Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Вариант 1 1. Фирма имеет 100 предприятий причем каждое предприятие выпускает хотя бы одну продукцию вида А

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

1. Раздел «Множества»

Вариант № 1

1. Фирма имеет 100 предприятий, причем каждое предприятие выпускает хотя бы одну продукцию вида А, В, С. Продукцию всех трех видов выпускают 10 предприятий, продукцию А и В – 18 предприятий, продукцию А и С – 15 предприятий, продукцию В и С – 21 предприятие. Число предприятий, выпускающих продукцию А  равно числу предприятий, выпускающих продукцию В и равно числу предприятий, выпускающих продукцию С. Найти число всех предприятий.

2. Упростить:   È  È .

3. Является ли множество А = {1, 2, 3} подмножеством множества  

В = {{1}, {2, 3}}?

4. Придумать пример множеств А, В, С, каждое из которых имеет мощность континуума, так, чтобы выполнялось равенство: А È В  = С.

5. Эквивалентны ли множества A = {x: x2 – 8x + 15= 0} и B = {2, 3}?

Вариант № 2

1. В группе спортсменов 30 человек. Из них 20 занимаются плаванием, 18 – легкой атлетикой и 10 – лыжами. Плаванием и легкой атлетикой занимаются 11 человек, плаванием и лыжами – 8, легкой атлетикой и лыжами – 6 человек. Сколько спортсменов занимаются всеми тремя видами спорта?

2. Упростить:  AÇ(AÈ B).

3. В каком случае ААÇВ?

4. Нарисовать диаграмму Эйлера-Венна для множества  .

5. Какое из множеств A = {1, 4, 9, 16, 25,…} и B = {1,  1/2, 1/4, 1/6, 1/8,…} имеет большую мощность?

Вариант № 3

1. В студенческой группе 20 человек. Из них 10 имеют оценку “отлично” по английскому языку, 8 - по математике, 7 - по физике, 4 - по английскому языку и по математике, 5 - по английскому языку и по физике, 4 - по математике и по физике, 3 - по английскому языку, по математике и по физике. Сколько студентов группе не имеют отличных оценок?

2. Упростить:  (A\B) È (A\B).

3. Найти все подмножества множества  A= {1, 2, 3, 4).

                                                           4

4. Пусть  An = {0,   1/2n}. Найти      U  An.

                                                          n=1

5. Доказать, что множества точек контуров всех треугольников эквивалентны.


Вариант № 4

1. В классе 20 человек. На экзаменах по истории, математике и литературе 10 учеников не получили ни одной пятерки, 6 учеников получили 5 по истории, 5 – по математике и 4 – по литературе; 2 - по истории и математике, 2  - по истории и литературе, 1 - по математике и литературе. Сколько учеников получили 5 по всем предметам?

2. Упростить: (AÇB) È (AÇB).

3. Является ли множество А = {1, 2, 3} подмножеством множества  В = {{1}, {2, 3}}?

4. Нарисовать диаграмму Эйлера-Венна для множества  (А \ В) Ç С

5. Эквивалентны ли множества A = {2x, 0<x< ¥} и B = {2n, n = 1, 2, …}?

Вариант № 5

1. В спортивном лагере 100 человек, занимающихся плаванием, легкой атлетикой и лыжами.  Из них 10 занимаются и плаванием, и легкой атлетикой, и лыжами, 18 – плаванием и легкой атлетикой, 15 – плаванием и лыжами, 21 – легкой атлетикой и лыжами. Число спортсменов, занимающихся плаванием, равно числу спортсменов, занимающихся легкой атлетикой, и равно числу спортсменов, занимающихся лыжами. Найти это число.

2. Упростить:  (AÈ B) È (AÈ B).

3. Найти все подмножества множества  A= {1, 2, 3, 4).

4. Нарисовать диаграмму Эйлера-Венна для множества  (А \ В) È  С

5. Доказать, что множества точек контуров всех треугольников эквивалентны.

