Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Тема 26. Загальне поняття про гормони

Работа добавлена на сайт samzan.net:


Тема 26. Загальне поняття про гормони. Класифікація, механізми дії гормонів на клітини-мішені. Гормони гіпоталамуса, гіпофіза.

Рис. 1. Схема взаимосвязи регуляторных систем организма. 1 - синтез и секреция гормонов стимулируется внешними и внутренними сигналами; 2 - сигналы по нейронам поступают в гипоталамус, где стимулируют синтез и секрецию рилизинг-гормонов; 3 - рилизинг-гормоны стимулируют (либерины) или ингибируют (статины) синтез и секрецию тропных гормонов гипофиза; 4 - тропные гормоны стимулируют синтез и секрецию гормонов периферических эндокринных желез; 5 - гормоны эндокринных желез поступают в кровоток и взаимодействуют с клетками-мишенями; 6 - изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов эндокринных желез и гипоталамуса; 7 - синтез и секреция тропных гормонов подавляется гормонами эндокринных желез; - стимуляция синтеза и секреции гормонов; - подавление синтеза и секреции гормонов (отрицательная обратная связь).

Рис. 2. Системы регуляции метаболизма. A - аутокринная - гормоны секретируются во внеклеточное пространство и связываются с мембранными рецепторами клетки, секретирующей гормон; B - паракринная - гормоны секретируются во внеклеточное пространство и связываются с мембранными рецепторами соседних клеток; C - эндокринная - гормоны секретируются железами в кровь, транспортируются по кровеносному руслу и связываются с рецепторами клеток-мишеней.


Гипоталамо – гипофизарная система.

Кортиколиберин (Гипоталамус)

Кортикотропин (Адренокортикотропин, АКТ) (Гипофиз)

Болезнь Аддисона (гипокортицизм) < Кортизол (Надпочечники) > Болезнь Иценко-Кушинга

Печень

Периферические ткани

1) Синтез ферментов Глюконеогенеза

Активация Распада белков до аминокислот

2) Синтез ферментов - аминотрансфераз

Ингибирование синтеза белков

Кортиколиберин - пептид состоит из 41 аминокислотного остатка, который имеет молекулярную массу 4758,14 дальтон. КРГ вызывает усиление секреции передней долей гипофиза проопиомеланокортина и, как следствие, производимых из него гормонов передней доли гипофиза: адренокортикотропного гормона, β-эндорфина, липотропного гормона, меланоцитстимулирующего гормона.

Адренокортикотропный гормон, или АКТГ, кортикотропин, адренокортикотропин, кортикотропный гормон (лат. adrenalis-надпочечный, cortex-кора и tropos – направление)  — тропный гормон, вырабатываемый базофильными клетками передней доли гипофиза. По химическому строению АКТГ является пептидным гормоном.

Молекула АКТГ состоит из 39 аминокислотных остатков. Характеристики АКТГ определяются различными участками его пептидной цепи: участок с 4 по 10 аминокислоту является актоном (пептидом, определящим функцию), с 15 по 21 (особенно с 15 по 18) аминокислоту — гаптоном (пептидом, определяющим специфичность связывания с рецептором). Участок с 1 по 3 и с 11 по 13, по-видимому, обуславливает меланоцитостимулирующую роль АКТГ, с 25 по 33 — иммуногенные свойства АКТГ данного вида животного (он более других участков различается у различных видов животных). Участок с 20 по 24 защищает АКТГ от действия экзопептидаз, играя роль стабилизатора. Такая множественность обладающих биологической активностью участков АКТГ обуславливает наличие нескольких биологических эффектов гормона и возможность связывания его с несколькими видами рецепторов.

Кортикотропин контролирует синтез и секрецию гормонов коры надпочечников. В основном кортикотропин влияет на синтез и секрецию глюкокортикоидов — кортизола, кортизона, кортикостерона. Попутно повышается синтез надпочечниками прогестерона, андрогенов и эстрогенов. Это может иметь как хронический, так и кратковременный характер.

Рис. 11-15. Пептидные гормоны, образующиеся из ПОМК. А - ПОМК состоит из 265 аминокислотных остатков (а.к.), включая N-концевой сигнальный пептид из 26 аминокислот; Б - после отщепления сигнального пептида полипептидная цепь расщепляется на 2 фрагмента: АКТГ (39 а.к.) и β-липотропин (42-134 а.к); В, Г, Д - при дальнейшем протеолизе происходит образование α- и β-МСГ и эндорфинов. КППДГ - кортикотропиноподобный гормон промежуточной доли гипофиза.

