,45

0,321

2

60

63

9

– 1,51

– 1,09

– 0,4345

– 0,3621

0,0724

7,24

1,76

0,428

3

63

66

11

– 1,09

– 0,68

– 0,3621

– 0,2517

0,1104

11,04

– 0,4

0,014

4

66

69

11

– 0,68

– 0,26

– 0,2517

– 0,1026

0,1491

14,91

– 3,91

1,025

5

69

72

18

– 0,26

0,16

– 0,1026

0,0636

0,1662

16,62

1,38

0,115

6

72

75

12

0,16

0,58

0,0636

0,2190

0,1554

15,54

– 3,54

0,806

7

75

78

11

0,58

0,99

0,2190

0,3389

0,1199

11,99

– 0,99

0,82

8

78

81

10

0,99

1,41

0,3389

0,4207

0,0818

8,18

1,82

0,405

9

81

84

10

1,41

0,4207

0,5

0,0793

7,93

2,07

0,54

=100

=1

=100

=3,736

По таблице критических точек распределения Пирсона по уровню значимости и числу степеней свободы , где m – число интервалов, находим:

 .

Так как , то гипотеза о нормальном распределении генеральной совокупности принимается.

е) Так как с.в. Х генеральной совокупности распределена по нормальному закону, то с надежностью можно утверждать, что математическое ожидание а с.в. Х покрывается доверительным интервалом  , где – точность оценки.

В нашем примере , , . Из таблицы  квантилей распределения Стьюдента для находим . Т.о., . Доверительный интервал для а будет (70,86 1,426;  70,86+1,426)=(69,434;  72,286).

Интервальная оценка дисперсии ДХ с надежностью при неизвестном математическом ожидании имеет вид .

В нашем примере , , . Из таблицы квантилей распределения Пирсона для находим ,  

Т.о., доверительный интервал для дисперсии будет .

Доверительный интервал, покрывающий СКО Х с заданной надежностью имеет вид . Из таблицы по данным  и находим и, значит, доверительный интервал для СКО будет иметь границы:

.

Основные законы распределения случайных величин

Название

Закон

Числовые характеристики

Примеры

М

D

1

2

3

4

5

6

1. Биномиальный (закон Бернулли)

np

npq

Число успехов в схеме Бернулли

2. Закон Пуассона

Простейший поток событий ( – число событий за промежуток времени t, , где m  – число событий за единицу  времени

3. Геометрический закон 

Число испытаний в схеме Бернулли до первого успеха

4. Показательный закон

Время безотказной работы прибора; продолжительность телефонного разговора

5. Равномерный

Ошибка округления до ближайшего целого деления.

Время ожидания транспорта с постоянным интервалом движения.

6. Нормальный закон  (Гаусса)

а

2

Размер серийно изготовленной детали

(а – стандартный размер;

– погрешность, отклонение от стандарта)

7. Логнормальное

Распределение доходов, банковских вкладов, месячной зарплаты, посевных площадей. Долговечность изделий в режиме износа и старения.




1. тема правовых норм регулирующих личные и производные от них имущественные отношения возникающие из брака к
2. Пояснительная записка Стадия Листов 22 Содержание ст
3. Место государства в политической системе.html
4. Тема 1. Предмет философии.1
5. Тема занятия- Понятие предмет задачи социальной психологии Организационная форма занятия- лекция Цель
6. Доклад- Дольмены
7. ВП Астафьев
8. Права и обязанности супругов
9. Контрольная работа- Математичний підхід до визначення величини глибини прогнозу
10. реферат дисертації на здобуття наукового ступеня кандидата технічних наук Тернопіль 199
11. Crosspieces between neighbouring micropores which formed elementry electricl dipoles
12. Контрольная работа ’ 1 Вариант ’ 1824 По дисциплине - Экологические основы природопользования студентк.html
13. ТЕМА улицы города Москва ; НАБЛЮДЕНИЕ ПРОБЛЕМЫ автомобильные.html
14. Колесные и Гусеничные машины 1
15. Ж~лдыз топологиялы желілерден ж~лдызшина топология желісі
16. Философия природы и новое естествознание Возрождения
17. Что есть человек- древесная лирика Хельги Ольшванг
18.  Схематично отобразите организационноправовую систему управления Вооруженными силами РФ
19. Обеспечение жильем молодых семей
20. Учет использования материалов в производстве в ООО Стереотип