Вариант № 6

1. Группе студентов предложено три спецкурса:  по мультимедиа, искусственному интеллекту и имитационному моделированию.  22 студента записались на  спецкурс по мультимедиа, 18 – на спецкурс по искусственному интеллекту, 10 – на спецкурс по имитационному моделированию, 8 – на спецкурсы по мультимедиа и искусственному интеллекту, 15 – на спецкурсы по мультимедиа и имитационному моделированию, 7 – на спецкурсы по искусственному интеллекту и имитационному моделированию. 5 студентов записались на все три спецкурса. Сколько студентов в группе?

2. Верно или неверно равенство: (A \ B) È (AÇB) = A?

3. Придумать пример множеств А, В, С, каждое из которых имеет мощность континуума, так, чтобы выполнялось равенство: А È В  = С.

4. Нарисовать диаграмму Эйлера-Венна для множества  (А \ В) È (А \ С).

5. Эквивалентны ли множества A = {x: x2-8x+15= 0} и B = {2, 3}?


Вариант № 7

1. Во время сессии 24 студента группы должны сдать три зачета: по физике, математике и программированию. 20 студентов сдали зачет по физике, 10 – по математике, 5 – по программированию, 7 – по физике и математике, 3 – по физике и программированию, 2 – по математике и программированию. Сколько студентов сдали все три зачета?

2. Упростить:  (AÈ B) È (AÇB).

3. Доказать, что множество точек  A= {(x, y): y = ½x½, -,  – 1 £ x £ 1}  несчетно.

4. Нарисовать диаграмму Эйлера-Венна для множества (А \ В) È С.

5. Эквивалентны ли множества A = {y: y =  x3, 1< x <2} и

B = {y: y = 3x, 3< x < ¥}?

Вариант № 8

В группе переводчиков 15 человек владеет английским языком, 19 – французским, 8 – немецким. 9 переводчиков владеют английским и французским языком, 7 – английским и немецким, 6 – французским и немецким. 4 переводчика владеют всеми тремя языками. Сколько переводчиков в группе?

2. Пользуясь равносильными преобразованиями, установить, верно или неверно равенство: А  \ (В È С) = (А \ В) È С?

3. В каком случае ААÇВ?

4. Нарисовать диаграмму Эйлера-Венна для множества (È ) \ (A È B).

5. Эквивалентны ли множества A = {x:  x2 –3x + 2 = 0} и B = {1, 3}?

Вариант № 9

1. Опрос группы студентов показал, что 70% из них любят ходить в кино, 60% в театр, 30% на концерты. В кино и театр ходят 40% студентов, в кино и на концерты – 20%, в театр и на концерты – 10%. Сколько студентов (в %)  ходят в кино, театр и на концерты?

2. Верно или неверно равенство: (AÇB) Ç (A È В) = В?

3. Привести пример двух множеств А и В, таких, что мощность множества А больше мощности множества В.

4. Нарисовать диаграмму Эйлера-Венна для множества  А \ (В ÇС).

5. Эквивалентны ли множества A = {x:  x3 – 1 = 0} и

B = {x: x2 – 3x + 2 = 0}?

Вариант № 10

1. В группе 20 учеников. После медицинского осмотра на дополнительное обследование 14 учеников  были направлены к терапевту, 6 – к окулисту, 5 – к ортопеду. К терапевту и окулисту были направлены 3 ученика, к терапевту и ортопеду –3, к окулисту и ортопеду – 2. Сколько учеников были направлены к терапевту, окулисту и ортопеду?

2. Упростить:  (È ) \ (A È B).

3. Нарисовать диаграмму Эйлера-Венна для множества

(A Ç B) È (C \ (A È B)).

4. Найти все подмножества множества  A= {a, b, c, d}.

5. Эквивалентны ли множества A = {(x, y): y = lnx, 0 < x < ¥} и

B = {(x, y): y = sinx,  –¥ <x < ¥}?

Вариант № 11

1. При обследовании рынка спроса инспектор указал в опросном листе следующие данные. Из 1000 опрошенных 811 покупают жевательную резинку "Дирол", 752 – "Орбит" , 418 – "Стиморол", 570 – "Дирол" и "Орбит", 356 – "Дирол" и "Стиморол", 348 – "Орбит" и "Стиморол", 297 – все виды жевательной резинки. Показать, что инспектор ошибся.

2. Упростить: È (B \ (AÈ B)).

3. Придумать пример множеств А, В, С, так, чтобы выполнялось равенство: А È В  = С, причем А – конечное множество, В  и С – счетные множества.

