Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
14
Содержание 1
Лекция 1. Принципы управления 2
1.1. Общие понятия 2
Лекция 2. Статический режим САУ 7
2.1. Основные виды САУ 7
Лекция 3. Динамический режим САУ 12
3.1. Динамический режим САУ. Уравнение динамики 12
3.3. Передаточная функция 15
3.4. Элементарные динамические звенья 16
Лекция 4.Структурные схемы САУ 17
4.1. Эквивалентные преобразования структурных схем 17
4.2. САР напряжения генератора постоянного тока 22
Лекция 5.Временные характеристики 24
5.1. Понятие временных характеристик 24
5.2. Переходные характеристики элементарных звеньев 26
5.2.1. Безынерционное (пропорциональное, усилительное) звено 26
5.2.2. Интегрирующее (астатическое) звено 26
5.2.3. Инерционное звено первого порядка (апериодическое) 27
5.2.4. Инерционные звенья второго порядка 28
5.2.5. Дифференцирующее звено 28
Лекция 6. Частотные характеристики 29
6.2. Частотные характеристики типовых звеньев 32
6.2.1. Безынерционное звено 32
6.2.2. Интегрирующее звено 33
6.2.3. Апериодическое звено 33
6.2.4. Инерционные звенья второго порядка 34
6.2.5. Правила построения ЧХ элементарных звеньев 35
Лекция 7.ЧХ разомкнутых САУ 36
7.1. Частотные характеристики разомкнутых одноконтурных САУ 36
7.2. Законы регулирования 39
Лекция 8. Алгебраические критерии устойчивости 40
8.1. Понятие устойчивости системы 40
8.2. Алгебраические критерии устойчивости 43
8.2.1. Необходимое условие устойчивости 43
8.2.1. Критерий Рауса 44
8.2.2. Критерий Гурвица 44
Лекция 9. Частотные критерии устойчивости 46
9.1. Принцип аргумента 46
9.2. Критерий устойчивости Михайлова 47
9.3. Критерий устойчивости Найквиста 48
Лекция 10.D-разбиение. Запас устойчивости 50
10.1. Понятие структурной устойчивости. АФЧХ астатических САУ 50
10.2. Понятие запаса устойчивости 52
10.3. Анализ устойчивости по ЛЧХ 53
Лекция 11. Качество САУ 54
11.1. Теоретическое обоснование метода D-разбиений 54
11.2. D-разбиение по одному параметру 56
11.3. Прямые методы оценки качества управления 56
11.3.1. Оценка переходного процесса при ступенчатом воздействии. 57
11.3.2. Оценка качества управления при периодических возмущениях 58
Лекция 12. Корневой и интегральный методы оценки качества САУ 59
12.1. Корневой метод оценки качества управления 59
Лекция 13. Частотные методы оценки качества 64
13.1. Теоретическое обоснование 64
13.2. Основные соотношения между ВЧХ и переходной характеристикой 65
13.3. Метод трапеций 67
Лекция 14. Синтез САУ 69
14.1. Синтез САУ 69
14.1.1. Включение корректирующих устройств 70
14.1.2. Синтез корректирующих устройств. 72
14.2. Коррекция свойств САУ изменением параметров звеньев 72
14.2.2. Изменение постоянной времени звена САУ 74
Теория автоматического управления (ТАУ) появилась во второй половине 19 века сначала как теория регулирования. Широкое применение паровых машин вызвало потребность в регуляторах, то есть в специальных устройствах, поддерживающих устойчивый режим работы паровой машины. Это дало начало научным исследованиям в области управления техническими объектами. Оказалось, что результаты и выводы данной теории могут быть применимы к управлению объектами различной природы с различными принципами действия. В настоящее время сфера ее влияния расширилась на анализ динамики таких систем, как экономические, социальные и т.п. Поэтому прежнее название “Теория автоматического регулирования” заменено на более широкое - “Теория автоматического управления”.
Управление каким-либо объектом (объект управления будем обозначать ОУ) есть воздействие на него в целях достижения требуемых состояний или процессов. В качестве ОУ может служить самолет, станок, электродвигатель и т.п. Управление объектом с помощью технических средств без участия человека называется автоматическим управлением. Совокупность ОУ и средств автоматического управления называется системой автоматического управления (САУ).
Основной задачей автоматического управления является поддержание определенного закона изменения одной или нескольких физических величин, характеризующих процессы, протекающие в ОУ, без непосредственного участия человека. Эти величины называются управляемыми величинами. Если в качестве ОУ рассматривается хлебопекарная печь, то управляемой величиной будет температура, которая должна изменяться по заданной программе в соответствии с требованиями технологического процесса.
1.2. Фундаментальные принципы управления
Принято различать три фундаментальных принципа управления: принцип разомкнутого управления, принцип компенсации, принцип обратной связи.
1.2.1. Принцип разомкнутого управления
Рассмотрим САУ хлебопекарной печи (рис.1). Ее принципиальная схема показывает принцип действия данной конкретной САУ, состоящей из конкретных технических устройств. Принципиальные схемы могут быть электрическими, гидравлическими, кинематическими и т.п.
Технология выпечки требует изменения температуры в печи по заданной программе, в частном случае требуется поддержание постоянной температуры. Для этого надо реостатом регулировать напряжение на нагревательном элементе НЭ. Подобная часть ОУ, с помощью которой можно изменять параметры управляемого процесса называется управляющим органом объекта (УО). Это может быть реостат, вентиль, заслонка и т.п.
Часть ОУ, которая преобразует управляемую величину в пропорциональную ей величину, удобную для использования в САУ, называют чувствительным элементом (ЧЭ). Физическую величину на выходе ЧЭ называют выходной величиной ОУ. Как правило, это электрический сигнал (ток, напряжение) или механическое перемещение. В качестве ЧЭ могут использоваться термопары, тахометры, рычаги, электрические мосты, датчики давления, деформации, положения и т.п. В нашем случае это термопара, на выходе которой формируется напряжение, пропорциональное температуре в печи, подаваемое на измерительный прибор ИП для контроля. Физическую величину на входе управляющего органа ОУ называют входной величиной ОУ.
Управляющее воздействие u(t) - это воздействие, прикладываемое к УО объекта с целью поддержания требуемых значений управляемой величины. Оно формируется устройством управления (УУ). Ядром УУ является исполнительный элемент, в качестве которого может использоваться электрические или поршневые двигатели, мембраны, электромагниты и т.п.
Задающим устройством (ЗУ) называется устройство, задающее программу изменения управляющего воздействия, то есть формирующее задающий сигнал uо(t). В простейшем случае uо(t)=const. ЗУ может быть выполнено в виде отдельного устройства, быть встроенным в УУ или же вообще отсутствовать. В качестве ЗУ может выступать кулачковый механизм, магнитофонная лента, маятник в часах, задающий профиль и т.п. Роль УУ и ЗУ может исполнять человек. Однако это уже не САУ. В нашем примере УУ является кулачковый механизм, перемещающий движок реостата согласно программе, которая задается профилем кулачка.
Рассмотренную САУ можно представить в виде функциональной схемы, элементы которой называются функциональными звеньями. Эти звенья изображаются прямоугольниками, в которых записывается функция преобразования входной величины в выходную (рис.2). Эти величины могут иметь одинаковую или различную природу, например, входное и выходное электрическое напряжение, или электрическое напряжение на входе и скорость механического перемещения на выходе и т.п.
Величина f(t), подаваемая на второй вход звена, называется возмущением. Она отражает влияние на выходную величину y(t) изменений окружающей среды, нагрузки и т.п.
В общем случае функциональное звено может иметь несколько входов и выходов (рис.3). Здесь u1,u2,...,un - входные (управляющие) воздействия; f1,f2,...,fm - возмущающие воздействия; y1,y2,...,yk - выходные величины.
Принцип работы функциональных звеньев может быть различным, поэтому функциональная схема не дает представление о принципе действия конкретной САУ, а показывает лишь пути прохождения и способы обработки и преобразования сигналов. Сигнал - это информационное понятие, соответствующее на принципиальной схеме физическим величинам. Пути его прохождения указываются направленными отрезками (рис.4). Точки разветвления сигнала называются узлами. Сигнал определяется лишь формой изменения физической величины, он не имеет ни массы, ни энергии, поэтому в узлах он не делится, и по всем путям от узла идут одинаковые сигналы, равные сигналу, входящему в узел. Суммирование сигналов осуществляется в сумматоре, вычитание - в сравнивающем устройстве.
Рассмотренную САУ хлебопекарной печи можно изобразить функциональной схемой (рис.5). В данной схеме заложен принцип разомкнутого управления, сущность которого состоит в том, что программа управления жестко задана ЗУ; управление не учитывает влияние возмущений на параметры процесса. Примерами систем, работающих по принципу разомкнутого управления, являются часы, магнитофон, компьютер и т.п.
1.2.2. Принцип компенсации
Если возмущающий фактор искажает выходную величину до недопустимых пределов, то применяют принцип компенсации (рис.6, КУ - корректирующее устройство).
Пусть yо - значение выходной величины, которое требуется обеспечить согласно программе. На самом деле из-за возмущения f на выходе регистрируется значение y. Величина e = yо - y называется отклонением от заданной величины. Если каким-то образом удается измерить величину f, то можно откорректировать управляющее воздействие u на входе ОУ, суммируя сигнал УУ с корректирующим воздействием, пропорциональным возмущению f и компенсирующим его влияние.
Примеры систем компенсации: биметаллический маятник в часах, компенсационная обмотка машины постоянного тока и т.п. На рис.6 в цепи НЭ стоит термосопротивление Rt, величина которого меняется в зависимости от колебаний температуры окружающей среды, корректируя напряжение на НЭ.
Достоинство принципа компенсации: быстрота реакции на возмущения. Он более точен, чем принцип разомкнутого управления. Недостаток: невозможность учета подобным образом всех возможных возмущений.
1.2.3. Принцип обратной связи
Наибольшее распространение в технике получил принцип обратной связи (рис.7). Здесь управляющее воздействие корректируется в зависимости от выходной величины y(t). И уже не важно, какие возмущения действуют на ОУ. Если значение y(t) отклоняется от требуемого, то происходит корректировка сигнала u(t) с целью уменьшения данного отклонения. Связь выхода ОУ с его входом называется главной обратной связью (ОС).
В частном случае (рис.8) ЗУ формирует требуемое значение выходной величины yо(t), которое сравнивается с действительным значением на выходе САУ y(t). Отклонение e = yо-y с выхода сравнивающего устройства подается на вход регулятора Р, объединяющего в себе УУ, УО, ЧЭ.Если e0, то регулятор формирует управляющее воздействие u(t), действующее до тех пор, пока не обеспечится равенство e = 0, или y = yо. Так как на регулятор подается разность сигналов, то такая обратная связь называется отрицательной, в отличие от положительной обратной связи, когда сигналы складываются.
Такое управление в функции отклонения называется регулированием, а подобную САУ называют системой автоматического регулирования (САР). Так на рис.9 изображена упрощенная схема САР хлебопекарной печи.
Роль ЗУ здесь выполняет потенциометр, напряжение на котором Uз сравнивается с напряжением на термопаре Uт. Их разность U через усилитель подается на исполнительный двигатель ИД, регулирующий через редуктор положение движка реостата в цепи НЭ. Наличие усилителя говорит о том, что данная САР является системой непрямого регулирования, так как энергия для функций управления берется от посторонних источников питания, в отличие от систем прямого регулирования, в которых энергия берется непосредственно от ОУ, как, например, в САР уровня воды в баке (рис.10).
Недостатком принципа обратной связи является инерционность системы. Поэтому часто применяют комбинацию данного принципа с принципом компенсации, что позволяет объединить достоинства обоих принципов: быстроту реакции на возмущение принципа компенсации и точность регулирования независимо от природы возмущений принципа обратной связи.
В зависимости от принципа и закона функционирования ЗУ, задающего программу изменения выходной величины, различают основные виды САУ: системы стабилизации, программные, следящие и самонастраивающиеся системы, среди которых можно выделить экстремальные, оптимальные и адаптивные системы.
В системах стабилизации (рис.9,10) обеспечивается неизменное значение управляемой величины при всех видах возмущений, т.е. y(t) = const. ЗУ формирует эталонный сигнал, с которым сравнивается выходная величина. ЗУ, как правило, допускает настройку эталонного сигнала, что позволяет менять по желанию значение выходной величины.
В программных системах обеспечивается изменение управляемой величины в соответствии с программой, формируемой ЗУ. В качестве ЗУ может использоваться кулачковый механизм, устройство считывания с перфоленты или магнитной ленты и т.п. К этому виду САУ можно отнести заводные игрушки, магнитофоны, проигрыватели и т.п. Различают системы с временной программой (например, рис.1), обеспечивающие y = f(t), и системы с пространственной программой, в которых y = f(x), применяемые там, где на выходе САУ важно получить требуемую траекторию в пространстве, например, в копировальном станке (рис.11), закон движения во времени здесь роли не играет.
Следящие системы отличаются от программных лишь тем, что программа y = f(t) или y = f(x) заранее неизвестна. В качестве ЗУ выступает устройство, следящее за изменением какого-либо внешнего параметра. Эти изменения и будут определять изменения выходной величины САУ. Например, рука робота, повторяющая движения руки человека.
Все три рассмотренные вида САУ могут быть построены по любому из трех фундаментальных принципов управления. Для них характерно требование совпадения выходной величины с некоторым предписанным значением на входе САУ, которое само может меняться. То есть в любой момент времени требуемое значение выходной величины определено однозначно.
В самонастраивающихся системах ЗУ ищет такое значение управляемой величины, которое в каком-то смысле является оптимальным.
Так в экстремальных системах (рис.12) требуется, чтобы выходная величина всегда принимала экстремальное значение из всех возможных, которое заранее не определено и может непредсказуемо изменяться. Для его поиска система выполняет небольшие пробные движения и анализирует реакцию выходной величины на эти пробы. После этого вырабатывается управляющее воздействие, приближающее выходную величину к экстремальному значению. Процесс повторяется непрерывно. Так как в данных САУ происходит непрерывная оценка выходного параметра, то они выполняются только в соответствии с третьим принципом управления: принципом обратной связи.
Оптимальные системы являются более сложным вариантом экстремальных систем. Здесь происходит, как правило, сложная обработка информации о характере изменения выходных величин и возмущений, о характере влияния управляющих воздействий на выходные величины, может быть задействована теоретическая информация, информация эвристического характера и т.п. Поэтому основным отличием экстремальных систем является наличие ЭВМ. Эти системы могут работать в соответствии с любым из трех фундаментальных принципов управления.
В адаптивных системах предусмотрена возможность автоматической перенастройки параметров или изменения принципиальной схемы САУ с целью приспособления к изменяющимся внешним условиям. В соответствии с этим различают самонастраивающиеся и самоорганизующиеся адаптивные системы.
Все виды САУ обеспечивают совпадение выходной величины с требуемым значением. Отличие лишь в программе изменения требуемого значения. Поэтому основы ТАУ строятся на анализе самых простых систем: систем стабилизации. Научившись анализировать динамические свойства САУ, мы учтем все особенности более сложных видов САУ.
