Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

тематичних познайомити з поняттям графа навити зображувати відношення за допомогою графів і читати ї власт

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.11.2024

Лекція

Поняття бінарного відношення між елементами однієї множини. Способи задання бінарних відношень, їх властивості: рефлексивність, симетричність, транзитивність

Мета: дати поняття бінарного відношення, навчити його відрізняти від відповідності, пояснити способи задання відношень та їх властивості, навчити визначати властивості конкретних відношень, зокрема математичних, познайомити з поняттям графа, навити зображувати відношення за допомогою графів і читати ї властивості.

Обладнання: підручники математики початкової школи.

Студенти повинні знати: означення поняття відношення, усі властивості відношень, означення графа та його елементів.

Студенти повинні вміти: називати відношення, називати і пояснювати їх властивості, будувати графи і за кресленням називати властивості відношення.

Література: 1.Кухар В.М., Білий Б.М. Теоретичні основи початкового курсу математики. К.: Вища школа, 1987;

2. Стойлова Л.П., Пышкало А.М. Основы начального курса математики. М.: Просвещение, 1988;

3. Електронний посібник з основ початкового курсу математики.

Основні поняття: відношення, граф, рефлексивність, симетричність, транзитивність, антирефлексивність, асиметричність, антитранзитивність.

План

  1.  Поняття відношення. Граф відношення.
  2.  Способи задання відношень.
  3.  Властивості відношень.

  1.  Поняття відношення. Граф відношення

У математиці вивчають не тільки об’єкти, але і зв’язки, відношення між ними.

Наприклад. Відношення у множині чисел: «більше», «більше на», «більше в», «менше»; у множині прямих: «паралельність», «перпендикулярність»; у множині фігур: «рівність», «подібність».

Відношення між двома об’єктами називається бінарним. Ми будемо розглядати тільки бінарні відношення або просто відношення.

Перед нами постає завдання: маючи уявлення про конкретні відношення між числами, геометричними фігурами, множинами та іншими об’єктами, встановити, що спільне є у цих відношень, яким чином можна класифікувати таку велику кількість різноманітних відношень. Знання цього матеріалу потрібно вчителю початкових класів для того, щоб, вивчаючи конкретні відношення в початковій школі, розуміти їх спільність, взаємозв’язки, роль у засвоєнні тих чи інших понять.

Візьмемо множину Х = {2,3,4} і розглянемо деякі відношення між її елементами:

«більше»: «3>2», «4>2», «4>3», маємо пари (3;2), (4;2), (4;3);

«більше на 1»: «3>2 на 1», «4>3 на 1», маємо пари (3;2), (4;3).

Бачимо, що для кожного відношення маємо множину впорядкованих пар. Для відношення «більше» це множина {(3;2), (4;2), (4;3)}, для відношення «більше на 1» - {(3;2), (4;3)}. Ці множини є підмножинами декартового добутку Х×Х = {(2;3), (2;4), (2;2), (3;2), (3;3), (3;4), (4;2), (4;3), (4;4)}.

Означення. Відношенням між елементами множини Х або відношенням, визначеним у множині Х, називають будь-яку підмножину декартового добутку Х×Х, або декартового квадрата Х2.

Відношення позначають великими буквами латинського алфавіту: P, Q, R, S і т.д. Якщо елемент х знаходиться у відношенні R з элементом у, то пишуть так: хRу.

Відношення можна позначати графічно. Для цього в математиці існує поняття графа.

Означення. Графом (від грец. «графо» - пишу) називається креслення, яке складається з точок, що позначають елементи множини, та стрілок, які з’єднують відповідні точки, вказуючи на певне відношення між елементами даної множини.

Наприклад. У множині Х = {2,4,6,8} задано відношення Р: «х < у». Тоді його можна записати Р = {(2;4), (2;6), (2;8), (4;6), (4;8), (6;8)}, або подати за допомогою графа.

                                         

                                                                                                            

                                                                      

Стрілки графа можуть починатися і закінчуватися в одній і тій же вершині, вони називаються петлями. Якщо дві різні точки графа з’єднуються стрілками, напрями яких протилежні, то для спрощення дві стрілки замінюють однією і називають її подвійною.

Наприклад. У множині Х = {2,4,68,12} задано відношення R: «кратне». Тоді його можна записати R = {(2;2), (4;2), (4;4), (6;2), (6;6), (8;2), (8;4), (8;8), (12;2), (12;4), (12;6), (12;12)}, або подати за допомогою графа.

  1.  Способи задання відношень

За означенням відношенням між елементами множини Х є будь-яка підмножина декартового добутку Х×Х, тобто множина, елементами якої є упорядковані пари. Тому способи задання відношень такі ж, як і способи задання множин.

1. Відношення у множині можна задати шляхом перелічування всіх пар елементів множини, що знаходяться у цьому відношенні.

Форми запису при цьому можуть бути різними.