4. Нарисовать диаграмму Эйлера-Венна для множества A Ç (B È C ) .

5. Пусть A – множество целых чисел, а B – множество четных чисел. Какие из следующих отношений справедливы: а) A =B; б) A ~ B; в) A É B;

г) A Ê B; д) A Ë B; е) A Î  B.

Вариант № 12

1. Всем участникам автопробега не повезло. 12 из них увязли в песке – пришлось толкать машину, 8 понадобилась замена колеса,  у шестерых перегрелся мотор, пятеро и толкали машину и меняли колесо, четверо толкали машину и остужали мотор, трое меняли колесо и остужали мотор. Одному пришлось испытать все виды неполадок. Сколько было участников?

2. Пользуясь равносильными преобразованиями, установить, верно или неверно равенство: А \ (В ÇС) = (А \В) ÇС?

3. Доказать, что множество точек  A = {y: y = 2n, n = 1, 2, …} счетно.

4. Нарисовать диаграмму Эйлера-Венна для множества (А \В) ÇС.

5. Эквивалентны ли множества A = {(x, y): y =  x3, 1< x <2} и

B = {(x, y): y = 3x, 3< x < ¥}?

Вариант № 13

1. Из 10 участников ансамбля шестеро умеют играть на гитаре, пятеро – на ударных инструментах, пятеро – на духовых. Двумя инструментами владеют: гитарой и ударными – трое, ударными и духовыми – двое, гитарой и духовыми – четверо. Один человек играет на всех трех  инструментах. Остальные участники ансамбля только поют. Сколько певцов в ансамбле?

2. Верно или неверно равенство: ÇС) = ÇС È ÇС ?

3. Записать решение системы неравенств

в виде пересечения двух множеств.

4. Нарисовать диаграмму Эйлера-Венна для множества Ç(B È C ) .

5. Доказать, что множества A = {(x, y): y =  x3, 1< x <2} и

B = {y: y = 3x, 3< x < ¥} эквивалентны.

Вариант № 14

1. В одной студенческой группе 10 человек могут работать на Дельфи, 10 – на Паскале, 6 – на Си. По два языка знают: 6 человек – Дельфи и Паскаль, 4 – Паскаль и Си, 3 – Дельфи и Си. Один человек знает все три языка. Сколько студентов в группе?

2. Верно или неверно соотношение: AÇÇC Ì A È В?

3. Придумать пример множеств А, В, С, так, чтобы выполнялось равенство: А È В  = С, причем А, В, и С – счетные множества.

4. Нарисовать диаграмму Эйлера-Венна для множества ÇС).

5. Эквивалентны ли множества A = {y: y = 3x, 0<x< ¥} и

B = {y: y = 3n, n = 1, 2, …}?

Вариант № 15

1. В день авиации на аэродроме всех желающих катали на самолете, планере, дельтаплане. На самолете прокатились 30 человек, на планере – 20, на дельтаплане – 15. И на самолете, и на планере каталось 10 человек, на самолете и дельтаплане – 12, На планере и дельтаплане – 5. Два человека прокатились и на самолете, и на планере, и на дельтаплане. Сколько было желающих прокатиться?

2. Верно или неверно равенство: (A È B) \ A = B \ A ?

3. Привести пример двух множеств А и В, таких, что мощность множества А больше мощности множества В.

4. Нарисовать диаграмму Эйлера-Венна для множества ÇС È ÇС.

5. Доказать, что множества A = {y: y = lnx, 0 < x < ¥} и

B = {y: y = sinx,  –¥ <x < ¥} эквивалентны.

Вариант № 16

1. Все грибники вернулись домой с полными корзинами. У десятерых из них в  корзинах были белые грибы, у восемнадцати – подберезовики, у двенадцати – лисички. Белые и подберезовики были в шести корзинах, белые и лисички – в четырех, Подберезовики и лисички – в пяти. Все три вида грибов были у двух грибников. Сколько было грибников?

2. Верно или неверно равенство: (A È B) \ (AÇB) = AÇÈ ÇB?

3. Доказать, что множество точек  A= {(x, y): y = ½x½, -,  – 1 £ x £ 1}  несчетно.