Кортикотропин (АКТГ) - пептидный гормон; состоит из 39 аминокислотных остатков; синтезируется в клетках передней доли гипофиза под влиянием кортиколиберина.

Кортикотропин секретируется в импульсивном режиме. Скорость секреции составляет 5-25 мкг/сут. При стрессе (травма, ожог, хирургическое вмешательство, интоксикация химическими веществами, кровотечение, боль, психическая травма) концентрация АКТГ в крови возрастает во много раз. У здоровых людей наименьший уровень АКТГ в крови отмечается в конце дня и непосредственно перед сном, наибольший - в 6-8 ч утра, в момент пробуждения. Т1/2 в крови составляет 15-25 мин.

Механизм действия АКТГ включает взаимодействие с рецептором плазматической мембраны клеток, активацию аденилатциклазы и фосфорилирование белков, участвующих в синтезе кортикостероидов (см. ниже подраздел III, Д). Эти эффекты усиливаются в присутствии ионов Са2+. В клетках коры надпочечников АКТГ стимулирует гидролиз эфиров холестерола, увеличивает поступление в клетки холестерола в составе ЛПНП; стимулирует превращение холестерола в прегненолон; индуцирует синтез митохондриальных и микросомальных ферментов, участвующих в синтезе кортикостероидов. Подробнее этапы синтеза кортикостероидов рассматриваются в подразделе III, Д.

Кортизо́л (17-гидрокортизон, соединение F) — является наиболее биологически активным глюкокортикоидным гормоном. Кортизол — гормон стероидной природы, то есть в своей структуре имеет стерановое ядро (циклопентанпергидрофенантреновое). Кортизол секретируется наружным слоем (корой) надпочечников под воздействием адренокортикотропного гормона (АКТГ). Секреция АКТГ, в свою очередь, стимулируется кортиколиберином — релизинг-фактором гипоталамуса. Кортизол является регулятором углеводного обмена организма, а также принимает участие в развитии стресс-реакций. Для кортизола характерен суточный ритм секреции: максимальная концентрация отмечается в утренние часы (6-8 часов утра), минимальная концентрация в вечерние часы (20-21 час).

Выделившийся в кровь кортизол достигает клеток-мишеней (в частности, клеток печени). Благодаря своей липофильной природе легко проникает через клеточную мембрану в цитоплазму, где связывается со специфическими рецепторами. Гормон-рецепторный комплекс является транскрипционным фактором, то есть активирует транскрипцию определенных участков ДНК. В результате синтез глюкозы в гепатоцитах усиливается, тогда как в мышцах снижается распад глюкозы. В клетках печени глюкоза запасается в виде гликогена.

Таким образом, эффект кортизола состоит в сохранении энергетических ресурсов организма. По принципу негативной обратной регуляции повышение уровня кортизола в крови снижает секрецию кортиколиберина (а значит, и АКТГ).

Болезнь Аддисона. Т.к. первичный гипокортикоизм проявляется как недостаточность продукции и секреции глюкокортикоидов корой надпочечников, увеличенное количество АКТГ будет секретироваться для того чтобы компенсировать недостачу глюкокортикоидов. Это приводит к сверхстимуляции секреции АКТГ и соответственно α-МСГ, что приводит к бронзовой окраске кожи и слизистых.


Таблица 2. Классификация гормонов по биологическим функциям
 

Регулируемые процессы

Гормоны

Обмен углеводов, липйдов, аминокислот

Инсулин, глюкагон, адреналин, кортизол, тироксин, соматотропин

Водно-солевой обмен

Альдостерон, антидиуретический гормон

Обмен кальция и фосфатов

Паратгормон, кальцитонин, кальцитриол

Репродуктивная функция

Эстрадиол, тестостерон, прогестерон, гонадотропные гормоны

Синтез и секреция гормонов эндокринных желёз

Тропные гормоны гипофиза, либерины и статины гипоталамуса

Изменение метаболизма в клетках, синтезирующих гормон

Эйкозаноиды, гистамин, секретин, гастрин, соматостатин, вазоактивный интестинальный пептид (ВИП), цитокины


Гормоны

Эта удивительная управляющая система возникла в ходе эволюции, вероятно, чуть позже многоклеточности и одновременно с кровеносной системой. На самом деле даже одноклеточные существа небезразличны к химическим сигналам, приходящим извне, в том числе от других клеток. Но только у многоклеточных могла появиться изощрённая многоуровневая регуляция, известная под названием эндокринной системы.