2.2. Статические характеристики
Режим работы САУ, в котором управляемая величина и все промежуточные величины не изменяются во времени, называется установившимся, или статическим режимом. Любое звено и САУ в целом в данном режиме описывается уравнениями статики вида y = F(u,f), в которых отсутствует время t. Соответствующие им графики называются статическими характеристиками. Статическая характеристика звена с одним входом u может быть представлена кривой y = F(u) (рис.13). Если звено имеет второй вход по возмущению f, то статическая характеристика задается семейством кривых y = F(u) при различных значениях f, или y = F(f) при различных u.
Так примером одного из функциональных звеньев системы регулирования воды в баке (см. выше) является обычный рычаг (рис.14). Уравнение статики для него имеет вид y = Ku. Его можно изобразить звеном, функцией которого является усиление (или ослабление) входного сигнала в K раз. Коэффициент K = y/u, равный отношению выходной величины к входной называется коэффициентом усиления звена. Когда входная и выходная величины имеют разную природу, его называют коэффициентом передачи.
Статическая характеристика данного звена имеет вид отрезка прямой линии с наклоном a = arctg(L2/L1) = arctg(K) (рис.15). Звенья с линейными статическими характеристиками называются линейными. Статические характеристики реальных звеньев, как правило, нелинейны. Такие звенья называются нелинейными. Для них характерна зависимость коэффициента передачи от величины входного сигнала: K = y/uconst.
Например, статическая характеристика насыщенного генератора постоянного тока представлена на рис.16. Обычно нелинейная характеристика не может быть выражена какой-либо математической зависимостью и ее приходится задавать таблично или графически.
Зная статические характеристики отдельных звеньев, можно построить статическую характеристику САУ (рис.17, 18). Если все звенья САУ линейные, то САУ имеет линейную статическую характеристику и называется линейной. Если хотя бы одно звено нелинейное, то САУ нелинейная.
Звенья, для которых можно задать статическую характеристику в виде жесткой функциональной зависимости выходной величины от входной, называются статическими. Если такая связь отсутствует и каждому значению входной величины соответствует множество значений выходной величины, то такое звено называется астатическим. Изображать его статическую характеристику бессмысленно. Примером астатического звена может служить двигатель, входной величиной которого является напряжение U, а выходной - угол поворота вала , величина которого при U = const может принимать любые значения. Выходная величина астатического звена даже в установившемся режиме является функцией времени.
2.3. Статическое и астатическое регулирование
Если на управляемый процесс действует возмущение f, то важное значение имеет статическая характеристика САУ в форме y = F(f) при yo = const. Возможны два характерных вида этих характеристик (рис.19). В соответствии с тем, какая из двух характеристик свойственна для данной САУ, различают статическое и астатическое регулирование.
Рассмотрим систему регулирования уровня воды в баке (рис.20). Возмущающим фактора является поток Q воды из бака. Пусть при Q = 0 имеем y = yo , e = 0. ЗУ системы настраивается так, чтобы вода при этом не поступала. При Q0, уровень воды понижается (e0), поплавок опускается и открывает заслонку, в бак начинает поступать вода. Новое состояние равновесия достигается при равенстве входящего и выходящего потоков воды. Но в любом случае при Q0 заслонка должна быть обязательно открыта, что возможно только при e0. Причем, чем больше Q, тем при больших значениях e, устанавливается новое равновесное состояние. Статическая характеристика САУ имеет характерный наклон (рис.19б). Это есть пример статического регулирования. Для получения статического регулирование, все звенья САР должны быть статическими.
Статические регуляторы работают при обязательном отклонении e регулируемой величины от требуемого значения. Это отклонение тем больше, чем больше возмущение f. Это заложено в принципе действия регулятора и не является его погрешностью, поэтому данное отклонение называется статической ошибкой регулятора. Из рис.21 видно, что, чем больше коэффициент передачи регулятора Kр, тем на большую величину откроется заслонка при одних и тех же значениях e, обеспечив в установившемся режиме большую величину потока Q. Это значит, что на статической характеристике одинаковым значениям e при больших Kр будут соответствовать большие значения возмущения Q, статическая характеристика САУ пойдет более полого. Поэтому, чтобы уменьшить статическую ошибку надо увеличивать коэффициент передачи регулятора. Того же результата можно добиться, увеличивая коэффициент передачи объекта управления, но это дело конструкторов, проектирующих данный объект, а не специалистов по автоматике.
Статизм d, САР, характеризует насколько сильно значение регулируемой величины отклоняется от требуемого значения при действии возмущений, и равна тангенсу угла наклона статической характеристики, построенной в относительных единицах: d = tg(a) =
(рис.22), где y = yн, f = fн - точка номинального режима САУ. При достаточно больших значениях Kp имеем d 1/Kp.
В некоторых случаях статическая ошибка недопустима, тогда переходят к астатическому регулированию, при котором регулируемая величина в установившемся режиме принимает точно требуемое значение независимо от величины возмущающего фактора. Статическая характеристика астатической САУ не имеет наклона (рис.19в). Возможные неточности относятся к погрешностям конкретной системы и не являются закономерными.
Для того, чтобы получить астатическое регулирование, необходимо в регулятор включить астатическое звено, например ИД, между ЧЭ и УО (рис.23).
Если уровень воды понизится, то поплавок переместит движок потенциометра на величину L, за счет этого появится разность потенциалов 0 и ИД начнет поднимать заслонку до тех пор, пока не уменьшится до нуля, а это возможно только при y = yo . При поднятии уровня воды разность потенциалов сменит знак, и двигатель будет вращаться в противоположную сторону, опуская заслонку.
Достоинства и недостатки статического и астатического регулирования: статические регуляторы обладают статической ошибкой; астатические регуляторы статической ошибки не имеют, но они более инерционны, сложны конструктивно и более дороги.
Обеспечение требуемой статической точности регулирования является первой основной задачей при расчете элементов САУ.
Установившийся режим не является характерным для САУ. Обычно на управляемый процесс действуют различные возмущения, отклоняющие управляемый параметр от заданной величины.
Процесс установления требуемого значения управляемой величины называется регулированием. Ввиду инерционности звеньев регулирование не может осуществляться мгновенно.
Рассмотрим САР, находящуюся в установившемся режиме, характеризующемся значением выходной величины y = yo. Пусть в момент t = 0 на объект воздействовал какой - либо возмущающий фактор, отклонив значение регулируемой величины. Через некоторое время регулятор вернет САР к первоначальному состоянию (с учетом статической точности) (рис.24). Если регулируемая величина изменяется во времени по апериодическому закону, то процесс регулирования называется апериодическим.
При резких возмущениях возможен колебательный затухающий процесс (рис.25а). Существует и такая вероятность, что после некоторого времени Тр в системе установятся незатухающие колебания регулируемой величины - незатухающий колебательный процесс (рис.25б). Последний вид - расходящийся колебательный процесс (рис.25в).
Таким образом, основным режимом работы САУ считается динамический режим, характеризующийся протеканием в ней переходных процессов. Поэтому второй основной задачей при разработке САУ является анализ динамических режимов работы САУ.
Поведение САУ или любого ее звена в динамических режимах описывается уравнением динамики y(t) = F(u,f,t), описывающее изменение величин во времени. Как правило, это дифференциальное уравнение или система дифференциальных уравнений. Поэтому основным методом исследования САУ в динамических режимах является метод решения дифференциальных уравнений. Порядок дифференциальных уравнений может быть довольно высоким, то есть зависимостью связаны как сами входные и выходные величины u(t), f(t), y(t), так и скорости их изменения, ускорения и т.д. Поэтому уравнение динамики в общем виде можно записать так:
F(y, y, y”,..., y(n), u, u, u”,..., u(m), f, f , f ”,..., f(k)) = 0.
3.2. Линеаризация уравнения динамики
В общем случае уравнение динамики оказывается нелинейным, так как реальные звенья САУ обычно нелинейны. В целях упрощения теории нелинейные уравнения заменяют линейными, которые приблизительно описывают динамические процессы в САУ. Получаемая при этом точность уравнений оказывается достаточной для технических задач. Процесс преобразования нелинейных уравнений в линейные называется линеаризацией уравнений динамики. Рассмотрим сначала геометрическое обоснование линеаризации.
В нормально функционирующей САУ значение регулируемой и всех промежуточных величин незначительно отличается от требуемых. В пределах малых отклонений все нелинейные зависимости между величинами, входящими уравнение динамики, могут быть приближенно представлены отрезками прямых линий. Например, нелинейная статическая характеристика звена на участке АВ (рис.26) может быть представлена отрезком касательной в точке номинального режима А"В". Начало координат переносится в точку О, и в уравнениях записываются не абсолютные значения величин y,u,f, а их отклонения от номинальных значений: y = y - yн, u = u - uн, f = f - fн. Это позволяет получить нулевые начальные условия, если считать, что при t 0 система находилась в номинальном режиме в состоянии покоя.
Математическое обоснование линеаризации состоит в том, что если известно значение f(a) какой - либо функции f(x) в любой точке x = a, а также значения производных от этой функции в данной точке f(a), f”(a), ..., f(n)(a), то в любой другой достаточно близкой точке x + x значение функции можно определить, разложив ее в окрестности точки a в ряд Тейлора:
Аналогично можно разложить и функцию нескольких переменных. Для простоты возьмем упрощенный, но наиболее характерный вариант уравнения динамики САУ: F(y,y',y",u,u') = f. Здесь производные по времени u',y',y" также являются переменными. В точке, близкой к номинальному режиму: f = fн + f и F = Fн + F. Разложим функцию F в ряд Тейлора в окрестности точки номинального режима, отбрасывая члены ряда высоких порядков малости:
.
В номинальном режиме, когда все отклонения и их производные по времени равны нулю, получаем частное решение уравнения: Fн = fн. Учитывая это и вводя обозначения получим:
aoy” + a1y + a2y = bou + b1u + cof.
Отбрасывая все знаки , получим:
aoy” + a1y + a2y = bou + b1u + cof.
Отбрасывая все знаки , получим:
В более общем случае:
aoy(n) + a1y(n-1) + ... + an - 1y + any = bou(m) + ... + bm - 1u + bmu + cof.
При этом всегда нужно помнить, что в данном уравнении используются не абсолютные значения величин y, u, f их производных по времени, а отклонения этих величин от номинальных значений. Поэтому полученное уравнение будем называть уравнением в отклонениях.
К линеаризованной САУ можно применить принцип суперпозиции: реакция системы на несколько одновременно действующих входных воздействий равна сумме реакций на каждое воздействие в отдельности. Это позволяет звено с двумя входами u и f разложить на два звена, каждое из которых имеет один вход и один выход (рис.27). Поэтому в дальнейшем мы ограничимся изучением поведения систем и звеньев с одним входом, уравнение динамики которых имеет вид:
aoy(n) + a1y(n-1) + ... + an - 1y + any = bou(m) + ... + bm - 1u + bmu.
Это уравнение описывает САУ в динамическом режиме лишь приближенно с той точностью, которую дает линеаризация. Однако следует помнить, что линеаризация возможна только при достаточно малых отклонениях величин и при отсутствии разрывов в функции F в окрестностях интересующей нас точки, которые могут быть созданы различными выключателями, реле и т.п.
Обычно n m, так как при n < m САУ технически нереализуемы.
В ТАУ часто используют операторную форму записи дифференциальных уравнений. При этом вводится понятие дифференциального оператора p = d/dt так, что, dy/dt = py, а pn = dn/dtn. Это лишь другое обозначение операции дифференцирования. Обратная дифференцированию операция интегрирования записывается как 1/p. В операторной форме исходное дифференциальное уравнение записывается как алгебраическое:
aop(n)y + a1p(n-1)y + ... + any = (aop(n) + a1p(n-1) + ... + an)y = (bop(m) + b1p(m-1) + ... + bm)u
Не надо путать эту форму записи с операционным исчислением хотя бы потому, что здесь используются непосредственно функции времени y(t), u(t) (оригиналы), а не их изображения Y(p), U(p), получаемые из оригиналов по формуле преобразования Лапласа. Вместе с тем при нулевых начальных условиях с точностью до обозначений записи действительно очень похожи. Это сходство лежит в природе дифференциальных уравнений. Поэтому некоторые правила операционного исчисления применимы к операторной форме записи уравнения динамики. Так оператор p можно рассматривать в качестве сомножителя без права перестановки, то есть pyyp. Его можно выносить за скобки и т.п.
Поэтому уравнение динамики можно записать также в виде:
Дифференциальный оператор W(p) называют передаточной функцией. Она определяет отношение выходной величины звена к входной в каждый момент времени: W(p) = y(t)/u(t), поэтому ее еще называют динамическим коэффициентом усиления. В установившемся режиме d/dt = 0, то есть p = 0, поэтому передаточная функция превращается в коэффициент передачи звена K = bm/an.
Знаменатель передаточной функции D(p) = aopn + a1pn - 1 + a2pn - 2 + ... + an называют характеристическим полиномом. Его корни, то есть значения p, при которых знаменатель D(p) обращается в ноль, а W(p) стремится к бесконечности, называются полюсами передаточной функции.
Числитель K(p) = bopm + b1pm - 1+ ... + bm называют операторным коэффициентом передачи. Его корни, при которых K(p) = 0 и W(p) = 0, называются нулями передаточной функции.
Звено САУ с известной передаточной функцией называется динамическим звеном. Оно изображается прямоугольником, внутри которого записывается выражение передаточной функции. То есть это обычное функциональное звено, функция которого задана математической зависимостью выходной величины от входной в динамическом режиме. Для звена с двумя входами и одним выходом должны быть записаны две передаточные функции по каждому из входов. Передаточная функция является основной характеристикой звена в динамическом режиме, из которой можно получить все остальные характеристики. Она определяется только параметрами системы и не зависит от входных и выходных величин. Например, одним из динамических звеньев является интегратор. Его передаточная функция Wи(p) = 1/p. Схема САУ, составленная из динамических звеньев, называется структурной.
Динамика большинства функциональных элементов САУ независимо от исполнения может быть описана одинаковыми по форме дифференциальными уравнениями не более второго порядка. Такие элементы называют элементарными динамическими звеньями. Передаточная функция элементарного звена в общем виде задается отношением двух полиномов не более чем второй степени:
Wэ(p) = .
Известно также, что любой полином произвольного порядка можно разложить на простые сомножители не более, чем второго порядка. Так по теореме Виета модно записать
D(p) = aopn + a1pn - 1 + a2pn - 2 + ... + an = ao(p - p1)(p - p2)...(p - pn),
где p1, p2, ..., pn - корни полинома D(p). Аналогично
K(p) = bopm + b1pm - 1+ ... + bm = bo(p - p~1)(p - p~2)...(p - p~m),
где p~1, p~2, ..., p~m - корни полинома K(p). То есть
Корни любого полинома могут быть либо вещественными pi = ai , либо комплексными попарно сопряженными pi = ai ± ji . Любому вещественному корню при разложении полинома соответствует сомножитель (p - ai ). Любая пара комплексно сопряженных корней соответствует полиному второй степени, так как
(p - ai + ji )(p - ai - ji ) = (p - ai)2 + i 2 = p2 - 2pai + (ai 2 + i 2).
То есть
Поэтому любую сложную передаточную функцию линеаризованной САУ можно представить как произведение передаточных функций элементарных звеньев. Каждому такому звену в реальной САУ, как правило, соответствует какой - то отдельный узел. Зная свойства отдельных звеньев можно судить о динамики САУ в целом.
