Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
PAGE \* MERGEFORMAT 20
СОДЕРЖАНИЕ
Введение 2
Понятие эконометрических моделей и уравнений 3
Виды систем эконометрических уравнений 6
Проблема идентификации 11
Применение систем эконометрических уравнений 14
Заключение 17
Список использованной литературы 17
ТЕМА: «Какова классификация систем эконометрических уравнений»
Объектом статистического изучения в социальных науках являются сложные системы. Измерение тесноты связей между переменными, построение изолированных уравнений регрессии недостаточны для описания таких систем и объяснения механизма их функционирования. При использовании отдельных уравнений регрессии, например, для экономических расчетов в большинстве случаев предполагается, что аргументы (факторы) можно изменять независимо друг от друга. Однако это предположение является очень грубым: практически изменение одной переменной, как правило, не может происходить при абсолютной неизменности других. Ее изменение повлечет за собой изменения во всей системе взаимосвязанных признаков.
Следовательно, отдельно взятое уравнение множественной регрессии не может характеризовать истинные влияния отдельных признаков на вариацию результирующей переменной. Именно поэтому в экономических, биометрических социологических исследованиях важное место заняла проблема описания структуры связей между переменными системой так называемых одновременных уравнений или структурных уравнений[6, C.13].
Эконометрические методы применяются для построения крупных эконометрических систем моделей, описывающих экономику той или иной страны и включающих в качестве составных элементов производственную функцию, инвестиционную функцию, а также уравнения, характеризующие движение занятости, доходов, цен и процентных ставок и другие блоки.
В последние десятилетия методы эконометрики сыграли решающую роль в освоении и развитии автоматизации экономических расчетов разного уровня и назначения.
Эконометрическая модель основное понятие эконометрии, экономико-математическая модель, параметры которой оцениваются с помощью методов математической статистики. Она выступает в качестве средства анализа и прогнозирования конкретных экономических процессов как на макро-, так и на микроэкономическом уровне на основе реальной статистической информации.
Наиболее распространены эконометрические модели, представляющие собой системы регрессионных уравнений, в которых отражается зависимость эндогенных величин (искомых) от внешних воздействий (текущих экзогенных величин) в условиях, описываемых параметрами модели, а также лаговыми переменными. Кроме регрессионных (как линейных, так и нелинейных) уравнений, применяются и другие математико-статистические модели.
Эконометрическая модель может быть представлена в двух формах: структурной и приведенной. В наиболее общем виде любую эконометрическую модель, построенную в виде системы линейных уравнений.
Эконометрический метод включает решение следующих проблем [6, C 24]:
Эконометрическая модель, как правило, основана на теоретическом предположении о круге взаимосвязанных переменных и характере связи между ними. При всем стремлении к «наилучшему» описанию связей приоритет отдается качественному анализу.
Поэтому в качестве этапов эконометрического исследования можно указать [8, C.187]:
Под системой эконометрических уравнений обычно понимается система одновременных, совместных уравнений. Сложные экономические процессы описывают с помощью системы взаимосвязанных уравнений.
Объектом статистического изучения в социальных науках являются сложные системы. Измерение тесноты связей между переменными, построение изолированных уравнений регрессии недостаточны для описания таких систем и объяснения механизма их функционирования. При использовании отдельных уравнений регрессии, например, для экономических расчетов в большинстве случаев предполагается, что аргументы (факторы) можно изменять независимо друг от друга. Однако это предположение является очень грубым: практически изменение одной переменной, как правило, не может происходить при абсолютной неизменности других. Ее изменение повлечет за собой изменения во всей системе взаимосвязанных признаков.
Следовательно, отдельно взятое уравнение множественной регрессии не может характеризовать истинные влияния отдельных признаков на вариацию результирующей переменной. Именно поэтому в экономических, биометрических социологических исследованиях важное место заняла проблема описания структуры связей между переменными системы так называемых одновременных уравнений или структурных уравнений.
Например, если изучается модель спроса как соотношение цен и количества потребляемых товаров, то одновременно для прогнозирования спроса необходима модель предложения товаров, в которой рассматривается также взаимосвязь между количеством и ценой предлагаемых благ. Это позволяет достичь равновесия между спросом и предложением.
При оценке эффективности производства нельзя руководствоваться только моделью рентабельности. Она должна быть дополнена моделью производительности труда, а также моделью себестоимости единицы продукции.