Специальные клетки в железах и тканях вырабатывают гормоны (от греч. hormamo — приводить в движение, побуждать). Эти вещества выделяются во внеклеточное пространство, в кровь и лимфу, а с их токами попадают в „мишени“ — органы и клетки и производят нужные эффекты. Примечательно, что они работают в очень низких концентрациях — до 10–11 моль/л.

В настоящее время описано и выделено более полутора сотен гормонов из разных многоклеточных организмов.

По химическому строению их делят на три группы:

  1.  Белково-пептидные - это гормоны гипоталамуса и гипофиза, поджелудочной и паращитовидной желёз и гормон щитовидной железы кальцитонин. Некоторые гормоны, например фолликулостимулирующий и тиреотропный, представляют собой гликопротеиды — пептидные цепочки, „украшенные“ углеводами.
  2.  Производные аминокислот — это амины, которые синтезируются в мозговом слое надпочечников (адреналин и норадреналин) и в эпифизе (мелатонин), а также иодсодержащие гормоны щитовидной железы трииодтиронин и тироксин (тетраиодтиронин).

  1.  Cтероидные гормоны — (биосинтетический предшественник — холестерин) отличаются по количеству атомов углерода в молекуле: С21 — гормоны коры надпочечников и прогестерон, С19 — мужские половые гормоны (андрогены и тестостерон), С18 — женские половые гормоны (эстрогены).

Гипоталамо-гипофизарный комплекс — центральная точка взаимодействий нервной и эндокринной систем. Гипоталамус — это центр регуляции вегетативных функций, и „колыбель эмоций“. В нём вырабатываются рилизинг-гормоны (от англ. release — высвобождать), они же либерины, стимулирующие выброс гипофизом гормонов, а также статины, тормозящие этот выброс.

Гипофиз — эндокринный орган, находящийся на внутренней поверхности мозга. Он вырабатывает тропные гормоны (греч. tropos — направление), которые называются так потому, что направляют работу других, периферических эндокринных желез — надпочечников, щитовидной и паращитовидной, поджелудочной, половых желёз. Причём эта схема насыщена обратными связями, например, женский гормон эстрадиол, попадая в гипофиз, регулирует секрецию тройных гормонов, управляющих его собственной секрецией. Поэтому количество гормона, во-первых, не бывает чрезмерным, а во-вторых, различные эндокринные процессы тонко согласуются между собой.

„Встроенные часы“ нашего организма — это эпифиз, шишковидная железа, вырабатывающая гормон мелатонин (производное аминокислоты триптофана). Перепады концентрации этого вещества создают у человека чувство времени, а от характера этих перепадов зависит, будет ли человек „совой“ или „жаворонком“. Концентрация очень многих гормонов также циклически изменяется в течение суток. Вот почему эндокринологи иногда требуют от пациентов собирать суточную мочу (сумма может оказаться более постоянной и характерной величиной, чем слагаемые), а иногда, если нужно оценить динамику, берут анализы каждый час.

Соматотропный гормон (СТГ) оказывает действие на весь организм — он стимулирует рост и соответственно регулирует обменные процессы. Опухоли гипофиза, вызывающие сверхпродукцию этого гормона, становятся причиной гигантизма у человека и животных. Если опухоль возникает не в детстве, а позднее, развивается акромегалия — неравномерное разрастание скелета, в основном за счёт хрящевых участков. Недостаточность СТГ, напротив, приводит к карликовости, или гипофизарному нанизму. К счастью, современная медицина это лечит. Если врач установит, что причина слишком медленного роста ребёнка (даже не обязательно карликовости, а просто отставания от сверстников) именно в низкой концентрации СТГ, и сочтёт нужным прописать уколы гормона, то рост нормализуется.