4. Нарисовать диаграмму Эйлера-Венна для множества  Ç (B È C ) .

5. Пусть A – множество точек отрезка [0, 1], а B – множество всех точек числовой оси. Какие из следующих отношений справедливы: а) A =B;

б) A ~ B; в) A É B; г) A Ê B; д) A Ë B; е) A Î  B.

Вариант № 17

1. Все туристы взяли в поход консервы. Шесть человек взяли тушенку, пять – сгущенку, восемь – кашу (с мясом). У троих в рюкзаках была тушенка и сгущенка, у двоих – тушенка и каша, у троих – сгущенка и каша, и только в одном рюкзаке лежали все три вида консервов. Сколько было туристов?

2. Верно или неверно равенство: ÇС = С \ (С Ç (AÈ B))?

3. Пусть A – множество решений уравнения x2 – 3x + 2 = 0. Записать это множество двумя различными способами.

4. Нарисовать диаграмму Эйлера-Венна для множества (BÇC) \ A .

5. Эквивалентны ли множества A = {x:  x2 –3x + 2 = 0} и B = {2, 3}?

Вариант № 18

1. Было опрошено 70 человек. В результате опроса выяснили, что 45 человек знают английский язык, 29 – немецкий и 9 – оба языка. Сколько человек из опрошенных не знает ни английского, ни немецкого языков?

2. Верно или неверно равенство: (A È B) \ (AÇB) = AÇÈ ÇB?

3. Найти все подмножества множества  A= {x, y, z}.

4. Нарисовать диаграмму Эйлера-Венна для множества ÇС.

5. Счетно ли множество {(x, y):  y = 3x, 0<x< ¥}?

Вариант № 19

1. В туристической группе 10 человек знают английский язык, 10 – итальянский, 6 – испанский. По два языка знают: 6 человек – английский и итальянский, 4 – английский и испанский, 3 – итальянский и испанский. Один человек знает все три языка. Сколько туристов в группе?

2. Упростить .

3. Привести пример двух множеств А и В, таких, что мощность множества А больше мощности множества В.

4. Нарисовать диаграмму Эйлера-Венна для множества  С \ (С Ç (AÈB)).

5. Эквивалентны ли множества A = { 2n, n = 1, 2, …} и

B = {n2, n = 1, 2, …}?

Вариант № 20

1. Предприятие объявило набор рабочих на должности токаря, слесаря и сварщика. В отдел кадров обратились 25 человек. Из них 10 человек владели профессией токаря, 15 – слесаря, 12 – сварщика. Профессией и токаря и слесаря владели 6 человек, и токаря, и сварщика – 5 человек, и слесаря и сварщика – 3 человека. Сколько человек владеют всеми тремя профессиями?

2. Верно или неверно равенство: \  = \ ?

3. Привести примеры множеств А, В и С , для которых одновременно выполняются равенства А È В È С = А   и    А Ç В Ç С = С.

4. Нарисовать диаграмму Эйлера-Венна для множества \ .

5. Можно ли построить взаимно-однозначное соответствие между множеством рациональных чисел отрезка  [0, 1] и множеством рациональных чисел из этого интервала? Ответ обосновать.

Вариант № 21

1. Оказалось, что в группе туристов 15 человек были раньше во Франции, 19 – в Италии, 8 – в Германии. 9 туристов были во Франции и  в Италии, 7 – во Франции и  в Германии, 6 –  и  в Италии, и в Германии. 4 туриста были во всех трех странах. Сколько туристов были хотя бы в одной из трех стран?

2. Пользуясь равносильными преобразованиями, установить, верно или неверно равенство: А  \ (В Ç С) = (А \ В) Ç ?

3. Привести примеры множеств А и В, для которых равенство  È В =

а) выполняется; б) не выполняется.

4. Нарисовать диаграмму Эйлера-Венна для множества А Ç (В È  ).

5. Найти мощность множества точек окружности с центром в точке (0, 0) и радиусом 1.

Вариант № 22

1. Группе студентов из 30 человек была предложена контрольная работа из трех задач. Первую задачу решили 15 студентов, вторую – 13, третью – 12. Первую и вторую задачи решили 7 человек, первую и третью – 6, вторую и третью – 5 человек. Все три задачи решили 2 студента. Сколько студентов из группы не решили ни одной задачи?