В теории удобно ограничиться рассмотрением типовых звеньев, передаточные функции которых имеют числитель или знаменатель, равный единице, то есть
W(p) = , W(p) = ,
W(p) = 1/p, W(p) = p, W(p) = Tp + 1, W(p) = k.
Из них могут быть образованы все остальные звенья. Звенья, у которых порядок полинома числителя больше порядка полинома знаменателя, технически нереализуемы.
Структурная схема САУ в простейшем случае строится из элементарных динамических звеньев. Но несколько элементарных звеньев могут быть заменены одним звеном со сложной передаточной функцией. Для этого существуют правила эквивалентного преобразования структурных схем. Рассмотрим возможные способы преобразований.
1. Последовательное соединение (рис.28) - выходная величина предшествующего звена подается на вход последующего.
При этом можно записать:
y1 = W1yo; y2 = W2y1; ...; yn = Wnyn - 1 = >
yn = W1W2.....Wn.yo = Wэквyo,
где.
То есть цепочка последовательно соединенных звеньев преобразуется в эквивалентное звено с передаточной функцией, равной произведению передаточных функций отдельных звеньев.
2. Параллельно - согласное соединение (рис.29) - на вход каждого звена подается один и тот же сигнал, а выходные сигналы складываются. Тогда:
y = y1 + y2 + ... + yn = (W1 + W2 + ... + W3)yo = Wэквyo,
где .
То есть цепочка звеньев, соединенных параллельно - согласно, преобразуется в звено с передаточной функцией, равной сумме передаточных функций отдельных звеньев.
3. Прараллельно - встречное соединение (рис. 30а) - звено охвачено положительной или отрицательной обратной связью. Участок цепи, по которому сигнал идет в противоположном направлении по отношению к системе в целом (то есть с выхода на вход) называется цепью обратной связи с передаточной функцией Wос. При этом для отрицательной ОС:
y = Wпu; y1 = Wосy; u = yo - y1,
следовательно
y = Wпyo - Wпy1 = Wпyo - WпWocy = >
y(1 + WпWoc) = Wпyo = > y = Wэквyo,
где .
Аналогично: - для положительной ОС.
Если Woc = 1, то обратная связь называется единичной (рис.30б), тогда Wэкв = Wп /(1 ± Wп).
Замкнутую систему называют одноконтурной, если при ее размыкании в какой либо точке получают цепочку из последовательно соединенных элементов (рис.31а). Участок цепи, состоящий из последовательно соединенных звеньев, соединяющий точку приложения входного сигнала с точкой съема выходного сигнала называется прямой цепью (рис.31б, передаточная функция прямой цепи Wп = WoW1W2). Цепь из последовательно соединенных звеньев, входящих в замкнутый контур называют разомкнутой цепью (рис.46в, передаточная функция разомкнутой цепи Wp = W1W2W3W4). Исходя из приведенных выше способов эквивалентного преобразования структурных схем, одноконтурная система может быть представлена одним звеном с передаточной функцией: Wэкв = Wп/(1 ± Wp) - передаточная функция одноконтурной замкнутой системы с отрицательной ОС равна передаточной функции прямой цепи, деленной на единицу плюс передаточная функция разомкнутой цепи. Для положительной ОС в знаменателе знак минус. Если сменить точку снятия выходного сигнала, то меняется вид прямой цепи. Так, если считать выходным сигнал y1 на выходе звена W1, то Wp = WoW1. Выражение для передаточной функции разомкнутой цепи не зависит от точки снятия выходного сигнала.
Замкнутые системы бывают одноконтурными и многоконтурной (рис.32).Чтобы найти эквивалентную передаточную функцию для данной схемы нужно сначала осуществить преобразование отдельных участков.
Если многоконтурная система имеет перекрещивающиеся связи (рис.33), то для вычисления эквивалентной передаточной функции нужны дополнительные правила:
4. При переносе сумматора через звено по ходу сигнала необходимо добавить звено с передаточной функцией того звена, через которое переносится сумматор. Если сумматор переносится против хода сигнала, то добавляется звено с передаточной функцией, обратной передаточной функции звена, через которое переносим сумматор (рис.34).
Так с выхода системы на рис.34а снимается сигнал
y2 = (f + yoW1)W2.
Такой же сигнал должен сниматься с выходов систем на рис.34б:
y2 = fW2 + yoW1W2 = (f + yoW1)W2,
и на рис.34в:
y2 = (f(1/W1) + yo)W1W2 = (f + yoW1)W2.
При подобных преобразованиях могут возникать неэквивалентные участки линии связи (на рисунках они заштрихованы).
5. При переносе узла через звено по ходу сигнала добавляется звено с передаточной функцией, обратной передаточной функции звена, через которое переносим узел. Если узел переносится против хода сигнала, то добавляется звено с передаточной функцией звена, через которое переносится узел (рис.35).
Так с выхода системы на рис.35а снимается сигнал
y1 = yoW1.
Такой же сигнал снимается с выходов рис.35б:
y1 = yoW1W2/W2 = yoW1
и рис.35в:
y1 = yoW1.
6. Возможны взаимные перестановки узлов и сумматоров: узлы можно менять местами (рис. 36а); сумматоры тоже можно менять местами (рис.36б); при переносе узла через сумматор необходимо добавить сравнивающий элемент (рис.36в: y = y1 + f1 = > y1 = y - f1) или сумматор (рис.36г: y = y1 + f1).
Во всех случаях переноса элементов структурной схемы возникают неэквивалентные участки линии связи, поэтому надо быть осторожным в местах съема выходного сигнала.
При эквивалентных преобразованиях одной и той же структурной схемы могут быть получены различные передаточные функции системы по разным входам и выходам. Так на рис.48 имеется два входа: по управляющему воздействию u и возмущению f при одном выходе y. Такая схема может быть преобразована к одному звену с двумя передаточными функциями Wuy и Wfy.
Для примера рассмотрим схему САР напряжения генератора постоянного тока (рис.37).
Выведем дифференциальное уравнение исполнительного двигателя постоянного тока. Его схема замещения изображена на рис. 38.
Для якорной цепи справедливо уравнение
.
Если принять, что , гдеj угол поворота вала двигателя, то
,
то есть
,
где постоянная времени якорной цепи; , коэффициенты пропорциональнсти.
Если учесть, что , где J момент инерции якоря, M - электромагнитный момент, Мс момент сторонних сил, то получим
.
Следовательно
= >
= >
= >
= >
= >
.
Здесь электромеханическая постоянная времени;
; ; ; коэффициенты пропорциональности;
, передаточные функции по напряжению и моменту сторонних сил.
Структурная схема двигателя постоянного тока показана на рис.39.
Аналогичным образом выводится передаточная функция генератора постоянного тока, которая с учетом пренебрежения индуктивностью обмотки якоря имеет вид, показанный на рис.40, где
.
Усилитель можно представить пропорциональным звеном с коэффициентом усиления Kу. В окончательном виде структурная схема САР напряжения генератора постоянного тока показана на рис.41.
Для оценки динамических свойств системы и отдельных звеньев принято исследовать их реакцию на типовые входные воздействия, которые наиболее полно отражают особенности реальных возмущений. Во - первых, это позволяет сравнивать отдельные элементы между собой с точки зрения их динамических свойств. Во - вторых, зная реакцию системы на типовые воздействия, можно судить о том, как она будет вести себя при сложных изменениях входной величины.
Наиболее распространенными типовыми воздействиями являются: ступенчатое, импульсное и гармоническое воздействия. Любой сигнал u(t), имеющий сложную форму, можно разложить на сумму типовых воздействий ui(t) и исследовать реакцию системы на каждую из составляющих, а затем, пользуясь принципом суперпозиции, получить результирующее изменение выходной величины y(t) суммируя полученные таким образом составляющие выходного сигнала yi(t).
Особенно важное значение в ТАУ придают ступенчатому воздействию 1(t) = . Все остальные воздействия могут быть сведены к нему. Так, например, реальный импульсный сигнал может быть представлен двумя ступенчатыми сигналами одинаковой величины, но противоположными по знаку, поданными один за другим через интервал времени t (рис.42).
Зависимость изменения выходной величины системы от времени при подаче на ее вход единичного ступенчатого воздействия при нулевых начальных условиях называется переходной характеристикой и обозначается h(t).
Не менее важное значение в ТАУ уделяется импульсной переходной характеристике, которая описывает реакцию системы на единичное импульсное воздействие при нулевых начальных условиях, обозначают (t). Единичный импульс физически представляет из себя очень узкий импульс, ширина которого стремится к нулю, а высота - к бесконечности, ограничивающий единичную площадь. Математически он описывается дельта - функцией d(t) = 1(t).
Переходная и импульсная переходная характеристики называются временными характеристиками. Каждая из них является исчерпывающей характеристиками системы и любого ее звена при нулевых начальных условиях. По ним можно однозначно определить выходную величину при произвольном входном воздействии.
Зная передаточную функцию W(p) = K(p)/D(p), выражение для переходной функции можно найти из формулы Хевисайда: , где pk - корни характеристического уравнения D(p) = 0. Взяв производную от переходной функции можно получить выражение для импульсной переходной функции (t) = h(t).
Здесь мы рассмотрим только самые основные звенья.
Это звено, для которого в любой момент времени выходная величина пропорциональна входной.
Его уравнение: y(t) = ku(t).
Передаточная функция: W(p) = k.
Переходная характеристика: h(t) = k1(t).
В ответ на единичное ступенчатое воздействие сигнал на выходе мгновенно достигает величины в k раз большей, чем на входе и сохраняет это значение (рис.43). При k = 1 звено никак себя не проявляет, а при k = - 1 - инвертирует входной сигнал.
Любое реальное звено обладает инерционностью, но с определенной точностью некоторые реальные звенья могут рассматриваться как безынерционные, например, жесткий механический рычаг, редуктор, потенциометр, электронный усилитель и т.п.
Его уравнение , или , или py = ku.
Передаточная функция: W(p) = k/p.
Переходная характеристика: (рис.44).
При k = 1 звено представляет собой “чистый” интегратор W(p) = 1/p. Интегрирующее звено неограниченно "накапливает" входное воздействие. Примеры интегрирующих звеньев: электродвигатель, поршневой гидравлический двигатель, емкость и т.п. Введение его в САУ превращает систему в астатическую, то есть ликвидирует статическую ошибку.
Уравнение динамики: , или Tpy + y = ku.
Передаточная функция: W(p) = .
Переходная характеристика может быть получена с помощью формулы Хевисайда:
,
где p1 = - 1/T - корень уравнения D(p) = Tp + 1 = 0; D(p1) = T.
Переходная характеристика имеет вид экспоненты (рис.45), по которой можно определить передаточный коэффициент k, равный установившемуся значению h(t), и постоянную времени Т по времени t, соответствующему точке пересечения касательной к кривой в начале координат с ее асимптотой. При достаточно больших Т звено на начальном участке может рассматриваться как интегрирующее, при малых Т звено приближенно можно рассматривать как безынерционное. Примеры апериодического звена: термопара, электродвигатель, четырехполюсник из сопротивления и емкости или сопротивления и индуктивности.
Его уравнение: T12p2y + T2py + y = ku.
Передаточная функция: W(p) = .
Решение уравнения зависит от соотношения постоянных времени T1 и T2, которое определяет коэффициент затухания r = . Можно записать W(p) = , где T = T1.
Если r 1, то знаменатель W(p) имеет два вещественных корня p1 и p2 и раскладывается на два сомножителя:
T2p2 + 2rTp + 1 = T2(p - p1).(p - p2).
Такое звено можно разложить на два апериодических звена первого порядка, поэтому оно не является элементарным.
При r<1 корни полинома знаменателя W(p) комплексно сопряженные: p1,2 = ± j. Переходная характеристика представляет собой выражение, характеризующее затухающий колебательный процесс с затуханием и частотой (рис.46). Такое звено называется колебательным. При r = 0 колебания носят незатухающий характер. Такое звено является частным случаем колебательного звена и называется консервативным. Примерами колебательного звена могут служить пружина, имеющая успокоительное устройство, электрический колебательный контур с активным сопротивлением и т.п. Зная характеристики реального устройства можно определить его параметры как колебательного звена. Передаточный коэффициент k равен установившемуся значению переходной функции.
Различают идеальное и реальное дифференцирующие звенья. Уравнение динамики идеального звена: y(t) = , или y = kpu. Здесь выходная величина пропорциональна скорости изменения входной величины. Передаточная функция: W(p) = kp. При k = 1 звено осуществляет чистое дифференцирование W(p) = p. Переходная характеристика: h(t) = k1(t) = d(t).
Идеальное дифференцирующее звено реализовать невозможно, так как величина всплеска выходной величины при подаче на вход единичного ступенчатого воздействия всегда ограничена. На практике используют реальные дифференцирующие звенья, осуществляющие приближенное дифференцирование входного сигнала.
Его уравнение: Tpy + y = kTpu.
Передаточная функция: W(p) = .
При малых Т звено можно рассматривать как идеальное дифференцирующее. Переходную характеристики можно вывести с помощью формулы Хевисайда:
,
здесь p1 = - 1/T - корень характеристического уравнения D(p) = Tp + 1 = 0; кроме того, D(p1) = T.
При подаче на вход единичного ступенчатого воздействия выходная величина оказывается ограничена по величине и растянута во времени (рис.47). По переходной характеристике, имеющей вид экспоненты, можно определить передаточный коэффициент k и постоянную времени Т. Примерами таких звеньев могут являться четырехполюсник из сопротивления и емкости или сопротивления и индуктивности, демпфер и т.п. Дифференцирующие звенья являются главным средством, применяемым для улучшения динамических свойств САУ.
Кроме рассмотренных имеется еще ряд звеньев, на которых подробно останавливаться не будем. К ним можно отнести идеальное форсирующее звено (W(p) = Tp + 1, практически не реализуемо), реальное форсирующее звено (W(p) = , при T1 >> T2), запаздывающее звено (W(p) = e - pT), воспроизводящее входное воздействие с запаздыванием по времени и другие.
6.1. Понятие частотных характеристик
Если подать на вход системы с передаточной функцией W(p) гармонический сигнал
то после завершения переходного процесса на выходе установится гармонические колебания
с той же частотой , но иными амплитудой и фазой, зависящими от частоты возмущающего воздействия. По ним можно судить о динамических свойствах системы. Зависимости, связывающие амплитуду и фазу выходного сигнала с частотой входного сигнала, называются частотными характеристиками (ЧХ). Анализ ЧХ системы с целью исследования ее динамических свойств называется частотным анализом.
Подставим выражения для u(t) и y(t) в уравнение динамики
(aоpn + a1pn - 1 + a2pn - 2 + ... + an)y = (bоpm + b1pm-1 + ... + bm)u.
Учтем, что
а значит
pnu = pnUmejwt = Um (jw)nejwt = (jw)nu.
Аналогичные соотношения можно записать и для левой части уравнения. Получим:
По аналогии с передаточной функцией можно записать:
.
W(j), равная отношению выходного сигнала к входному при изменении входного сигнала по гармоническому закону, называется частотной передаточной функцией. Легко заметить, что она может быть получена путем простой замены p на j в выражении W(p).