В гипофизе вырабатывается и пролактин, он же лактогенный и лютеотропный гормон (ЛТГ), отвечающий за лактацию в период кормления грудью. Кроме того, в гипофизе синтезируются липотропины — гормоны, стимулирующие вовлечение жира в энергетический обмен. Эти же гормоны являются предшественниками эндорфинов — „пептидов радости“. Меланоцит-стимулирующие гормоны гипофиза (МСГ) регулируют синтез пигментов в коже и вдобавок, судя по некоторым данным, имеют какое-то отношение к механизмам памяти. Ещё два важных гормона — вазопрессин и окситоцин; первый называют также антидиуретическим гормоном, он регулирует водно-солевой обмен и тонус артериола; окситоцин отвечает за сократительную активность матки у млекопитающих и вместе с пролактином — за молоко. Его используют для стимуляции родов.

А. Система гормональной регуляции

Каждый гормон является центральным звеном сложной системы гормональной регуляции. Гормоны синтезируются в виде предшественников, прогормонов, а зачастую и депонируются, в специализированных клетках эндокринных желез. Отсюда они по мере метаболической необходимости поступают в кровоток. Большинство гормонов переносится в виде комплексов с плазматическими белками, так называемыми переносчиками гормонов, причем связывание с переносчиками носит обратимый характер. Гормоны разрушаются соответствующими ферментами, обычно в печени. Наконец, гормоны и продукты их деградации выводятся из организма экскреторной системой, обычно почками. Все перечисленные процессы влияют на концентрацию гормонов и осуществляют контроль за передачей сигналов.

В органах-мишенях имеются клетки, несущие рецепторы, способные связывать гормоны и тем самым воспринимать гормональный сигнал. После связывания гормонов рецепторы передают информацию клетке и запускают цепь биохимических реакций, определяющих клеточный ответ на действие гормона.

Б. Принципы передачи гормонального сигнала в клетках-мишенях

Известны два основных типа передачи гормонального сигнала клеткам-мишеням. Липофильные гормоны проникают в клетку, а затем поступают в ядро. Гидрофильные гормоны оказывают действие на уровне кпеточной мембраны.

Липофильные гормоны, к которым относятся стероидные гормоны, тироксин и ретиноевая кислота, свободно проникают через плазматическую мембрану внутрь клетки, где взаимодействуют с высокоспецифическими рецепторами. Гормон-рецепторный комплекс в форме димера связывается в ядре с хроматином и инициирует транскрипцию определенных генов (регуляция транскрипции: см. с. 120, 366). Усиление или подавление синтеза мРНК (mRNA) влечет за собой изменение концентрации специфических белков (ферментов), определяющих ответ клетки на гормональный сигнал.

Гормоны, являющиеся производными аминокислот, а также пептидные и белковые гормоны, образуют группу гидрофильных сигнальных веществ (см. с. 368). Эти вещества связываются со специфическими рецепторами на внешней поверхности плазматической мембраны. Связывание ropмона передает сигнал на внутреннюю поверхность мембраны и тем самым запускает синтез вторичных мессенджеров (посредников). Молекулы-посредники потенциируют клеточный ответ на действие гормона (см. с. 374).

Дополнительная информация

Границы между гормонами и другими сигнальными веществами, такими, как медиаторы, нейромедиаторы и ростовые факторы довольно условные. Часто эти сигнальные вещества имеют общие закономерности биосинтеза, метаболизма и механизма действия.

В отличие от классических гормонов тканевые гормоны (см. с. 378) действуют только на ткани, находящиеся в тесном контакте с секреторными клетками. Тканевые гормоны достигают клеток-мишеней не за счет кровотока, а с помощью обычной диффузии в межклеточном матриксе. Они присутствуют главным образом в пищеварительном тракте, где регулируют процессы переваривания пищи.

Медиаторами называются сигнальные вещества, синтезирующиеся не специализированными клетками желез внутренней секреции, а различными типами клеток. После секреции медиаторы оказывают гормоноподобное действие на окружающие ткани. К наиболее важным медиаторам относятся гистамин (см. рис. 369) и простагландины (см. рис. 377).

Нейрогормонами и нейромедиаторами называются сигнальные вещества, продуцируемый и секретируемые клетками центральной нервной системы (см. с. 342).