2. Пользуясь равносильными преобразованиями, установить, верно или неверно равенство: А  \ (В  È С) = (А \ В) Ç ?

3. Привести пример двух бесконечных множеств А и В, таких, что мощность множества А больше мощности множества В.

4. Нарисовать диаграмму Эйлера-Венна для множества А Ç В Ç .

5. Найти мощность множества точек гиперболы   y =   при  x Î  ( 3, ¥).

Вариант № 23

1. Анализ историй болезней  группы из 20 детей показало, что 10 детей  болели ветрянкой, 6 – корью, 5 – свинкой. Ветрянкой и корью болели 3 ребенка, ветрянкой и свинкой – 3, корью и свинкой – 2. Всеми тремя болезнями болел один ребенок. Сколько детей не болели ни одной из перечисленных болезней?

2. Верно или неверно равенство: ÇС) =  ÇÇ С?

3. Доказать, что множество точек  A= {(x, y): y = ½x+1½,  – 1 £ x £ 1}  несчетно.

4. Нарисовать диаграмму Эйлера-Венна для множества (BÇC) \ A .

5. Пусть A – множество точек отрезка [1, 2], а B – множество  точек интервала (0, 3). Какие из следующих отношений справедливы: а) A =B; б) A ~ B; в) A Ì  B; г) A Ê B; д) A Ë B; е) A Î  B.

Вариант № 24

1. В книжный киоск привезли для продажи 100 книг Пушкина, Лермонтова и Тургенева. Книги Пушкина купили 60 человек, книги Лермонтова – 50, книги Тургенева – 30 человек. Книги Пушкина и Лермонтова купили  40 человек, книги Пушкина и Тургенева – 20, книги Лермонтова и Тургенева – 10 человек. Пять человек купили книги всех трех писателей. Сколько человек не купили ни одной из перечисленных книг?

2. Верно или неверно равенство:\  = \ ?

3. Привести примеры множеств А, В и С таких, что равенство А È В È С = С

а) справедливо; б) несправедливо.

4. Нарисовать диаграмму Эйлера-Венна для множества \ .

5. Можно ли построить взаимно-однозначное соответствие между множеством натуральных чисел N  и множеством действительных чисел отрезка  [0, 1]? Ответ обосновать.

Вариант № 25

1. Группа научных работников состоит из 100 человек. Из них 70 человек владеют английским языком, 50 – немецким, 40 – французским, 30 – английским и немецким, 25 – английским и французским, 15 – французским и немецким. Хотя бы один язык знает каждый научный работник. Сколько человек владеют всеми тремя языками?

2. Упростить: (A \ (AÇB)) È В.

3. Привести примеры множеств А, В и С так, чтобы A Î  B, В Ì  С.

4. Нарисовать диаграмму Эйлера-Венна для множества \ .

5. Можно ли утверждать, что множество всех положительных пятизначных чисел счетно? Ответ обосновать.

Вариант № 26

1. На курсы иностранных языков записалось 100 человек. Оказалось, что 70 человек будут изучать английский язык, 60 человек – французский и 30 человек  - немецкий. Английский и французский собираются изучать 40 человек, английский и немецкий – 20, французский и  немецкий – 10. Сколько студентов будут изучать все три языка?

2. Упростить равенство: (A Ç С )\ (С Ç (A È B)).

3. Привести пример двух различных бесконечных множеств А и В, таких, что мощность множества А равна мощности множества В.

4. Нарисовать диаграмму Эйлера-Венна для множества  ÇС).

5. Эквивалентны ли множества A = {x:  x3 – 1 = 0} и

B = {x: x2 – 3x + 2 = 0}?

Вариант № 27

В команде бегунов десять спортсменов бегают на длинные дистанции, восемнадцать – на средние, двенадцать – на короткие. На длинные и средние дистанции бегают пять спортсменов, на средние и короткие – шесть. На длинные и короткие дистанции не бегает никто. Сколько бегунов в команде?

2. Верно или неверно равенство: È С) =  ÈÈ С?

3. В каком случае A È B  = А Ç В?

4. Нарисовать диаграмму Эйлера-Венна для множества È (BÇC ) .