W(j) есть комплексная функция, поэтому:
где P() - вещественная ЧХ (ВЧХ); Q() - мнимая ЧХ (МЧХ); А() - амплитудная ЧХ (АЧХ): () - фазовая ЧХ (ФЧХ). АЧХ дает отношение амплитуд выходного и входного сигналов, ФЧХ - сдвиг по фазе выходной величины относительно входной:
;
Если W(j) изобразить вектором на комплексной плоскости, то при изменении от 0 до + его конец будет вычерчивать кривую, называемую годографом вектора W(j), или амплитудно - фазовую частотную характеристику (АФЧХ) (рис.48).
Ветвь АФЧХ при изменении от - до 0 можно получить зеркальным отображением данной кривой относительно вещественной оси.
В ТАУ широко используются логарифмические частотные характеристики (ЛЧХ) (рис.49): логарифмическая амплитудная ЧХ (ЛАЧХ) L() и логарифмическая фазовая ЧХ (ЛФЧХ) (). Они получаются путем логарифмирования передаточной функции:
ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, то есть L() = 20lgA(). Величина L() откладывается по оси ординат в децибелах. Изменение уровня сигнала на 10 дб соответствует изменению его мощности в 10 раз. Так как мощность гармонического сигнала Р пропорциональна квадрату его амплитуды А, то изменению сигнала в 10 раз соответствует изменение его уровня на 20дб,так как
lg(P2/P1) = lg(A22/A12) = 20lg(A2/A1).
По оси абсцисс откладывается частота w в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение w в 10 раз. Такой интервал называется декадой. Так как lg(0) = - , то ось ординат проводят произвольно.
ЛФЧХ, получаемая из второго слагаемого, отличается от ФЧХ только масштабом по оси . Величина () откладывается по оси ординат в градусах или радианах. Для элементарных звеньев она не выходит за пределы: - + .
ЧХ являются исчерпывающими характеристиками системы. Зная ЧХ системы можно восстановить ее передаточную функцию и определить параметры.
Зная передаточную функцию звена W(p) легко получить все его частотные характеристики. Для этого необходимо подставить в нее j вместо p, получим АФЧХ W(j). Затем надо выразить из нее ВЧХ P() и МЧХ (Q(). После этого преобразуют АФЧХ в показательную форму и получают АЧХ A() и ФЧХ (), а затем определяют выражение ЛАЧХ L(w) = 20lgA() (ЛФЧХ отличается от ФЧХ только масштабом оси абсцисс).
Передаточная функция:
W(p) = k.
АФЧХ: W(j) = k.
ВЧХ: P() = k.
МЧХ: Q() = 0.
АЧХ: A() = k.
ФЧХ: () = 0.
ЛАЧХ: L() = 20lgk.
Некоторые ЧХ показаны на рис.50. Звено пропускает все частоты одинаково c увеличением амплитуды в k раз и без сдвига по фазе.
Передаточная функция:
W(p) = k/p.
Рассмотрим частный случай, когда k = 1, то есть
W(p) = 1/p.
АФЧХ: W(j) = .
ВЧХ: P() = 0.
МЧХ: Q() = - 1/.
АЧХ: A() = 1/.
ФЧХ: () = - /2.
ЛАЧХ: L() = 20lg(1/) = - 20lg().
ЧХ показаны на рис.51. Все частоты звено пропускает с запаздыванием по фазе на 90о. Амплитуда выходного сигнала увеличивается при уменьшении частоты, и уменьшается до нуля при росте частоты (звено "заваливает" высокие частоты). ЛАЧХ представляет собой прямую, проходящую через точку L() = 0 при = 1. При увеличении частоты на декаду ордината уменьшается на 20lg10 = 20дб, то есть наклон ЛАЧХ равен - 20 дб/дек (децибел на декаду).
При k = 1 получаем следующие выражения ЧХ:
W(p) = ;
;
;
;
() = 1 - 2 = - arctg(T);
;
L() = 20lg(A()) = - 10lg(1 + (T)2).
Здесь A1 и A2 - амплитуды числителя и знаменателя ЛФЧХ; 1 и 2 - аргументы числителя и знаменателя. ЛФЧХ:
ЧХ показаны на рис.52. АФЧХ есть полуокружность радиусом 1/2 с центром в точке P = 1/2. При построении асимптотической ЛАЧХ считают, что при < 1 = 1/T можно пренебречь (T)2 выражении для L(), то есть L() - 10lg1 = 0.. При >1 пренебрегают единицей в выражении в скобках, то есть L(w) - 20lg(wT). Поэтому ЛАЧХ проходит вдоль оси абсцисс до сопрягающей частоты, затем - под наклоном - 20 дб/дек. Частота w1 называется сопрягающей частотой. Максимальное отличие реальных ЛАЧХ от асимптотических не превышает 3 дб при = 1.
ЛФЧХ асимптотически стремится к нулю при уменьшении w до нуля (чем меньше частота, тем меньше искажения сигнала по фазе) и к - /2 при возрастании до бесконечности. Перегиб в точке = 1 при () = - /4. ЛФЧХ всех апериодических звеньев имеют одинаковую форму и могут быть построены по типовой кривой с параллельным сдвигом вдоль оси частот.
При k = 1 передаточная функция звена: W(p) = .
В виду сложности вывода выражений для частотных характеристик рассмотрим их без доказательства, они показаны на рис.53.
Асимптотическая ЛАЧХ колебательного звена до сопрягающей частоты 1 = 1/T1 совпадает с осью абсцисс, при дальнейшем увеличении частоты идет с наклоном - 40 дб/дек. То есть высокие частоты колебательное звено "заваливает" сильнее, чем апериодическое звено.
Реальная ЛАЧХ при 1 значительно отличается от асимптотической. Это отличие тем существенней, чем меньше коэффициент демпфирования . Точную кривую можно построить, воспользовавшись кривыми отклонений, которые приводятся в справочниках. В предельном случае = 0 получаем консервативное звено, у которого при 1 амплитуда выходных колебаний стремится к бесконечности (рис.54).
ЛФЧХ при малых частотах асимтотически стремится к нулю. При увеличении частоты до бесконечности выходной сигнал поворачивается по фазе относительно входного на угол, стремящийся в пределе к - 180о. ЛФЧХ можно построить с помощью шаблона, но для этого нужен набор шаблонов для разных коэффициентов демпфирования. При уменьшении коэффициента демпфирования АФЧХ приближается к оси абсцисс и в пределе у консервативного звена она вырождается в два луча по оси абсцисс, при этом фаза выходных колебаний скачком меняется от нуля до - 180о при переходе через сопрягающую частоту (рис.54).
При построении ЧХ некоторых звеньев можно использовать “правило зеркала”: при k = 1 ЛАЧХ и ЛФЧХ звеньев с обратными передаточными функциями зеркальны относительно горизонтальной оси. Так на рис.55 изображены ЧХ идеального дифференцирующего и идеального форсирующего звеньев.
Если k1, то передаточную функцию звена можно рассматривать как произведение W = k.W1, где W1 - передаточная функция с k = 1. При этом амплитуда вектора АФЧХ W(j) при всех значениях должна бытьувеличена в k раз, то есть A() = kA1(). Поэтому, например, центр полуокружности АФЧХ апериодического звена будет находиться не в точке P = 1/2, а в точке k/2. ЛАЧХ также изменится: L() = 20lgA() = 20lgkA1() = 20lgk + 20lgA1(). Поэтому при k 1 ЛАЧХ звена нужно поднять по оси ординат не меняя ее формы на 20lgk. На ЛФЧХ изменение k никак не отразится.
Для примера на рис.56 приведены частотные характеристики апериодического звена при k = 10 и T = 1c. При этом ЛАЧХ апериодического звена с k = 1 поднята вверх на 20lg10 = 20.
При исследовании и проектировании САУ часто используют АФЧХ, ЛАЧХ и ЛФЧХ разомкнутых систем. Это объясняется тем, что разомкнутые САУ более просто исследовать экспериментально, чем замкнутые. В то же время по ним можно получить исчерпывающую информацию о поведении данной САУ в замкнутом состоянии.
Любую многоконтурную САУ можно привести к одноконтурной. Разомкнутая одноконтурная САУ состоит из цепочки последовательно соединенных динамических звеньев. Зная передаточную функцию разомкнутой САУ можно построить ее ЧХ. И наоборот, зная ЧХ разомкнутой САУ, снятую, например, опытным путем, можно найти ее передаточную функцию.
Передаточная функция разомкнутой одноконтурной системы равна произведению передаточных функций отдельных звеньев:
.
Заменив в этом выражении p на j w получим ее АФЧХ:
.
АЧХ: ,
значит ЛАЧХ равна сумме ЛАЧХ звеньев: .
ЛФЧХ: .
Таким образом ЛАЧХ и ЛФЧХ разомкнутой САУ строят путем графического сложения ЛАЧХ и ЛФЧХ звеньев. При этом ограничиваются построением асимптотической ЛАЧХ.
Для построения ЛАЧХ и ЛФЧХ рекомендуется следующий порядок:
1) раскладывают сложную передаточную функцию на множители, являющиеся передаточными функциями типовых динамических звеньев (порядок полиномов числителя и знаменателя не выше второго);
2) вычисляют сопрягающие частоты отдельных звеньев и строят асимптотические ЛАЧХ и ЛФЧХ каждого элементарного звена;
3) путем графического суммирования ЛАЧХ и ЛФЧХ звеньев строят результирующие ЧХ.
Рассмотрим конкретный пример:
W(p) = = W1W2W3W4.
Раскладываем данную передаточную функцию на передаточные функции элементарных звеньев:
1) безынерционное звено:
W1 = K1 = 100 => L(w) = 20lg100 = 40;
2) форсирующее звено:
W2 = p + 1;
его параметры:
K2 = 1, T2 = 1, 2 = 1/T2 = 1;
3) интегрирующее звено:
W3 = 1/p;
его ЛАЧХ проходит через точку L = 0 при частоте = 1;
4) апериодическое звено:
W4 = 1/(0.1p + 1);
его параметры: K4 = 1, T4 = 0.1, 4 = 1/T4 = 10.
Порядок построения ЛАЧХ и ЛФЧХ показан на рис.57.
Иногда требуется решить обратную задачу, то есть определить передаточную функцию по известной ЛАЧХ. Процедура определения передаточной функции состоит из следующих этапов:
1) известная ЛАЧХ представляется в асимптотическом виде, для этого непрерывная кривая заменяется отрезками прямых либо горизонтальных, либо с наклоном, кратным ±20 дб/дек;
2) асимптотическая ЛАЧХ раскладывается на ЛАЧХ элементарных звеньев;
3) для каждой из полученных ЛАЧХ определяются k и 1 = 1/T и записывается передаточная функция типового звена;
4) передаточная функция САУ определяем путем перемножения передаточных функций типовых звеньев.
Описанный порядок иллюстрируется на рис.58.
Здесь ЛАЧХ может быть представлена суммой ЛАЧХ четырех типовых звеньев: пропорционального W1 = 100, апериодического W2 = 1/(p + 1), форсирующего W3 = 0.1p + 1 и апериодического W4 = 1/(0.01p + 1).
Таким образом, передаточная функция разомкнутой САУ имеет вид
.
В более сложных случаях наклоны ЛАЧХ на некоторых участках превышают ± 20дб/дек. Тогда помимо параметров K и T приходится определять еще и коэффициенты демпфирования r.
Зная передаточную функцию разомкнутой САУ можно построить ее уравнение динамики
=> => => .
Таким образом можно определить уравнение динамики реальных звеньев и всей реальной САУ, если оно теоретически это сделать затруднительно. Для снятия частотных характеристик реальной разомкнутой САУ на ее вход подают гармонический сигнал с изменяемой частотой и определяют изменение амплитуды и фазы выходного сигнала в зависимости от частоты. По полученным характеристикам определяют уравнение динамики, после чего САУ можно исследовать теоретически.
Пусть задана какая-то САР (рис.59).
Законом регулирования называется математическая зависимость, в соответствии с которой управляющее воздействие на объект вырабатывалось бы безынерционным регулятором.
Простейшим из них является пропорциональный закон регулирования, при котором
u(t) = Ke(t) (рис.60а),
где u(t) - это управляющее воздействие, формируемое регулятором, e(t) - отклонение регулируемой величины от требуемого значения, K - коэффициент пропорциональности регулятора Р.
То есть для создания управляющего воздействия необходимо наличие ошибки регулирования и чтобы величина этой ошибки была пропорциональна возмущающему воздействию f(t). Другими словами САУ в целом должна быть статической.
Такие регуляторы называют П-регуляторами.
Так как при воздействии возмущения на объект управления отклонение регулируемой величины от требуемого значения происходит с конечной скоростью (рис.60б), то в начальный момент на вход регулятора подается очень малая величина e , вызывая при этом слабые управляющие воздействия u. Для повышения быстродействия системы желательно форсировать процесс управления.
Для этого в регулятор вводят звенья, формирующие на выходе сигнал, пропорциональный производной от входной величины, то есть дифференцирующие или форсирующие звенья.
Такой закон регулирования называется пропорционально - дифференциальным:
u(t) = K1e(t) + K2de(t)/dt.
В соответствии с ним работают ПД-регуляторы.
Чем быстрее нарастает отклонение регулируемой величины от требуемого значения, тем интенсивнее работает ПД-регулятор, что препятствует дальнейшему нарастанию данного отклонения. Кроме того при увеличении отклонения (de(t)/dt > 0) управляющий сигнал u будет больше, чем при уменьшении (de(t)/dt < 0), что также играет положительную роль, снижая колебательность процеса управления.
Добавление в регулятор двух дифференцирующих звеньев позволяет формировать управляющее воздействие по второй производной отклонения e , такой регулятор называется ПДД-регулятором.
Интегральный закон регулирования реализуется И-регулятором, его формулировка:
.
Этот регулятор наращивает управляющее воздействие до тех пор пока управляемая величина отличается от требуемого значения, то есть пока e(t)0.
И-регулятор обеспечивает астатическое регулирование.
При малых e управляющее воздействие изменяется с малой скоростью, поэтому данный регулятор очень инерционный.
Чтобы увеличить быстродействие обычно последовательно с ним включают усилитель, это дает пропорционально-интегральный закон регулирования (ПИ-регулятор), его формула:
.
Первое слагаемое обеспечивает быстродействие, второе - астатичность, то есть точность регулирования.
Еще большее быстродействие обеспечивается при добавлении слагаемого, пропорционального производной от отклонения управляемой величины de/dt, такой закон регулирования обеспечивается ПИД-регулятором, его формула:
.
Под устойчивостью системы понимается способность ее возвращаться к состоянию установившегося равновесия после снятия возмущения, нарушившего это равновесие. Неустойчивая система непрерывно удаляется от равновесного состояния или совершает вокруг него колебания с возрастающей амплитудой.
Устойчивость линейной системы определяется не характером возмущения, а структурой самой системы (рис.61). Говорят, что система устойчива "в малом", если определен факт наличия устойчивости, но не определены ее границы. Система устойчива "в большом", когда определены границы устойчивости и то, что реальные отклонения не выходят за эти границы.
В соответствии с классическим методом решение дифференциального уравнения ищется в виде:
y(t) = yвын(t) + yсв(t).
Здесь yсв(t) - общее решение однородного дифференциального уравнения, то есть уравнения с нулевой правой частью:
aoy(n) + a1y(n-1) + ... + a(n-1)y + a(n)y = 0.