В еще большей степени возрастает потребность в использовании системы взаимосвязанных уравнений, если мы переходим от исследований на микроуровне к макроэкономическим расчетам. Модель национальной экономики включает в себя следующую систему уравнений: функции потребления, инвестиций заработной платы, тождество доходов и т.д. Это связано с тем, что макроэкономические показатели, являясь обобщающими показателями состояния экономики, чаще всего взаимозависимы. Так, расходы на конечное потребление в экономике зависят от валового национального дохода. Вместе с тем величина валового национального дохода рассматривается как функция инвестиций[7, C.256].
Любая экономическая система это сложная система с множеством входов, выходов и сложной структурой взаимосвязей показателей, характеризующих деятельность этой системы. Поэтому для описания механизма функционирования таких систем обычно изолированных уравнений регрессии недостаточно [3, C/95].
Практически изменение какого-либо показателя в экономической системе, как правило, вызывает изменение целого ряда других. Так изменение производительности труда влияет на затраты труда, а, следовательно на себестоимость, прибыль, рентабельность производства и пр.
Все это вызывает потребность использования при описании сложных экономических явлений и процессов систем взаимосвязанных регрессионных уравнений и тождеств. Особенно актуальна необходимость в применении таких систем при моделировании на макроуровне, так как макроэкономические показатели, являясь обобщающими показателями состояния экономики, чаще всего взаимозависимы. Например, при построении модели национальной экономики необходимо рассмотреть уравнения, описывающие потребление, инвестиции, прирост капиталовложений, воспроизводство трудовых ресурсов, производство продукта и пр.
Переменные, входящие в систему уравнений подразделяют на экзогенные, эндогенные и лаговые (эндогенные переменные, влияние которых характеризуется некоторым запаздыванием, временным лагом ).
Экзогенные и лаговые переменные называют предопределенными, т.е. определенными заранее.
Классификация переменных на эндогенные и экзогенные зависит от принятой теоретической концепции модели. Экономические показатели могут выступать в одних моделях как эндогенные, а в других как экзогенные переменные. Внеэкономические переменные (например, климатические условия, социальное положение, пол, возраст) входят в систему только как экзогенные переменные. В качестве экзогенных переменных могут рассматриваться значения эндогенных переменных за предшествующий период времени (лаговые переменные).
Рассмотрим типы систем эконометрических уравнений [4, C.198].
1. Система независимых регрессионных уравнений (внешне не связанных)
Объектом статистического изучения в социальных науках являются сложные системы. Измерение тесноты связей между переменными, построение изолированных уравнений регрессии недостаточно для описания таких систем и объяснения механизма функционирования. При использовании отдельных уравнений регрессии, в большинстве случаев предполагается, что аргументы (факторы) можно изменять независимо друг от друга. Однако это предположение является очень грубым: практически изменение одной переменной, как правило, не может происходить при абсолютной неизменности других. Ее изменение повлечет за собой изменение во всей системе взаимосвязанных признаков. Следовательно, отдельно взятое уравнение множественной регрессии не может характеризовать истинные влияния отдельных признаков на вариацию результирующей переменной.
Система независимых уравнений система, в которой каждая зависимая переменная рассматривается как функция одного и того же набора факторов .
.
Набор факторов в уравнениях может варьировать. Каждое уравнение системы независимых уравнений может рассматриваться самостоятельно, а его параметры могут быть найдены на основе традиционного метода наименьших квадратов (МНК).
2. Система рекурсивных уравнений
В таких системах в одном из уравнений содержится единственная зависимая переменная , которая в следующем уравнении присутствует в качестве факторной переменной. В третье уравнение эти эндогенные переменные из предыдущих уравнений могут быть включены как факторные и т.д.
В данной системе каждое последующее уравнение наряду с факторными переменными включает в качестве факторов все зависимые переменные предшествующих уравнений. Каждое уравнение этой системы может рассматриваться самостоятельно, и его параметры определяются методом наименьших квадратов (МНК).
3. Система взаимозависимых (одновременных) уравнений
Наибольшее распространение в эконометрических исследованиях получила система взаимозависимых уравнений. В ней одни и те же зависимые (эндогенные) переменные в одних уравнениях входят в левую часть (т.е. выступают в роли результативных признаков), а в других уравнениях в правую часть системы (т.е. выступают в качестве факторных переменных). Система взаимозависимых уравнений получила название системы совместных, одновременных уравнений. Тем самым подчеркивается, что в системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других. В таком случае теряет смысл традиционное различение зависимых и независимых переменных. Вместо этого устанавливается различие между двумя видами переменных.
Это, во-первых, совместно зависимые переменные (эндогенные), влияние которых друг на друга должно быть исследовано (матрица A в слагаемом Ay(t) приведенной выше системы уравнений).