Уровень и иерархия гормонов

А. Эндокринное, паракринное и аутокринное действие гормонов

Гормоны передают сигнал путем переноса в кровотоке от места синтеза до клеток-мишеней. В этом случае говорят об эндокринном действии (1; пример: инсулин). В случае тканевых гормонов (паратгормон) локального действия, когда клетки-мишени расположены в непосредственной близости к секреторным клеткам, говорят о паракринном действии (2; пример: гормоны желудочно-кишечного тракта). Когда сигнальные вещества продуцируются и утилизируются в самих клетках, говорят об аутокринном действии (3; пример: простагландины). Инсулин, образуемый B-клетками поджелудочной железы, оказывает как эндокринное, так и паракринное действие. Такой способ действия характерен для многих гормонов. Как гормон эндокринного действия инсулин принимает участие в регуляции обмена жиров и глюкозы. По механизму паракринного действия инсулин ингибирует образование и секрецию гпюкагона А-клетками поджелудочной железы.

Б. Динамика гормонов

Гормоны циркулируют в крови в очень низких концентрациях (10-7-10-12 моль/л). Однако эти величины сильно варьируют. Концентрация гормонов подвержена периодическим колебаниям, цикл или ритм которых может зависеть от времени дня, месяца, времени года или менструального цикла. В качестве примера можно привести околосуточный (циркадианный) ритм кортизола. Многие гормоны поступают в кровь импульсами и нерегулярно. Поэтому концентрация гормона может меняться эпизодически, т. е. пульсировать. Концентрация другой группы гормонов изменяется в зависимости от внешних факторов. Выброс гормонов является ответом организма на внешнее воздействие или на изменение внутреннего состояния.

Концентрация гормонов в крови находится под строгим контролем, причем контроль осуществляется как на стадии синтеза, так и на стадии выброса. Скорость этих процессов регулируется по принципу обратной связи или системой, построенной по иерархическому принципу.

В. Механизм обратной связи

Биосинтез и выброс инсулина В-кпетками поджелудочной железы стимулируется высоким уровнем глюкозы ( >5 мМ). Инсулин индуцирует потребление глюкозы в мышечных и жировых тканях. В результате уровень глюкозы снижается до нормы (примерно 5 мМ) и выброс инсулина прекращается (см. с. 162).

Г. Иерархическая система гормональной регуляции

Гормональные системы обычно взаимосвязаны и в раде случаев образуют иерархическую лестницу. Наиболее важной из них является система гормонов гипофиза и гипоталамуса, контролируемая центральной нервной системой (ЦНС). На стимулирующее или тормозящее воздействие нервные клетки гипоталамуса отвечают выбросом стимулирующих или ингибирующих гормонов, которые носят групповое название либерины («рилизинг-факторы») и статины («ингибирующие гормоны»). Эти нейрогормоны через короткие сосуды достигают аденогипофиза, где стимулируют (либерины) или ингибируют (статины) биосинтез и секрецию так называемых тропинов. Гонадотропины, например, симулируют биосинтез стероидных гормонов в половых железах. Стероидные гормоны действуют только на клетки-мишени, а по механизму обратной связи, подавляют синтез или секрецию других гормонов регуляторного каскада.

К этой гормональной иерархической лестнице принадлежат многие важнейшие гормоны, такие, как тироксин, кортизол, эстрадиол, прогестерон и тестостерон.

Липофильные гормоны

Известно множество гормонов и гормоноподобных веществ, только в организме человека их найдено более 100. Подразделение гормонов на липофильные и гидрофильные имеет определенный биохимический смысл, поскольку оно отражает различные принципы действия этих биорегуляторов (см. с. 358).

А. Липофильные гормоны

Липофильные гормоны, к которым относятся стероидные гормоны, иодтиронин и, с определенными допущениями, ретиноевая кислота, — относительно низкомолекулярные вещества (300-800 Да), плохо растворимые в воде. Они не накапливаются в железах, а секретируются в кровь сразу после завершения биосинтеза (исключение составляет тироксин). При транспортировке в крови они связываются со специфическими плазматическими белками (переносчиками). Все липофильные гормоны действуют по общему механизму, т. е. связываются с внутриклеточным рецептором и регулируют транскрипцию определенных генов (см. с. 366).

Стероидные гормоны

Наиболее важными представителями стероидных гормонов позвоночных являются прогестерон, кортизол, альдостерон, тестостерон и эстрадиол. Сегодня к этой группе относят также кальцитриол (холекальциферол, витамин D), хотя стероидный скелет этого соединения несколько модифицирован. Важнейшим гормоном беспозвоночных является экдизон. Строение экдизона приведено на рис. 63.