Физически это означает, что все внешние воздействия сняты и система абсолютно свободна, ее движения определяются лишь собственной структурой. Поэтому решение данного уравнения называется свободной составляющей общего решения. yвын(t) - частное решение неоднородного дифференциального уравнения, под которым понимается уравнение с ненулевой правой частью. Физически это означает, что к системе приложено внешнее воздействие u(t). Поэтому вторая составляющая общего решения называется вынужденный. Она определяет вынужденный установившийся режим работы системы после окончания переходного процесса.
Можно провести аналогию между САУ и пружиной, колебания которой описываются аналогичным дифференциальным уравнением (рис.62). Оттянем пружину, а затем отпустим, предоставив ее самой себе. Пружина будет колебаться в соответствии со свободной составляющей решения уравнения, то есть характер колебаний будет определяться только структурой самой пружины. Если в момент времени t = 0 подвесить к пружине груз, то на свободные колебания наложится внешняя сила Р. После затухания колебаний, описываемых только свободной составляющей общего решения, система перейдет в новый установившийся режим, характеризуемый вынужденной составляющей yвын = y(t ). Если внешнее воздействие само будет изменяться по синусоидальному закону P = Posin(t + ), то после затухания переходного процесса система будет совершать вынужденные колебания с той же частотой, что и вынуждающая сила, то есть yвын = ymaxsin(t + y).
Каждая составляющая общего решения уравнения динамики ищется отдельно. Вынужденная составляющая ищется на основе решения уравнения статики для данной системы для времени t . Свободная составляющая представляет собой сумму из n отдельных составляющих: , где pi корни характеристического уравнения D(p) = a0pn + a1pn-1 + a2pn-2 + ... + an = 0. Корни могут быть либо вещественными pi = ai, либо попарно комплексно сопряженными pi = ai ± ji. Постоянные интегрирования Аi определяются исходя из начальных и конечных условий, подставляя в общее решение значения u, y и их производные в моменты времени t = 0 и t .
Каждому отрицательному вещественному корню соответствует экспоненциально затухающая во времени составляющая yсв(t)i, каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует yсв(t)i = const (рис.63). Пара комплексно сопряженных корней с отрицательной вещественной частью определяет затухающие колебания с частотой i, при положительной вещественной части - расходящиеся колебания, при нулевой - незатухающие (рис.64).
Так как после снятия возмущения yвын(t) = 0, то устойчивость системы определяется только характером свободной составляющей yсв(t). zПоэтому условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанному в отклонениях, должна стремиться к нулю, то есть затухать.
Исходя из расположения на комплексной плоскости корни с отрицательными вещественными частями называются левыми, с положительными - правыми (рис.65).
Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю (в системах, где an = 0), а остальные левые, то система находится на границе апериодической устойчивости. Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости.
Правила, позволяющие судить о знаках корней характеристического уравнения без его решения, называются критериями устойчивости. Их можно разделить на алгебраические (основаны на составлении по данному характеристическому уравнению по определенным правилам алгебраических выражений, по которым можно судить об устойчивости САУ) и частотные (основаны на исследовании частотных характеристик).
Характеристическое уравнение системы с помощью теоремы Виета может быть записано в виде
D(p) = aopn + a1pn-1 + a2pn-2 + ... + an = ao(p-p1)(p-p2)...(p-pn) = 0,
где p1, p2, ..., pn - корни этого уравнения. Если система устойчива, значит все корни левые, то есть вещественные части всех корней
отрицательны, что можно записать как ai = -|ai| < 0. Подставим их в уравнение:
a0(p + |a1|)(p + |a2| - j2)(p + |a2| + j2)... = 0.
Перемножая комплексно сопряженные выражения, получим:
a0(p + |a1|)((p + |a2|)2 + (2)2)... = 0.
После раскрытия скобок должно получиться выражение
a0pn + a1pn-1 + a2pn-2 + ... + an = 0.
Так как в скобках нет ни одного отрицательного числа, то ни один из коэффициентов a0,a1,...,an не будет отрицательным. Поэтому необходимым условием устойчивости САУ является положительность всех коэффициентов характеристического уравнения: a0 > 0, a1 > 0, ... , an > 0. В дальнейшем будем рассматривать только уравнения, где a0 > 0. В противном случае уравнение домножается на -1.
Рассмотренное условие является необходиным, но не достаточным условием. Необходимые и достаточные условия дают алгебраические критерии Рауса и Гурвица.
Раус предложил критерий устойчивости САУ в виде алгоритма, по которому заполняется специальная таблица с использованием коэффициентов характеристического уравнения:
1) в первой строке записываются коэффициенты уравнения с четными индексами в порядке их возрастания;
2) во второй строке - с нечетными;
3) остальные элементы таблицы определяется по формуле: ck,i = ck+ 1,i - 2 - rick + 1,i - 1, где ri = c1,i - 2/c1,i - 1, i 3 - номер строки, k - номер столбца.
4) Число строк таблицы Рауса на единицу больше порядка характеристического уравнения.
Ri |
i\k |
1 |
2 |
3 |
4 |
- |
1 |
c11 = a0 |
c21 = a2 |
c31 = a4 |
... |
- |
2 |
c12 = a1 |
c22 = a3 |
c32 = a5 |
... |
r3 = c11/cc12 |
3 |
c13 = c21-r3c22 |
c23 = c31-r3c32 |
c33 = c41-r3c42 |
... |
r3 = c11/c12 |
4 |
c14 = c22-r3c23 |
c24 = c32-r4c33 |
c34 = c42-r4c43 |
... |
... |
... |
... |
... |
... |
... |
Критерий Рауса: для того, чтобы САУ была устойчива, необходимо и достаточно, чтобы коэффициенты первого столбца таблицы Рауса c11, c12, c13,... были положительными. Если это не выполняется, то система неустойчива, а количество правых корней равно числу перемен знака в первом столбце.
Достоинство - критерий прост в использовании независимо от порядка характеристического уравнения. Он удобен для использования на ЭВМ. Его недостаток - малая наглядность, трудно судить о степени устойчивости системы, на сколько далеко отстоит она от границы устойчивости.
Гурвиц предложил другой критерий устойчивости. Из коэффициентов характеристического уравнения строится определитель Гурвица по алгоритму:
1) по главной диагонали слева направо выставляются все коэффициенты характеристического уравнения от a1 до an;
2) от каждого элемента диагонали вверх и вниз достраиваются столбцы определителя так, чтобы индексы убывали сверху вниз;
3) на место коэффициентов с индексами меньше нуля или больше n ставятся нули.
Критерий Гурвица: для того, чтобы САУ была устойчива, необходимо и достаточно, чтобы все n диагональных миноров определителя Гурвица были положительны. Эти миноры называются определителями Гурвица.
Рассмотрим примеры применения критерия Гурвица:
1) n = 1 => уравнение динамики: a0p + a1 = 0. Определитель Гурвица: = 1 = a1 > 0 при a0 > 0, то есть условиие устойчивости: a0 > 0, a1 > 0;
2) n = 2 => уравнение динамики: a0p2 + a1p + a2 = 0. Определители Гурвица: 1 = a1 > 0, D2 = a1a2 - a0a3 = a1a2 > 0, так как a3 = 0, то есть условие устойчивости: a0 > 0, a1 > 0, a2 > 0;
3) n = 3 => уравнение динамики: a0p3 + a1p2 + a2p + a3 = 0. Определители Гурвица: 1 = a1 > 0, 2 = a1a2 - a0a3 > 0, 3 = a32 > 0, условие устойчивости: a0 > 0, a1 > 0, a2 > 0, a3 > 0, a1a2 - a0a3 > 0;
Таким образом при n 2 положительность коэффициентов характеристического уравнения является необходимым и достаточным условием устойчивости САУ. При n > 2 появляются дополнительные условия.
Критерий Гурвица применяют при n 4. При больших порядках возрастает число определителей и процесс становится трудоемким. Имеется ряд модификаций данного критерия, расширяющие его возможности.
Недостаток критерия Гурвица - малая наглядность. Достоинство - удобен для реализации на ЭВМ. Его часто используют для определения влияния одного из параметров САУ на ее устойчивость. Так равенство нулю главного определителя n = ann-1 = 0 говорит о том, что система находится на границе устойчивости. При этом либо an = 0 - при выполнении остальных условий система находится на границе апериодической устойчивости, либо предпоследний минор n-1 = 0 - при положительности всех остальных миноров система находится на границе колебательной устойчивости. Параметры САУ определяют значения коэффициентов уравнения динамики, следовательно изменение любого параметра Ki влияет на значение определителя n-1. Исследуя это влияние можно найти, при каком значении Ki определитель n-1 станет равен нулю, а потом - отрицательным (рис.67). Это и будет предельное значение исследуемого параметра, после которого система становится неустойчивой.
Это графоаналитические методы, позволяющие по виду частотных характеристик САУ судить об их устойчивости. Их общее достоинство в простой геометрической интерпретации, наглядности и в отсутствии ограничений на порядок дифференциального уравнения.
Запишем характеристический полином САУ в виде
D(p) = a0(p - p1)(p - p2)...(p - pn) = 0.
Его корни
pi = i + ji = |pi|ejarg(pi),
где arg(pi) = arctg(i/ai) + k,
.
Каждый корень можно изобразить вектором на комплексной плоскости (рис.68а), тогда разность p - pi изобразится разностью векторов (рис.68б), где p - любое число.
Еcли менять значение p произвольным образом, то конец вектора p - pi будет перемещаться по комплексно плоскости, а его начало будет оставаться неподвижным, так как pi - это конкретное неизменное значение.
В частном случае, если на вход системы подавать гармонические колебания с различной частотой , то p = j, а характеристический полином принимает вид:
D(j) = a0(j - p1)(j - p2)...(j - pn).
При этом концы векторов j - pi будут находиться на мнимой оси (рис.68в). Если менять от - до + , то каждый вектор j - pi будет поворачиваться относительно своего начала pi на угол +p для левых и - p для правых корней (рис.68г).
Характеристический полином можно представить в виде
D(j) = |D(j)|ejarg(D(j)),
где |D(j)| = a0|j - p1||j - p2|...|j - pn|,
arg(D(j)) = arg(j - p1) + arg(j - p2) + .. + arg(j - pn).
Пусть из n корней m - правые, а n - m - левые, тогда угол поворота вектора D(j) при изменении от - до + равен
= (n - m) - m,
или при изменении от 0 до + получаем
= (n - 2m)(/2).
Отсюда вытекает правило: изменение аргумента вектора b при изменении частоты от - до + равно разности между числом левых и правых корней уравнения D(p) = 0, умноженному на , а при изменении частоты от 0 до + эта разность умножается на /2.
Это и есть принцип аргумента. Он положен в основе всех частотных критериев устойчивости. Мы рассмотрим два наиболее распространенных критерия: критерий Михайлова и критерий Найквиста.
Так как для устойчивой САУ число правых корней m = 0, то угол поворота вектора D(j) составит
= n/2.
То есть САУ будет устойчива, если вектор D(j) при изменении частоты от 0 до + повернется на угол n/2.
При этом конец вектора опишет кривую, называемую годографом Михайлова. Она начинается на положительной полуоси, так как D(0) = an, и последовательно проходит против часовой стрелки n квадрантов комплексной плоскости, уход в бесконечность в n - ом квадранте (рис.69а).
Если это правило нарушается (например, число проходимых кривой квадрантов не равно n, или нарушается последовательность прохождения квадрантов (рис.69б)), то такая САУ неустойчива - это и есть необходимое и достаточное условие критерия Михайлова.
Достоинства. Этот критерий удобен своей наглядностью. Так, если кривая проходит вблизи начала координат, то САУ находится вблизи границы устойчивости и наоборот. Этим критерием удобно пользоваться, если известно уравнение замкнутой САУ.
Для облегчения построения годографа Михайлова выражение для D(j) представляют суммой вещественной и мнимой составляющих:
D(j) = a0(j - p1)(j - p2)...(j - pn) = a0(j)n + a1(j)n - 1 + ... + an = ReD(j) + jImD(j),
где
ReD(j) = an - an - 22 + an- 4 4 - ...,
ImD(j) = an - 1 - an - 33 + an- 5 5 - ....
Меняя от 0 до по этим формулам находят координаты точек годографа, которые соединяют плавной линией.
Этот критерий позволяет судить об устойчивости замкнутой САУ по виду АФЧХ разомкнутой САУ (рис.70). Исследование разомкнутой САУ проще, чем замкнутой. Его можно производить экспериментально, поэтому часто оказывается, что АФЧХ разомкнутой САУ мы имеем или можем получить.
Передаточная функция разомкнутой САУ:
Wp(p) = Wp(p)/Dp(p) = > уравнение динамики: y(t) = e(t),
или
Dp(p)y(t) = Kp(p)e(t).
Здесь Dp(p) - характеристический полином разомкнутой САУ. То есть по виду корней уравнения Dp(p) = 0 можно судить об устойчивости разомкнутой САУ. Но это пока ничего не говорит об устойчивости замкнутой САУ.
Для того, чтобы получить уравнение динамики замкнутой САУ при свободном движении, считаем, что внешнее воздействие u = 0, тогда на вход первого звена САУ подается сигнал
e(t) = u(t) - y(t) = - y(t).
То есть
Dp(p)y(t) = Kp(p)( - y(t)),
следовательно уравнение замкнутой САУ:
(Dp(p) + Kp(p))y(t) = 0.
Таким образом, характеристическое уравнение замкнутой САУ:
Dз(p) = Dp(p) + Kp(p) = 0.
По виду его корней уже можно судить об устойчивости замкнутой САУ.
Воспользуемся вспомогательной функцией:
F(j) = 1 + Wр(j) = .
По сути дела она представляет собой АФЧХ разомкнутой САУ, сдвинутую на единицу вправо. Степени полиномов Dз(j) и Dp(j) равны n. Эти полиномы имеют свои корни pзi и ppi, то есть можно записать:
F(jw) = .
Каждую разность в скобках можно представить вектором на комплексной плоскости, конец которого скользит по мнимой оси (рис.63в). При изменении от - до + каждый из векторов j - pi будет поворачиваться на угол +p, если корень левый и -p, если корень правый.
Пусть полином Dз(jw) имеет m правых корней и n - m левых, а полином Dp(j) имеет g правых корней и n - g левых. Тогда суммарный угол поворота вектора функции F(j) при изменении частоты от - до + :
p[(n - m) - m)] - p[(n - g) - g] = 2p(g - m).
Если замкнутая САУ устойчива, то m = 0, тогда суммарный поворот вектора F(j) при изменении от - до + должен быть равен 2g, а при изменении от 0 до + он составит 2g/2.
Отсюда можно сформулировать критерий устойчивости Найквиста: если разомкнутая САУ неустойчива и имеет g правых корней, то для того, чтобы замкнутая САУ была устойчива необходимо и достаточно, чтобы вектор F(j) при изменении от 0 до + охватывал начало координат в положительном направлении g/2 раз, то есть АФЧХ разомкнутой САУ должна охватвать g/2 раз точку ( - 1, j0).
На рис.71а приведены АФЧХ разомкнутых САУ, устойчивых в замкнутом состоянии, на рис.71б - замкнутая САУ неустойчива.
На рис.71в и 71г показаны АФЧХ разомкнутых астатических САУ, соответственно устойчивых и неустойчивых в замкнутом состоянии. Их особенность в том, что АФЧХ при 0 уходит в бесконечность.