Во-вторых, предопределенные переменные, которые, как предполагается, оказывают влияние на первые, однако не испытывают их воздействия; это переменные с запаздыванием, т. е. лаговые (второе слагаемое) и определенные вне данной системы уравнений экзогенные переменные.
Экзогенными, например, всегда оказываются показатели климатических условий, если они включаются в модель. В то же время многие экономические переменные в зависимости от задач и структуры модели могут относиться и к эндогенным, и к экзогенным.
Понятие одновременных эконометрических уравнений и методы их решения были впервые предложены норвежским экономистом Т. Хавельмо, лауреатом Нобелевской премии по экономике.
В зависимости от характера ограничений и статистической структуры переменных эконометрические модели классифицируются на линейные модели с одной, двумя и большим числом переменных, а также на пробит-модели, логит-модели, тобит-модели и др.
В эконометрике эта система уравнений также называется структурной формой модели (СФМ).
Система одновременных уравнений в структурной форме и при отсутствии лаговых переменных может быть записана:
Кроме регрессионных уравнений (они называются также поведенческими уравнениями) модель может содержать тождества, которые представляют собой алгебраические соотношения между эндогенными переменными. Тождества позволяют исключать некоторые эндогенные переменные и рассматривать систему регрессионных уравнений меньшей размерности Параметры модели в структурной форме называют ее структурными коэффициентами [6, C.321].
Система одновременных уравнений в структурной форме позволяет увидеть влияние изменений любой экзогенной переменной на значения эндогенной переменной. Целесообразно в качестве экзогенных переменных выбирать такие переменные, которые могут быть объектом регулирования. Меняя их и управляя ими, можно заранее иметь целевые значения эндогенных переменных.
В отличие от предыдущих систем каждое уравнение системы одновременных уравнений не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим, т.к. нарушаются предпосылки, лежащие в основе МНК (например, предпосылка о некоррелированности факторных переменных с остатками). Эндогенные переменные являются случайными величинами, зависящими от . В том случае, когда эндогенная переменная входит в некоторое уравнение как факторная происходит нарушение названной предпосылки МНК. Таким образом, для нахождения структурных коэффициентов традиционный МНК неприменим. С этой целью используются специальные приемы оценивания.
При правильной спецификации модели задача идентификация системы уравнений сводится к корректной и однозначной оценке ее коэффициентов. Непосредственная оценка коэффициентов уравнения возможна лишь в системах внешне не связанных уравнений, для которых выполняются основные предпосылки построения регрессионной модели, в частности, условие некоррелированности факторных переменных с остатками.
В рекурсивных системах всегда возможно избавление от проблемы коррелированности остатков с факторными переменными путем подстановки в качестве значений факторных переменных не фактических, а модельных значений эндогенных переменных, выступающих в качестве факторных переменных. Процесс идентификации осуществляется следующим образом [6, C.330]:
1. Идентифицируется уравнение, в котором в качестве факторных не содержатся эндогенные переменные. Находится расчетное значение эндогенной переменной этого уравнения.
2. Рассматривается следующее уравнение, в котором в качестве факторной включена эндогенная переменная, найденная на предыдущем шаге. Модельные (расчетные) значения этой эндогенной переменной обеспечивают возможность идентификации этого уравнения и т.д.
В системе уравнений в приведенной форме проблема коррелированности факторных переменных с отклонениями не возникает, так как в каждом уравнении в качестве факторных переменных используются лишь предопределенные переменные. Таким образом, при выполнении других предпосылок рекурсивная система всегда идентифицируема.
При рассмотрении системы одновременных уравнений возникает проблема идентификации.
Идентификация в данном случае означает определение возможности однозначного пересчета коэффициентов системы в приведенной форме в структурные коэффициенты.
Чтобы получить единственно возможное решение необходимо предположить, что некоторые из структурных коэффициентов модели ввиду слабой их взаимосвязи с эндогенной переменной из левой части системы равны нулю. Тем самым уменьшится число структурных коэффициентов модели. Уменьшение числа структурных коэффициентов модели возможно и другими путями: например, путем приравнивания некоторых коэффициентов друг к другу, т.е. путем предположений, что их воздействие на формируемую эндогенную переменную одинаково и пр.
С позиции идентифицируемости структурные модели можно подразделить на три вида:
Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели.
Модель неидентифицируема, если число коэффициентов приведенной модели меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели.
Модель сверхидентифицируема, если число коэффициентов приведенной модели больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. Сверхидентифицируемая модель в отличие от неидентифицируемой модели практически решаема, но требует для этого специальных методов нахождения параметров.
Чтобы определить тип структурной модели необходимо каждое ее уравнение проверить на идентифицируемость.
Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель считается неидентифицируемой. Сверхидентифицируемая модель кроме идентифицируемых содержит хотя бы одно сверхидентифицируемое уравнение.
Применение систем эконометрических уравнений представляет собой непростую задачу.
Проблемы здесь происходят из-за ошибок спецификации. Основной областью применения эконометрических моделей является построение макроэкономических моделей экономики целой страны. Это, главным образом, мультипликаторные модели кейнсианского типа. Более совершенными по сравнению со статическими моделями являются динамические модели экономики, которые содержат в правой части лаговые переменные и учитывают тенденцию развития (фактор времени). Значительные трудности создает невыполнение условия независимости факторов, которое в корне нарушается в системах одновременных (взаимозависимых) уравнений [8, C.344].
Использование корреляционно-регрессионного анализа в контексте структурного моделирования это попытка подойти к выделению и измерению причинных связей переменных. Для этого следует сформулировать гипотезы о структуре влияний и корреляции. Такая система причинных гипотез и соответствующих взаимосвязей изображается графом, вершины которого это переменные (причины или следствия), а дуги причинные отношения. Верификация гипотез требует установления соответствия между графом и системой уравнений, описывающей этот граф.
Структурные модели эконометрики представляются системой линейных по отношению к наблюдаемым переменным уравнений. Если алгебраическая система соответствует графу без контуров (петель), то она является рекурсивной системой. Такая система позволяет рекуррентно определять значения входящих в нее переменных. В ней в уравнения для признака включаются все переменные, кроме тех, которые расположены выше него по графу. Соответственно формулировка гипотез в структуре рекуррентной модели довольно проста, при условии использования данных динамики. Рекурсивная система уравнений позволяет определить полные и частные коэффициенты влияния факторов. Коэффициенты полного влияния измеряют значение каждой переменной в структуре. Структурные модели позволяют оценить полное и непосредственное влияние переменных, прогнозировать поведение системы, рассчитывать значения эндогенных переменных.
Если нужно всего лишь уточнить характер связей переменных, то используют метод путевого анализа (путевых коэффициентов). В основе его лежит гипотеза об аддитивном характере (аддитивность и линейность) связей между переменными. К сожалению, применение путевого анализа в социально-экономических исследованиях затруднено тем, что не всегда линейная зависимость удовлетворительно выражает все разнообразие причинно-следственных связей в реальных системах. Значимость результатов анализа определяется правильностью построения максимально связного графа и, соответственно, изоморфной математической модели в виде системы уравнений. В то же время важным достоинством путевого анализа является возможность производить декомпозицию корреляций.
В данной главе мы рассмотрели сущность систем эконометрических уравнений, их применение. Таким образом, понятие одновременных эконометрических уравнений и методы их решения были впервые предложены норвежским экономистом Т. Хавельмо, лауреатом Нобелевской премии по экономике.
В зависимости от характера ограничений и статистической структуры переменных эконометрические модели классифицируются на линейные модели с одной, двумя и большим числом переменных, а также на пробит-модели, логит-модели, тобит-модели и др.
Применение систем эконометрических уравнений представляет собой непростую задачу.
Основной областью применения эконометрических моделей является построение макроэкономических моделей экономики целой страны. Это, главным образом, мультипликаторные модели кейнсианского типа.
Эконометрика это раздел экономики, занимающийся разработкой и применением статистических методов для измерений взаимосвязей между экономическими переменными (С.Фишер). С.А.Айвазян полагает, что эконометрика объединяет совокупность методов и моделей, позволяющих на базе экономической теории, экономической статистики и математики констатического инструментария придавать количественные выражения качественными зависимостями.
Экономическая составляющая эконометрии, безусловно, является первичной. Именно экономика определяет постановку задачи и исходные предпосылки, а результат, формируемый на математическом языке, представляет интерес лишь в том случае, если удается его экономическая интерпретация. В то же время многие эконометрические результаты носят характер математических утверждений (теорем).
Под системой эконометрических уравнений обычно понимается система одновременных, совместных уравнений. Ее применение имеет ряд сложностей, которые связаны с ошибками спецификации модели. В виду большого числа факторов, влияющих на экономические переменные, исследователь, как правило, не уверен в точности предполагаемой модели для описания экономических процессов.
Широкому внедрению эконометрических методов способствовало появление во второй половине ХХ века ЭВМ и в частности персональных компьютеров.
Менеджеру и экономисту не следует становиться специалистом по составлению и решению систем эконометрических уравнений, даже с помощью тех или иных программных систем, но он должен быть осведомлен о возможностях этого направления эконометрики, чтобы в случае производственной необходимости квалифицированно сформулировать задание для специалистов-эконометриков.