Наприклад. Деяке відношення R на множині Х = {3,4,5,6,8} можна задати, записавши множину пар: {(4;3), (5;3), (5;4), (6;3), (6;4), (6;5), (8;3), (8;4), (8;5), (8;6)}.

Те ж відношення можна задати за допомогою графа.

 

  1.  Відношення у множині можна задати, вказавши характеристичну властивість всіх пар елементів, що знаходяться у цьому відношенні.
  2.  Форми запису також можуть бути різними.

Для попереднього прикладу: відношення R: «число х більше, ніж число у», або коротко R: «більше», або у вигляді нерівності R: «х>у».

  1.  Властивості відношень

У математиці вивчають різноманітні відношення між двома об’єктами. Кожне з них розглядається у деякій множині Х і є множиною пар. Таких відношень дуже багато. Чи можна їх класифікувати? Так. Для цього потрібно виділити у відношеннях найбільш характерні їх властивості. Розглянемо деякі з них.

Означення. Відношення R у множині Х називається рефлексивним, якщо кожен елемент множини Х є у відношенні R сам до себе.

R рефлексивне у Х  хRх для будь-якого х Є Х.

Приклади рефлексивних відношень: «паралельність прямих», «рівність», «кратність». Якщо відношення рефлексивне, то в кожній вершині графа є петля.

Відношення «більше», «менше», «перпендикулярності» не є рефлексивними.

Означення. Відношення R у множині Х називається антирефлексивним, якщо кожен елемент множини Х не є у відношенні R сам до себе.

R антирефлексивне у Х   для будь-якого х Є Х.

Приклади антирефлексивних відношень: «більше». «менше» у числових множинах, «перпендикулярність» - у множині прямих на площині. Якщо відношення антирефлексивне, то в кожній вершині графа відсутня петля.

Означення. Відношення R у множині Х називається симетричним, якщо з того, що елемент х є у відношенні R до елемента у, випливає, що елемент у є у відношенні R до елемента х.

R симетричне у Х  хRу  уRх.

Приклади симетричних відношень: «паралельність», «перпендикулярність», «рівність». Якщо відношення симетричне, то на графі подвійна стрілка.

Відношення «більше». «менше». «довше» не є симетричними.

Означення. Відношення R у множині Х називається антисиметричним, якщо з того, що елемент х не є у відношенні R до елемента у і х≠у, не випливає, що елемент у є у відношенні R до елемента х.

R антисиметричне у Х  хRу і х≠у .

Приклади антисиметричних відношень: «більше», «менше», «подільності». Якщо відношення антисиметричне, то на графі стрілка в один бік.

Означення. Відношення R у множині Х називається транзитивним, якщо з того, що елемент х є у відношенні R до елемента у, а елемент у є у відношенні R до елемента z, то елемент х також перебуває у відношенні R до елемента z.

R транзитивне у Х  хRу і уRх  хRz.

Приклади транзитивних відношень: «паралельність», «рівність», «подібність», «кратність».

Як бачимо, різні за змістом відношення можуть мати спільні властивості. Це дає можливість виділяти відношення з певними наборами властивостей. Найважливішими з них є відношення еквівалентності і порядку.

Висновок: в курсі математики початкової школи використовується багато відношень (нерівності, задачі), тому майбутньому вчителю початкових класів треба вміти їх розрізняти і використовувати їх властивості.


2

4

8

6

3

4

8

6

5




1. Розміщення продуктивних сил і регіональна економіка
2. ГМУ им адм ФФ Ушакова Стр
3. Контрольная работа- Упрощенная система налогообложения и ее эффективност
4. на тему- Субъекты инновационного рынка- стратегические мотивы цели и методы ведения инновационной деят
5. Особенности купли-продажи нежилых помещени
6. Фондовый рынок как элемент рыночной инфраструктур
7. Economic structures. There is lso number of refuges in the world
8. ОРГАНИЗАЦИЯ И ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПРОДУКЦИИ ЖИВОТНОВОДСТВА
9. Россия в XIX веке 1801 ~ 1914 Внешняя политика России 1856 1894 Среди факторов определявших направление внешней
10. прикладного искусства и многочисленные художественные полотна Ярошенко Лермонтова Нестерова современны.html
11. Полит социализация личности
12. Інтерполювання функцій за формулою Лагранжа
13. Курсовая работа- Управлінське відтворення економічних ресурсів на підприємстві житлово-комунального господарства
14. на тему- Міжнародні економічні зв'язки України з Китаєм.html
15. вырубка 5Дайте характеристику операции пробивка
16. Экономика специальностям
17. Конец люси конец теории антропогенеза
18. Реферат- Детский церебральный паралич- понятие, этиология, симптомы
19. Реферат- Проблема формирования билингвального сознания в лингвистике и лингводидактике
20. Реферат- Основні причини виникнення стресу