В этом случае при использовании критерия Найквиста ее мысленно замыкают на вещественную ось по дуге окружности бесконечно большого радиуса.
Достоинство. Критерий Найквиста очень нагляден. Он позволяет не только выявить, устойчива ли САУ, но и, в случае, если она неустойчива, наметить меры по достижению устойчивости.
САУ может быть неустойчивой по двум причинам: неподходящий состав динамических звеньев и неподходящие значения параметров звеньев.
САУ, неустойчивые по первой причине называются структурно неустойчивыми. Это означает, что изменением параметров САУ нельзя добиться ее устойчивости, нужно менять ее структуру.
Например, если САУ состоит из любого количества инерционных и колебательных звеньев, она имеет вид, показанный на рис.72. При увеличении коэффициента усиления САУ K каждая точка ее АФЧХ удаляется от начала координат, пока при некотором значении Kкрит АФЧХ не пересечет точку (-1, j0). При дальнейшем увеличении K, САУ будет неустойчива. И наоборот, при уменьшении K такую САУ в принципе возможно сделать устойчивой, поэтому ее называют структурно устойчивой.
Если САУ астатическая, то при ее размыкании характеристическое уравнение можно представить в виде: pD1p(p) = 0, где n - порядок астатизма, равный количеству последовательно включенных интеграторов. Это уравнение имеет нулевые корни, поэтому при 0, АФЧХ стремится к (рис.71в и 71г). Например, пусть Wр(p) = , здесь = 1, тогда АФЧХ разомкнутой САУ:
W(j) = = P() + jQ().
Так как порядок знаменателя больше порядка числителя, то при 0 имеем P() -, Q() -j.
Подобная АФЧХ представлена на рис.73.
Так как АФЧХ терпит разрыв, трудно сказать, охватывает ли она точку (-1,j0). В этом случае пользуются следующим приемом: если АФЧХ терпит разрыв, уходя в бесконечность при 0, ее дополняют мысленно полуокружностью бесконечного радиуса, начинающейся на положительной вещественной полуоси и продолжающейся до АФЧХ в отрицательном направлении. После этого можно применить критерий Найквиста. Как видно из рисунка, САУ, имеющая одно интегрирующее звено, является структурно устойчивой.
Если САУ имеет два интегрирующих звена (порядок астатизма = 2), ее АФЧХ уходит в бесконечность во втором квадранте (рис.74).
Например, пусть Wр(p) = , тогда АФЧХ САУ:
W(j) = = P() + jQ().
При 0 имеем P() -, Q() + j. Такая САУ не будет устойчива ни при каких значениях параметров, то есть она структурно неустойчива.
Структурно неустойчивую САУ можно сделать устойчивой, включив в нее корректирующие звенья (например, дифференцирующие или форсирующие) или изменив структуру САУ, например, с помощью местных обратных связей.
В условиях эксплуатации параметры системы по тем или иным причинам могут меняться в определенных пределах (старение, температурные колебания и т.п.). Эти колебания параметров могут привести к потере устойчивости системы, если она работает вблизи границы устойчивости. Поэтому стремятся спроектировать САУ так, чтобы она работала вдали от границы устойчивости. Степень этого удаления называют запасом устойчивости.
Согласно критерия Найквиста, чем дальше АФЧХ от критической точки (-1, j0), тем больше запас устойчивости. Различают запасы устойчивости по модулю и по фазе.
Запас устойчивости по модулю характеризует удаление годографа АФЧХ разомкнутой САУ от критической точки в направлении вещественной оси и определяется расстоянием h от критической точки до точки пересечения годографом оси абсцисс (рис.75).
Запас устойчивости по фазе характеризует удаление годографа от критической точки по дуге окружности единичного радиуса и определяется углом между отрицательным направлением вещественной полуоси и лучом, проведенным из начала координат в точку пересечения годографа с единичной окружностью.
Как уже отмечалось, с ростом коэффициента передачи разомкнутой САУ растет модуль каждой точки АФЧХ и при некотором значении K = Kкр АФЧХ пройдет через критическую точку (рис.76) и попадет на границу устойчивости, а при K > Kкр замкнутая САУ станет неустойчива. Однако в случае “клювообразных” АФЧХ (получаются из-за наличия внутренних обратных связей) не только увеличение, но и уменьшение K может привести к потере устойчивости замкнутых САУ (рис.77). В этом случае запас устойчивости определяется двумя отрезками h1 и h2, заключенными между критической точкой и АФЧХ.
Обычно при создании САУ задаются требуемыми запасами устойчивости h и , за пределы которых она выходить не должна. Эти пределы выставляются в виде сектора, вычерчиваемого вокруг критической точки, в который АФЧХ разомкнутой САУ входить не должна (рис.78).
Оценку устойчивости по критерию Найквиста удобнее производить по ЛЧХ разомкнутой САУ. Очевидно, что каждой точке АФЧХ будут соответствовать определенные точки ЛАЧХ и ЛФЧХ.
Пусть известны частотные характеристики двух разомкнутых САУ (1 и 2), отличающихся друг от друга только коэффициентом передачи K1 < K2. Пусть первая САУ устойчива в замкнутом состоянии, вторая нет.(рис.79).
Если W1(p) - передаточная функция первой САУ, то передаточная функция второй САУ W2(p) = KW1(p), где K = K2/K1. Вторую САУ можно представить последовательной цепочкой из двух звеньев с передаточными функциями K (безынерционное звено) и W1(p), поэтому результирующие ЛЧХ строятся как сумма ЛЧХ каждого из звеньев.
Поэтому ЛАЧХ второй САУ: L2() = 20lgK + L1(),
а ЛФЧХ: 2() =1().
Пересечениям АФЧХ вещественной оси соответствует значение фазы = -. Это соответствует точке пересечения ЛФЧХ = - линии координатной сетки. При этом, как видно на АФЧХ, амплитуды A1() < 1, A2() > 1, что соответствует на САЧХ значениям L1() = 20lgA1() < 0 и L2() > 0.
Сравнивая АФЧХ и ЛФЧХ можно заключить, что система в замкнутом состоянии будет устойчива, если значению ЛФЧХ = - будут соответствовать отрицательные значения ЛАЧХ и наоборот. Запасам устойчивости по модулю h1 и h2, определенным по АФЧХ соответствуют расстояния от оси абсцисс до ЛАЧХ в точках, где = -, но в логарифмическом масштабе.
Особыми точками являются точки пересечения АФЧХ с единичной окружностью. Частоты c1 и c2, при которых это происходит называют частотами среза.
В точках пересечения A() = 1 = > L() = 0 - ЛАЧХ пересекает горизонтальную ось. Если при частоте среза фаза АФЧХ c1 > - (рис.79а кривая 1), то замкнутая САУ устойчива. На рис.79б это выглядит так, что пересечению ЛАЧХ горизонтальной оси соответствует точка ЛФЧХ, расположенная выше линии = -. И наоборот для неустойчивой замкнутой САУ (рис.79а кривая 2) c2 < -, поэтому при = c2 ЛФЧХ проходит ниже линии = -. Угол 1 = c1-(-) является запасом устойчивости по фазе. Этот угол соответствует расстоянию от линии = - до ЛФЧХ.
Исходя из сказанного, критерий устойчивости Наквиста по логарифмическим ЧХ, в случаях, когда АФЧХ только один раз пересекает отрезок вещественной оси [-;-1], можно сформулировать так: для того, чтобы замкнутая САУ была устойчива необходимо и достаточно, чтобы частота, при которой ЛФЧХ пересекает линию = -, была больше частоты среза.
Если АФЧХ разомкнутой САУ имеет сложный вид (рис.80), то ЛФЧХ может несколько раз пересекать линию = -. В этом случае применение критерия Найквиста несколько усложняется. Однако во многих случаях данной формулировки критерия Найквиста оказывается достаточно.
Изменение параметров САУ, например, с целью оптимизации, приведет к изменению коэффициентов уравнения динамики. Останется ли при этом САУ устойчивой - неизвестно. Критерии устойчивости об этом ничего не говорят. Рассмотрим метод определения границ допустимых изменений параметров, при которых САУ не теряет устойчивости.
Приведем характеристическое уравнение замкнутой САУ к виду:
D(p) = pn + c1 pn -1 + c2 pn-2 + ... + cn = 0,
где c0 = a0 /a0 = 1, c1 = a1 /a0 и т.д. При некоторых конкретных значениях c1 ,c2 ,...,cn уравнение имеет единственное решение, то есть единственный набор корней (p1 , p2 ,...,pn ). По их расположению на комплексной плоскости можно судить об устойчивости САУ при заданных параметрах. Если изменить какой-либо параметр САУ, например коэффициента передачи, то изменятся и коэффициенты характеристического уравнения D(p) = 0 и станут равными cн1 ,cн2 ,...,cнn . Уравнение примет вид:
Dн(p) = pn + cн1 pn -1 + cн2 pn -2 + ... + cнn = 0.
Это уже другое уравнение и оно также имеет единственное решение (pн1 ,pн2 ,...,pнn ), отличающееся от (p1 ,p2 ,...,pn ). Если плавно менять значение параметра САУ, то коэффициенты уравнения тоже будут плавно изменяться, а его корни будут перемещаться по комплексной плоскости (рис.81).
Каждый уникальный набору коэффициентов c1 ,c2 ,...,cn можно изобразить точкой в пространстве коэффициентов, по осям которого откладываются значения коэффициентов c1 ,c2 ,...,cn . Так уравнению третьей степени соответствует трехмерное пространство коэффициентов (рис.82).
Пусть точка N с координатами (cN1 ,cN2,cN3) соответствует уравнению, имеющему решение (pN1,pN2,pN3), точка M с координатами (cM1 ,cM2 ,cM3) соответствует уравнению, имеющему решение (pM1 ,pM2 ,pM3). При изменении какого-либо параметра САУ коэффициенты характеристического уравнения будут изменяться, при этом точка в пространстве коэффициентов, соответствующая данному уравнению будет перемещаться по некоторой траектории, например из положения N в положение M. Этому перемещению будет соответствовать и перемещение корней (pN1,pN2,pN3) на комплексной плоскости в положение (pM1 ,pM2 ,pM3) (аналогично рис.81).
При этом движении некоторые корни будут переходить через мнимую ось комплексной плоскости из левой полуплоскости в правую и наоборот. В момент перехода такой k-й корень примет значение pK = jK, а коэффициенты уравнения будут иметь определенные значения cK1,cK2,cK3, определяющие в пространстве коэффициентов точку K. Подставим корень pK в характеристическое уравнение, получим тождество:
D(pK ) = (jK)3 + cK1(jK)2 + cK2 (jK ) + cK3 = 0
Меняя w от - до + , и находя при каждой частоте все возможные сочетания коэффициентов c1 ,c2 ,...,cn , удовлетворяющих уравнению
D(j) = (j)n + c1 (j)n-1 + c2 (j)n-2 + ... + cn = 0,
можно построить в n-мерном пространстве коэффициентов сложную поверхность S, разделяющую его на области, называемое D-областями. Полученное уравнение называется уравнением границы D-разбиения.
Переход из одной D-области в другую через поверхность S соответствует переходу одного или нескольких корней через мнимую ось в плоскости корней. То есть каждая точка внутри определенной D-области соответствует уравнению с определенным количеством левых и правых корней. Поэтому области обозначают D(m) по числу m правых корней.
Достаточно взять любую точку в пространстве коэффициентов и найти для нее число правых корней. Затем, двигаясь по пространству коэффициентов через границу S, можно выявить обозначения всех других областей. Особый интерес представляет область D(0), которой соответствуют уравнения с полным отсутствием правых корней, называемая областью устойчивости. Описанный метод определения областей устойчивости называется методом D-разбиений.
Не обязательно строить сложную n-мерную картину D-разбиения, можно изменять значения, например, только двух коэффициентов, оставляя другие коэффициенты постоянными. Границу D-разбиения S можно строить не только также и в пространстве конкретных параметров системы, от которых зависят данные коэффициенты.
Пусть необходимо выявить влияние на устойчивоять САУ, например, коэффициента усиления K. Приведем характеристическое уравнение к виду D(p) = S(p) + KN(p), выделив члены, не зависящие от K в полином S(p), а в остальных членах, линейно зависящих от K, вынесем его за скобки. Граница D-разбиения задается уравнением
D(j) = S(j) + KN(j) = 0, => K = -S(j)/N(j) = X() + jY().
Изменяя w от - до + , будем вычислять X() и Y() и по ним строить точки границы D-разбиения. Пространство коэффициентов представляется системой координат X-Y (рис.83а). Обычно строят только половину кривой ( = [0, + ), другую половину достраивают симметрично относительно вещественной оси.
Если в плоскости корней двигаться вдоль мнимой оси от - до + и штриховать ее слева (рис.83б), то это будет соответствовать движению вдоль линии D-разбиения при изменении w от - до + и штриховке ее также слева. Переходу корня в плоскости корней из штрихованной полуплоскости в нештрихованную вдоль стрелки 1 соответствует аналогичный переход через границу D-разбиения вдоль стрелки 1, и наоборот. Если пересекается область с двойной штриховкой (точки A, В, C), то в плоскости корней мнимую ось пересекает пара комплексно сопряженных корней.
Если известно количество правых корней, соответствующее хотя бы одной D-области, то двигаясь от нее через границы с учетом штриховок, можно обозначить все остальные области. Область с наибольшим количеством штриховок является претендентом на область устойчивости. Нужно взять любую точку из этой области и при соответствующем значении K проверить систему на устойчивость любым методом.
Есть одна особенность. Так как K - вещественное число, то Y() = 0, поэтому нас интересует не вся область устойчивости, а лишь отрезок вещественной оси в этой области, то есть K = X().
Устойчивость САУ является необходимым, но не достаточным условием для ее эффективного функционирования. Важное значение имеет качество управления, то есть степень удовлетворения совокупности требований к форме кривой переходного процесса, которая определяет пригодность системы для конкретных условий работы.
Для сравнения качества различных САУ исследуется их реакция на типовые воздействия. Обычно это ступенчатая (толчковая) функция, как один из наиболее неблагоприятных видов возмущений. Для систем, работающих с периодическими возмущениями, целесообразно оценивать качество управления при гармоническом воздействии. Все остальные возмущения можно разложить на ступенчатые воздействия с использованием интеграла Дюамеля, либо в ряд Фурье.
Все современные методы анализа качества управления можно разделить на прямые методы анализа по кривой переходного процесса или по частотным характеристикам, и косвенные методы, позволяющие, не решая дифференциального уравнения, определить некоторые показатели качества процесса управления; к ним, в частности, относятся корневые, интегральные и частотные методы.
Пусть САР (рис.84) при t = 0 воздействует возмущающий фактор f в виде единичной ступенчатой функции. При нулевых начальных условиях динамический режим описывается переходной характеристикой h(t) = y(t) = y(t) - y0 = -e(t) (рис.85). По ней можно определить все наиболее важные показатели качества управления.
1. Статическая ошибка eуст = y0 - yуст = -hуст - это разность между предписанным и действительным значением управляемой величины в установившемся режиме. Для статических систем статическая ошибка отлична от нуля (рис.85а) и пропорциональна величине возмущающего фактора f (в линейных САУ) и коэффициенту передачи системы по данному возмущению, а для астатических - равна нулю (рис.85б).