Женский половой гормон прогестерон относится к гестагенам. Он образуется в желтом теле (Corpus luteum) яичников. Концентрация прогестерона в крови варьирует в соответствии с жизненным циклом. Прогестерон готовит слизистую оболочку матки к восприятию оплодотворенной яйцеклетки. После оплодотворения прогестерон начинает синтезироваться в плаценте, обеспечивая нормальное течение беременности.

Эстрадиол — важнейший представитель эстрогенов. Подобно прогестерону он синтезируется в яичниках, а е период беременности также в плаценте. Эстрадиол регулирует менструальный цикл. Он стимулирует пролиферацию клеток слизистой матки, а также отвечает за развитие вторичных женских половых признаков (развитие молочных желез, характер жировых отложений и т.п.).

Тестостерон — наиболее важный представитель андрогенов (мужские половые гормоны). Он синтезируется клетками Лейдига в семенниках и контролирует развитие и функцию половых желез. Этот гормон отвечает также за развитие вторичных мужских половых признаков (развитие мускулатуры, волосяной покров и т.п.).

Важнейший из глюкокортикоидов, кортизол, образуется в коре надпочечников. Он принимает участие в регуляции белкового и углеводного обмена, стимулируя деградацию белков и конверсию аминокислот в глюкозу. Тем самым он способствует повышению концентрации глюкозы в крови (см. с. 160). Синтетические глюкокортикоиды находят применение в качестве лекарственных препаратов, обладающих противовоспалительным и иммунодепрессантным действием.

Минералокортикоид  альдостерон  синтезируется  в  коре  надпочечников. Он влияет на функцию почек, где за счет активации Na+/K+-АТФ-азы обеспечивает удерживание в организме (реабсорбцию) солей натрия. В то же время этот процесс сопровождается выводом из организма К+. Следовательно, альдостерон косвенным образом повышает кровяное давление.

Кальцитриол — производное витамина D (см. с. 352). Предшественник кальцитриола синтезируется в коже под действием УФ-света, а собственно гормон образуется в почках (см. с. 322). Кальцитриол стимулирует всасывание кальция в желудочно-кишечном тракте и включение кальция в костную ткань.

Иодтиронины. Среди сигнальных веществ, являющихся производными аминокислот, липофильными свойствами обладает только тироксин (тетраиодтиронин, Т4) и его активное производное трииодтиронин (ТЗ). Оба вещества образуются в организме из аминокислоты тирозина и содержат на один фенольный остаток больше, чем молекула предшественника. Характерным для этих соединений является наличие атомов иода в положениях 3,5,3',5' (Т4) и 3,5,3' (ТЗ) ароматических колец.

Тироксин образуется в щитовидной железе. Он повышает скорость метаболизма и стимулирует развитие эмбриона.




1. com-bestpslterium Самая большая библиотека ВКонтакте Присоединяйтесь Теперь запомните сказала мама Ваш
2. видавничий відділ Луцького національного технічного університету Луцьк 2008 УДК 330
3. тематической экспедицией Главтюменьгеологии и утверждены ГКЗ СССР в 1985 году
4. Конспект лекцій для напряму підготовки 0501 ldquo;Економіка і підприємництвоrdquo; для підготовки магістрів
5. тема налогового права его место в системе права
6.  Торговля в системе национальной экономики
7. Трудовое воспитание дошкольников
8. Индивидуальные и коллективные средства защиты
9. тема учебного заведения как средство повышения эффективности использования компьютерной техники в лаборат
10. Corrodere разъедать
11. Після 280 днів вагітності жінка народжує дитину в результаті пологів
12. Б.Н. Ельцина доктор исторических наук г
13. ТЕМА 7. СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ДИНАМИКИ СОЦИАЛЬНОЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ Вопрос 1.html
14. Організація колективної пізнавальної діяльності школярів у навчальному процесі початкової школи
15. Тема 1 Предмет философии План Общее понимание философии Возникновение и особенности развития фило
16. по теме ldquo; ДЕТЕКТИРОВАНИЕ АМПЛИТУДНОМОДУЛИРОВАННЫХ СИГНАЛОВ rdquo; Выполнил Николайч
17. Пенсійне право як складова права соціального забезпечення
18.  Многие средства СМИ только запутывают ситуацию подавая события происходящие там в перекрученном виде
19. 2013г. 2013г
20. Иллюзорный мир игр современного общества.html