5. Можно ли утверждать, что множество всех положительных чисел имеет меньшую мощность, чем множество всех действительных чисел? Ответ обосновать.

Вариант № 28

1. В студенческой группе 25 человек. Чтобы получить допуск на экзамен по данному курсу необходимо защитить курсовую работу, выполнить лабораторную работу и сдать зачет. 15 студентов защитили курсовую работу, 20 выполнили лабораторную работу, 17 сдали зачет. Защитили курсовую работу и выполнили лабораторную работу 12 человек. Защитили курсовую работу и сдали зачет 13 человек. Выполнили лабораторную работу и сдали зачет 16 человек. Сколько студентов допущено к экзамену?

2. Упростить:  Ç  (È).

3. Привести пример двух бесконечных множеств А и В, таких, что мощность множества А меньше мощности множества В.

4. Нарисовать диаграмму Эйлера-Венна для множества \ .

5. Эквивалентны ли множество рациональных чисел отрезка  [0, 1] и множество рациональных чисел из этого интервала? Ответ обосновать.

Вариант № 29

1. В классе 20 детей. Из них 10  дополнительно занимаются в музыкальной школе, 6 – теннисом, 5 – китайским языком. Музыкальную школу и занятия по теннису посещают три ребенка, музыкой и китайским языком занимаются трое, теннисом и китайским языком двое. Всеми тремя видами дополнительных занятий занимается один ребенок. Сколько детей не занимается ни одним из перечисленных занятий?

2. Пользуясь равносильными преобразованиями, установить, верно или неверно равенство: А \ (В È С) = (А \В) Ç?

3. Доказать, что множество точек  A = {y: y = 2n, n = 1, 2, …} счетно.

4. Нарисовать диаграмму Эйлера-Венна для множества A ÇÈÇB .

5. Эквивалентны ли множества A = {(x, y): y =  x2, 1< x <2} и

B = {(x, y): y = 2x, 3< x < ¥}?


Вариант № 30

1. В цеху имеется 25 станков, которые могут выполнять три вида операций: А, В и С. Из них 10 станков выполняют операцию А, 15 – В, 12 – С. Операции А и В могут быть выполнены на 6 станках, А и С – на 5, В и С – на 3 станках. Сколько станков могут выполнять все три операции?

2. Верно или неверно равенство: \  = \ ?

3. Привести примеры множеств А, В и С , для которых одновременно выполняются равенства А È В È С = А   и    А Ç В Ç С = С.

4. Нарисовать диаграмму Эйлера-Венна для множества ÇС.

5. Можно ли построить взаимно-однозначное соответствие между множеством действительных чисел отрезка [0, 1] и множеством действительных чисел интервала (0, 1)? Ответ обосновать.




1. Характеристики структура и содержание учебных занятий Цели и задачи учебных занятий Дл
2. тема международной защиты прав женщин
3. Типы совместной деятельности по Л.И. Уманскому
4. К какой разновидности потока относится кратноритмичный поток По ритмичности ритмичные 92
5. На тему- Политические идеи современности Исполнитель- Людмила Серова Специальность- 07224 Эко
6. тематичних наук Харків 2000 Дисертацією є рукопис
7. Критические периоды развития статического и динамического равновесия у школьников 1-11-х классов
8. УПРАВЛІННЯ ПРОЕКТАМИ Львів 2013 Виробничий менеджмент і маркетинг
9. зрелищного и общественного назначения при больших пролетах и преобладании равномерно распределенных нагру
10. Статья- Особенности регуляции произвольной моторики у больных детскими церебральными параличами
11. Развитие жизни на Земле
12. Иоганн Иоахим Винкельман
13. с приветами и не астралом Был предсказан оному конец.1
14. Содружество Строителей Наименование Сведения о Заявителе
15. Таинственная поэтика «Сказания о Мамаевом побоище»
16. Крестьяне на Руси с древнейших времен до XVII века
17. Оценка объемов циркулирующей крови Определение источника кровотечения и его локализации
18. то по середине между юностью и дряхлостью- на неопытность молодости уже не сошлешься но и время чудачеств ст
19. Разум и тело Профилактич
20. Гольшанский крахмальный завод Белкофе ОшмяныЛен гравийносортировочный завод Боруны Ошмянский п