2. Время переходного процесса tпп - это время от момента воздействия, начиная с которого колебания управляемой величины не превышают некоторого наперед заданного значения, то есть |h(t)-hуст| . Обычно принимают = 0.05hуст.
3. Перерегулирование - это максимальное отклонение управляемой величины от установившегося значения, выраженное в относительных единицах: = . Здесь hmax1 - значение первого максимума переходной характеристики. При больших перерегулированиях могут возникнуть значительные динамические усилия в механической части системы, электрические перенапряжения и т.п. Допустимое значение s определяется из опыта эксплуатации. обычно оно составляет 0.1...0.3, иногда допускается до 0.7.
4. Частота колебаний = 2/T, где T - период колебаний.
5. Число колебаний n за время tпп.
6. Декремент затухания k, равный отношению двух смежных перерегулирований: .
При создании САУ допустимые значения показателей качества оговариваются техническими условиями, что можно представить в виде диаграммы показателей качества. Это область, за границы которой не должна выходить переходная характеристика (рис.86).
Периодические возмущения можно разложить в ряд Фурье, поэтому их воздействие удобно анализировать по частотным характеристикам, показывающим, как звено преобразует гармонический сигнал.
Обычно используют АЧХ замкнутой САУ (рис.87), которую легко построить по АФЧХ разомкнутой САУ Wp(j), по формуле
Aз = .
По этой кривой можно получить ряд показателей качества.
1. Показатель колебательности M - это отношение максимального значения АЧХ замкнутой САУ к ее значению при = 0, то есть M = Aзmax()/Aз(0). Так как
Aз(0) = 1,
при Kp >> 1, то M Aзmax(). Он характеризует склонность системы к колебаниям и не должен превышать 1.5.
2. Резонансная частота системы p - это частота, при которой колебания проходят через систему с наибольшим усилением, а АЧХ достигает максимума.
3. Полоса пропускания системы - это интервал частот от = 0 до = 0, на котором выполняется условие Aз(0) 0.707. Если она высокая, то система будет воспроизводить высокочастотные помехи.
4. Частота среза ср - при которой АЧХ замкнутой САУ принимает значение, равное единице. По ней можно судить о длительности переходного процесса tпп(1..2)2/ср.
5. Склонность САУ к колебаниям характеризуют также ее запасы устойчивости по модулю (допускается от 6 до 20дб) и по фазе (допускается от 30 до 60 градусов).
Это косвенный метод, основанный на определении границ области расположения корней характеристического уравнения на комплексной плоскости, что дает возможность приблизительно оценить качество управления.
Пусть имеется дифференциальное уравнение замкнутой САУ:
(a0pn + a1pn-1 + a2pn-2 + ... + (an)y = (b0pm + b1pm-1 + ... + bm)u.
Передаточная функция САУ
,
где p~1,p~2,...,p~m - нули передаточной функции, p1,p2,...,pn - полюса передаточной функции.
Переходный процесс зависит как от полюсов, так и от нулей, то есть определяется как левой, так и правой частями дифференциального уравнения. Это существенно усложняет анализ. Поэтому рассмотрим частный, но весьма распространенный случай, когда передаточная функция замкнутой САУ не имеет нулей:
.
Тогда уравнение динамики приобретает вид:
(a0pn + a1pn-1 + a2pn-2 + ... + an)y = b0u.
Общее решение данного уравнения имеет вид:
y(t) = yсв + yвын = åAiepit + bо/an.
Время переходного процесса tпп определяется длительностью свободного процесса, который представляет собой сумму n экспоненциально затухающих составляющих (рис.88). Затухание каждой из составляющих определяется вещественной частью соответствующего плюса pi, которая для устойчивых систем должна быть отрицательна. Длительность переходного процесса определяется в основном свободной составляющей, имеющей наименьшее затухание, то есть наименьшее абсолютное значение вещественной части соответствующего полюса.
Если изобразить все полюса в комплексной плоскости корней (рис.89), то данный полюс (или пара комплексно сопряженных полюсов) будет наиболее близко расположен к мнимой оси.
Для приблизительной оценки качества САУ на плоскости корней выделяется область в виде трапеции, на сторонах которой находится хотя бы по одному корню, все остальные корни - внутри данной области. Эта область характеризуется параметрами: h - степень устойчивости (равна расстоянию от мнимой оси до ближайшего корня или пары комплексно сопряженных корней); m = tg(j) - колебательность (характеризует колебательность переходного процесса и величину перерегулирования); x - своего названия не имеет, равна вещественной части наиболее удаленного от мнимой оси корня.
По степени устойчивости h можно приблизительно вычислить время переходного процесса, которое определяется по моменту, когда свободная составляющая с наименьшим затуханием уменьшится до величины Ai , где Ai - начальное значение данной составляющей, то на рис.84:
yсв3(t) = A3 = A3 = > .
В общем случае, когда передаточная функция замкнутой САУ имеет нули, то использование данного метода может дать большую ошибку. Однако всегда качество управления будет тем лучше, чем больше h и меньше m, поэтому данный метод имеет смысл для любых САУ, но приближенно.
Зная значения h, x, m можно оценить область, за которую кривая переходного процесса выходить не будет (рис.90). Для этого строятся две кривые: u(t,h) - миноранта и v(t,h) - мажоранта, ограничивающая кривую переходного процесса соответственно снизу и сверху так, что u(t,h) e(t) v(t,h), где e(t) = yo-y(t). Формулы для определения миноранты и мажоранты берутся в справочниках для конкретных случаев.
12.2. Интегральные критерии качества
Интегральные критерии позволяют судить о качестве управления путем вычисления интегралов от некоторых функций управляемой величины. Эта функция выбирается таким путем, чтобы значение определенного интеграла от этой функции по времени от 0 до + было однозначно связано с качеством переходного процесса. В то же время данный интеграл должен сравнительно просто вычисляться через коэффициенты уравнений исследуемой системы.
Например, если переходная характеристика является монотонной, то можно утверждать, что качество переходного процесса тем лучше, чем меньше площадь, ограниченная данной кривой и установившимся значением управляемой величины (рис.91). Она равна площади, ограниченной кривой изменения свободной составляющей управляемой величины и осью абсцисс.
Если система устойчива, то свободная составляющая управляемой величины в пределе стремится к нулю, поэтому площадь ограниченная данной кривой имеет конечное значение и определяется по формуле:
Joo = .
Величина Joo представляет собой линейную оценку качества управления.
Чем она меньше, тем выше быстродействие системы. При выборе параметров системы стремятся обеспечить минимум Joo. Если имеется какой то варьируемы параметр A, то можно построить кривую Joo = f(A) (рис.92). Ее минимум, определяемый из условия dJoo/dA = 0, даст оптимальное значение A.
Пусть дано уравнение динамики замкнутой САУ:
(a0pn + a1pn-1 + a2pn-2 + ... + an)y = (b0pm + b1pm-1 + ... + bm)u.
Свободный процесс описывается однородным дифференциальным уравнением:
(a0pn + a1pn-1 + ... + an)yсв = 0,
следовательно:
yсв =
yсв =
Joo = св(t)dt = .
Пусть при t = 0 САУ имела следующие начальные условия:
yсв(0) = y0, = y0, ..., = y0(n-1).
Кроме того
yсв() = 0,() = 0,...,() = 0,
так как процесс затухает и при t свободная составляющая и все производные становятся равны нулю. Подставляя эти значение, получаем:
Joo = (a0y0(n-1) + a1y0(n-1) + ... + an-1y0)/(an.
То есть линейную оценку качества регулирования можно легко вычислить, зная начальные условия и коэффициенты дифференциального уравнения. Возможны и другие линейные оценки качества, но они используются реже, например:
J01 = св(t)tdt;
J0n = св(t)tndt.
Линейные оценки качества неприменимы при колебательном процессе. Так как площади, ограниченные кривой yсв(t) и осью абсцисс складываются с учетом знака, то минимальному значению Joo может соответствовать процесс с большим числом колебаний и малым быстродействием (рис.93). В этом случае более эффективны квадратичные оценки качества, например,
J20 = yсв2(t)dt.
Значение этого интеграла соответствует площади под кривой yсв2(t) и осью абсцисс, которая всегда положительна (рис.94).
Выбирая параметры САУ по минимуму J20 мы приближаем кривую yсв(t) к осям координат, что приводит к уменьшению времени регулирования (рис.95). Вывод формулы для вычисления этой оценки сложен, поэтому ограничимся замечанием, что значение вычисляется через коэффициенты дифференциального уравнения a0...an,b0...bm. При вычислении слагаемых в этой формуле используются определители Гурвица, так что даже расчет по ней сопряжен с определенными трудностями и требует использования ЭВМ или специальных таблиц.
При выборе параметров САУ по минимуму J20 часто получают нежелательную колебательность процесса, так как приближение yсв(t) к оси ординат вызывает резкое увеличение начальной скорости, что в свою очередь может вызвать большое перерегулирование, уменьшив при этом запас устойчивости. Для того, чтобы обеспечить плавность протекания процесса, в квадратичную оценку качества добавляется слагаемое, зависящее от скорости изменения регулируемого параметра yсв(t). Получаем критерий качества
J21 = св2(t) + t2(yсв(t))2]dt,
где - некоторая наперед заданная постоянная времени, определяющая весовое соотношение между оценкой по yсв и по yсв. При малых значениях уменьшение колебательности будет незначительным. Завышение увеличит время переходного процесса так, что ее выбор определяется конкретными условиями.
Этот интеграл имеет наименьшее значение, если переходный процесс соответствует экспоненте с постоянной времени (рис.96). Другими словами, по соображениям качества управления следует стремиться к тому, чтобы переходная характеристика замкнутой САУ как можно меньше отличалась от характеристики инерционного звена первого порядка, имеющего наперед заданную постоянную времени , значение которой определяются техническими условиями.
Задача выбора параметров САУ по минимуму J20 и J21 решается аналитически только в случае невысокого порядка дифференциального уравнения. Иначе используют ЭВМ.
Частотные методы основаны на привычном для инженеров графическом изображении динамических характеристик, которые можно снять экспериментально, поэтому они находят широкое применение. В частности зная АФЧХ разомкнутой САУ Wp(j), можно построить АФЧХ замкнутой САУ
Wз(j) = = Pз() + jQз(),
а по ней - требуемую для частотных методов вещественную ЧХ замкнутой САУ Pз(). Зная ВЧХ замкнутой САУ, можно приближенно построить переходную характеристику САУ h(t), которую снять экспериментально очень трудно, и по ней определить показатели качества управления.
Теоретическое обоснование этого в том, что любую функцию, в том числе и единичную ступенчатую, можно разложить в ряд Фурье:
1(t) = A0 + Ak1cos(kt) + Ak2sin(kt)].
Так как замкнутая САУ линейна, то при подаче на вход суммы сигналов с выхода снимается сигнал, равный сумме реакций на каждый из входных сигналов. Входному сигналу ui(wi,t) на выходе будет соответствовать составляющая выходного сигнала yi(i,t) = W(ji)ui(i,t), тогда
h(t) = = A0W(0) + (jkw)[Ak1cos(kwt) + Ak2sin(kwt)].
Преобразование этого выражения приводит к двум равнозначным формулам определения h(t) через составляющие ВЧХ:
; ,
где P() и Q() - вещественная и мнимая части АФЧХ замкнутой САУ. Предпочтение обычно оказывают первой формуле, хотя с одинаковым успехом можно использовать и вторую.
Точно вычислить эти интегралы можно только с помощью ЭВМ, но в практике нашел широкое применение приближенный способ построения переходной характеристики на основе линейной аппроксимации ВЧХ замкнутой САУ, который называется метод трапеций. Прежде, чем рассматривать этот метод, рассмотрим без доказательства основные соотношения между ВЧХ замкнутой САУ и ее переходной характеристикой.
1. Начальное значение ВЧХ P(0) равно установившемуся значению переходной характеристики hуст = P() = P(0).
2. САУ с вогнутой ВЧХ (рис.97а кривая 1) не имеет перерегулирования, то есть ей соответствует монотонная переходная характеристика (рис.97б кривая 1).
3. САУ с трапециидальной ВЧХ (рис.97а кривая 2, такую ВЧХ можно аппроксимировать трапецией) имеет апериодическую переходную характеристику (рис.97б кривая 2), причем величина перерегулирования smax не превышает 18%.
4. Кривые 3 и 4 на рис.97а соответствуют колебательной переходной характеристике (рис.97б кривая 3). Величина перерегулирования smax тем больше, чем больше отношение P()max/P(0). Если это отношение стремится к бесконечности, то есть имеет место разрыв ВЧХ, то переходная характеристика приобретает вид незатухающих колебаний и САУ переходит на границу устойчивости. Величину перерегулирования можно приблизительно вычислить исходя из соотношения
smax < .
Наличие отрицательного экстремума у ВЧХ (кривая 4) свидетельствует о повышенной колебательности системы.
5. Время переходного процесса tпп можно оценить приблизительно по виду ВЧХ без построения кривой h(t). Оно определяется полосой частот wп, при которых P() > 0.2P(0) (рис.98). п называют интервалом положительности P(). При этом всегда tпп >p/п. Для кривой 1 рис.97а: tпп4/п. Для кривой 2: tпп(1..4)4/п. Для кривых 3 и 4 коэффициент пропорциональности больше, причем он тем больше, чем больше отношение P()max/P(0).
Этот метод основан на свойствах ВЧХ, следующих из полученной ранее формулы, которые мы рассмотрим без доказательств.
1. Свойство линейности: если ВЧХ можно представить суммой P() = SPi(), то каждой составляющей Pi() будет соответствовать составляющая переходной характеристики
,
при этом h(t) = (рис.99а). Поэтому, если ВЧХ имеет сложную форму, ее можно представить суммой трапециидальных ВЧХ, примыкающих к вертикальной оси. Затем все трапеции перерисовывают, перенося их основания на горизонтальную ось (рис.99б). Каждой такой трапеции соответствует своя составляющая переходной характеристики hi(t), имеющая апериодический характер (рис.99в).
Результирующая кривая строится суммированием данных составляющих.
2. Если умножить P() на постоянный множитель а, то соответствующая ей h(t) также умножается на а. То есть, чем выше ВЧХ, тем выше и переходная характеристика (рис.100).
3. Если аргумент w в выражении ВЧХ P() умножить на постоянный множитель а, то аргумент в h(t) будет делиться на это число, то есть
.
То есть переходный процесс в случае P(a) будет протекать в а раз быстрее, чем в случае P() (рис.101).
Рассмотрим трапециидальную ВЧХ (рис.102а). Она характеризуется коэффициентом наклона k = 12. Под единичной трапецией (рис.102б) понимают трапецию, две стороны которой совпадают с осями координат и равны по 1 в соответствующих масштабах; наклон k может быть различным: P1() = .
Подставляя это определение в выражение для определения h(t) можно вычислить кривую переходного процесса, соответствующую единичной трапециидальной ВЧХ. Эти расчеты были проделаны и составлены таблицы hk -функций.
Для любой трапециидальной ВЧХ, на которые разбита реальная ВЧХ (рис.99б), можно построить подобную ей единичную трапецию со значением k = 12, где 1 - частота, соответствующая перелому реальной трапеции, 2 - основание трапеции реальной ВЧХ. Для данной единичной трапеции по таблице hk-функций строят кривую hk(k,t), где t - время. Затем, используя свойства 2 и 3 масштабирования ВЧХ и переходной характеристики строят кривую переходного процесса, соответствующего данной трапециидальной ВЧХ. Причем оба описанных процесса можно совместить: сначала задаются моментом времени t, для него по таблице находят значение hk(k,t), потом умножают это значение на P(0) (масштабирование по вертикальной оси) и откладывают полученное значение на графике h(t) для времени t = t/2 (масштабирование по горизонтальной оси). Строя таким образом точки для различных моментов времени получают кривую
hi(t/2) = P(0)hk(k,t).
Данный алгоритм удобно оформить в таблицу:
t |
hk(k,t) |
t = t/2 |
hi(t) = P(0)hk(k,t) |
..... |
..... |
..... |
..... |
После суммирования составляющих переходного процесса, соответствующих каждой трапеции, получают реальную характеристику h(t).
Описанный метод построения переходной характеристики называется методом трапеций.
В ТАУ можно выделить две характерные задачи: 1) в заданной САУ найти и оценить переходные процессы - это задача анализа САУ; 2) по заданным переходным процессам и основным показателям разработать САУ - это задача синтеза САУ.
Вторая задача сложнее в виду своей неоднозначности, многое определяется творческими способностями проектировщика. Поэтому обычно задачу синтеза САУ ставится ограниченно. Считается, что основная часть системы уже задана, что обычно имеет место. Требуется синтезировать корректирующие звенья, то есть выбрать их схему и параметры. При этом необходимо, чтобы в результате коррекции САУ обеспечивался требуемый запас устойчивости; точность управления в установившихся режимах и качество управления в динамических режимах.
Корректирующее устройство можно включить последовательно, параллельно-согласно или параллельно-встречно (по схеме с обратной связью).
Последовательное корректирующее устройство с передаточной функцией Wп включается обычно после предварительного усилителя. На рис.103а предварительный усилитель имеет передаточную функцию W3, выходной каскад усилителя - W2, исполнительный элемент - W1.
Параллельно-согласное корректирующее устройство с передаточной функцией Wпс (рис.103б) может иногда при меньшей сложности обеспечить нужное преобразование сигнала. Например, для коррекции свойств САУ часто требуются дифференцирующие и форсирующие звенья, которые конструктивно очень сложны. В то же время параллельно-согласное включение предварительного усилителя (W3 = K3) и простого апериодического звена с передаточной функцией Wпс = позволяет реализовать функцию реального форсирующего звена. Такое соединение можно заменить эквивалентным форсирующим звеном с передаточной функцией
Wф = W3 + Wпс = ,
где Tф1 = ; Tф2 = Tпс; Kф = K3 + Kпс.
Наибольшими возможностями в плане коррекции свойств САУ обладает корректирующее устройство с передаточной функцией Wпв, включенное по схеме с отрицательной или положительной обратной связью, охватывающей один из звеньев САУ, как правило исполнительный элемент или выходной каскад усилителя (усилитель мощности)(рис.103в). Такие обратные связи называются местными. При этом передаточная функция эквивалентного звена:
Wэкв = .
Обычно передаточную функцию выходного каскада усилителя W2 выбирают из условия |W2.Wпв| >> 1 в широком диапазоне частот, поэтому
Wэкв1/Wпв.
То есть свойства участка цепи с параллельно-встречным включением корректирующего устройства определяются только свойствами данного корректирующего устройства. Это основное достоинство данного способа включения. Влияние плохих свойств какого либо необходимого для САУ звена, например, его нелинейности, могут быть практически полностью устранены.
Местные корректирующие обратные связи делятся на жесткие и гибкие. Жесткая обратная связь действует на систему как в переходном, так и в установившемся режиме, то есть Wж(0)0. Она реализуется безынерционным или инерционным звеном:
Wж = Kж или Wж = .
Гибкая обратная связь действует только в переходном режиме, она реализуется либо дифференцирующим, либо реальным дифференцирующим звеном:
Wг = Kг pили Wг = .
Например, если интегрирующее звено Wи = Kи/p охвачено жесткой обратной связью звеном Wж = Kж, то
Wэкв = ,
где Kэкв = 1/Kж, Tэкв = 1/(Kи KэквKж). То есть жесткая обратная связь превращает интегрирующее звено в апериодическое. В случае гибкой обратной связи звеном Wг = Kгp получаем
Wэкв = ,
где Kэкв = . То есть гибкая обратная связь не изменяет структуру интегрирующего звена, но уменьшает его коэффициент передачи.
Таким образом, даже простейшие обратные связи способны существенно изменить свойства типовых динамических звеньев. Еще больший эффект дают сложные отрицательные и положительные обратные связи. Если основные элементы регулятора по своей природе позволяют создать обратную связь, то динамические свойства этих элементов часто могут быть изменены в нужном направлении.
Корректирующие устройства синтезируют на основании требований к свойствам САУ. Для этого необходимо знать передаточную функцию реальной САУ Wреал, которая чем то не удовлетворяет разработчика, и желаемую передаточную функцию Wжел , которой должна обладать САУ в результате корректировки ее свойств.
При синтезе корректирующих устройств сначала определяю передаточную функцию возможного последовательного корректирующего устройства исходя из соотношения: Wп = Wжел /Wреал. Затем выясняют, при каких передаточных функциях параллельно-согласного Wпс и параллельно-встречного Wпв корректирующих устройств будет получен тот же эффект. После этого решают, какое из них более целесообразно и проще создать. При этом исходя из рис.103 можно записать:
Wжел = WWп = W1W2.(W3 + Wпс) = W(1 + Wпс/W3) = W/(1 + W2Wпв),
где W = W1W2W3. Из этого соотношения можно определить формулы перехода от одного корректирующего устройства к другому.
Рассмотрим примеры коррекции свойств некоторой исходной замкнутой САУ (рис.104), передаточная функция которой в разомкнутом состоянии:
W(p) = .
Для этого воспользуемся критерием Найквиста. Значения параметров звеньев в каждом конкретном случае будем оговаривать отдельно.
14.2.1. Изменение коэффициента передачи
Для увеличения точности статической САУ надо увеличивать коэффициент передачи K. С ростом K увеличивается жесткость статической характеристики САУ (рис.105), то есть уменьшается статическая ошибка e.
На рис.106 сплошными линиями показаны частотные характеристики исходной разомкнутой САУ при T1 = 0.5c, T2 = 0.02c, T3 = 0.002c, K = 10.
При увеличении коэффициента передачи K в N раз ЛАЧХ, не меняя своей формы, поднимается вверх на 20lgN (на рисунке изображена пунктирной линией). При этом ЛФЧХ остается без изменения. Из рисунка видно, что с увеличением коэффициента передачи запас устойчивости по модулю уменьшается с h30дб/дек до hк15дб/дек, по фазе - с 60o до к15o .
То есть, при повышении точности САУ путем увеличения коэффициента передачи необходимы мероприятия по повышению запаса устойчивости. Это главный недостаток такой коррекции.
К достоинствам можно отнести повышение быстродействия САУ, так как частота среза wср увеличивается, следовательно постоянная времени САУ - уменьшается.
На рис.107 сплошными линиями изображены ЛЧХ разомкнутой САУ с параметрами: T1 = 0.05c, T2 = 0.01c, T3 = 0.001c, K = 100. Из рисунка видно, что САУ неустойчива. При увеличении постоянной времени T1 в 5 раз (T1 = 0.2с) ЛАЧХ и ЛФЧХ приобретают вид, показанный на рисунке пунктирной линией. При этом видим, что замкнутая САУ становится устойчивой. Заметим, что сопрягающая частота W1 данного звена располагается левее частоты среза ср. Если бы она располагалась правее частоты среза, то есть, если бы мы увеличивали постоянную времени, например, третьего звена T3, то это привело бы к уменьшению запаса устойчивости.
Частотные характеристики для этого случая приведены на рис.108.
Аналогичное влияние оказывает постоянная времени колебательного звена. Влияние постоянной времени форсирующего звена обратное, то есть, если сопрягающая частота форсирующего звена располагается левее частоты среза, то увеличение его постоянной времени уменьшает запас устойчивости САУ, если правее, то запас устойчивости увеличивается.
Указанные зависимости справедливы лишь при условии, что сопрягающая частота расположена на некотором удалении (около одной декады) от частоты среза. Бывают и исключения из этого правила.
Это один из наиболее распространенных путей коррекции свойств САУ, особенно в случае структурно неустойчивых САУ. Рассмотрим несколько типичных случаев.
Если в статическую САУ последовательно с регулятором включить астатическое звено с передаточной функцией W = 1/p, то САУ станет астатической, то есть теоретически она будет иметь нулевую статическую ошибку eуст = 0 (рис.109). Если в исходной САУ T1 = 0.5c, T2 = 0.02c, T3 = 0.002c, K = 10, то включение последовательного астатического звена приведет к изменению частотных характеристик, как это показано на рис.110 пунктирными линиями.
Видим, что все ветви ЛАЧХ приобрели дополнительный наклон в -20дб/дек. ЛФЧХ интегрирующего звена есть горизонтальная линия = -/2,
поэтому ЛФЧХ разомкнутой САУ после включения данного звена опускается вниз на 90о. Из рисунка видно, что запас устойчивости по модулю данной САУ снижается с h25дб до hк10дб, по фазе - с 60о до к20о.
Можно сделать вывод: введение в статическую САУ последовательного интегрирующего звена переводит ее в разряд астатических САУ, повышая тем самым точность управления, но требует, как правило, специальных мер по повышению запаса устойчивости САУ, например, можно уменьшить коэффициент передачи САУ.
Кроме снижения запасов устойчивости существенным недостатком данного способа коррекции САУ является снижение частоты среза wср, следовательно увеличение постоянной времени переходного процесса, то есть уменьшение быстродействия САУ.
Пусть в исходной САУ T1 = 0.05c, T2 = 0.01c, T3 = 0.001c, K = 40. Введем в прямую цепь апериодическое звено с передаточной функцией
Wa(p) = 1/(Tap + 1),
где Ta = 8c, то есть постоянная времени корректирующего звена больше, чем постоянные времени остальных звеньев САУ (рис.111). ЛАЧХ дополнительного звена представлена на рисунке тонкой сплошной линией. ЛАЧХ и ЛФЧХ скорректированной САУ представлены пунктирными линиями.
Из рисунка видно, что изначально неустойчивая САУ после коррекции стала устойчивой. Вообще введение в прямую цепь апериодического звена с постоянной времени значительно большей, чем у звеньев исходной САУ, повышает запас устойчивости САУ. К достоинствам можно отнести также снижение высокочастотных помех и колебательности переходных процессов, о чем свидетельствует смещение вниз высокочастотной части ЛАЧХ. Поэтому такой прием повышения запаса устойчивости называется демпфированием с подавлением высоких частот.
Недостаток - уменьшается частота среза wср, то есть снижается быстродействие системы.
15.1.3. Включение форсирующего звена
Передаточная функция идеального форсирующего звена Wф(p) = Tф(p)p + 1. При Tф(p) = 0.005с его ЛАЧХ выглядит так, как это показано на рис.112 тонкой сплошной линией. Частотные характеристики скорректированной САУ показаны пунктирными линиями. Из рисунка видно, что изначально неустойчивая САУ после коррекции стала устойчивой. Кроме того увеличилась частота среза, то есть повысилось быстродействие системы. Это достоинства данного способа корректировки. Вместе с тем высокочастотная часть ЛАЧХ сместилась вверх, то есть усилилось влияние высокочастотных помех. Поэтому данный способ называется демпфирванием с поднятием высоких частот. Это серьезный недостаток, ограничивающий применение данного способа корректировки.
Введем в исходную систему дополнительное звено со сложной передаточной функцией: ,
где T1д = T2д = 0.01, T3д = 0.1,T4д = 0.001.
Частотные характеристики такой САУ приведены пунктирной линией на рис.113. В замкнутом состоянии САУ устойчива. Устойчивость достигается смещением вниз среднечастотной части ЛАЧХ, поэтому данный прием называется демпфированием с подавлением средних частот. Он свободен от недостатков двух предыдущих приемов и его применяют наиболее часто. Но он требует большей тщательности при подборе параметров и структуры корректирующего звена.
Астатизма, то есть отсутствия статической ошибки, статической САУ можно достичь не только включением интегрирующего звена. Рассмотрим несколько иных путей.
Последовательной коррекцией по задающему воздействию называется включение в цепь задающего воздействия до замкнутого контура корректирующего звена со специально подобранной передаточной функцией Wк (рис.114). Передаточная функция замкнутой САУ в этом случае находится из выражения:
Wэкв(p) = .
В установившемся режиме:
Kэкв(p) = .
Если принять Kk(p) = , то в итоге получаем Kэкв(p) = 1, то есть yуст(p) = Kэкв(p)yo(p) = yo(p), то есть статическая ошибка равна нулю. САУ, оставаясь статической, ведет себя как астатическая. При этом, так как корректирующее звено вынесено за пределы замкнутого контура, условия устойчивости и быстродействие не ухудшаются. Корректирующее звено может быть обычным пропорциональным звеном.
Недостаток этого способа в том, что астатизм обеспечивается только при строго определенных Kk(p). Любые неточности, особенности из-за изменения параметров в процессе эксплуатации САУ, ведут к появлению статической ошибки, в то время как, астатизм, достигнутый введением интегрирующих звеньев, сохраняется и при изменении параметров САУ.
Астатизм САУ относительно задающего воздействия можно обеспечить также использованием неединичной обратной связи, когда корректирующее устройство включается в цепь главной обратной связи (рис.115). При этом
Wэкв(p) = .
В установившемся режиме:
y = yo(p).
Если принять Kk(p) = , то получим
y = = yo(p),
то есть Kэкв(p) = 1. Преимущества и недостатки данного способа коррекции те же, что и в предыдущем случае.
Если возмущающее воздействие доступно измерению, то точность управления можно существенно повысить включив в САУ цепь компенсации возмущающего воздействия (рис.116), обеспечив тем самым комбинированное регулирование. Компенсирующую цепь обычно включают между входным и выходным каскадами усилителя. Составим передаточную функцию относительно возмущающего воздействия:
где W = W1W2W3W4 - передаточная функция прямой цепи. Если W2W3W5W6 = 1, то Wfy(p) = 0, то есть любое возмущение f не будет оказывать никакого влияния на выходную величину y. В этом случае говорят, что регулируемая величина инвариантна (независима) относительно возмущения f. САУ, в которых выходная величина не зависит от возмущений, называется инвариантной.
Абсолютно инвариантной САУ называется САУ, в которой Wfy(p) тождественно равна нулю (как в установившемся, так и в переходном режимах). Это обеспечить очень сложно, поэтому обычно ограничиваются упрощенным исполнением регулятора по возмущению, что обеспечивает частичное выполнение принципа инвариантности. При этом достигается условие = Kfy<<1, то есть Kfy0 и влияние возмущения f на управляемую величину очень мало. В этом случае говорят, что достигается инвариантность с точностью до малой величины e.
Этот вид регулирования имеет большие достоинства, так как в результате уменьшения влияния возмущения снижаются требования к замкнутому контуру регулирования. Это позволяет уменьшить передаточный коэффициент разомкнутой САУ, а следовательно повысить запас устойчивости замкнутой САУ. Сама компенсирующая цепь не влияет на устойчивость замкнутого контура, но она в свою очередь сама должна быть устойчивой.