Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
12. Поляризация света. Естественный и поляризованный свет. Способы получения поляризованного света. Закон Малюса.
Свет- электромагнитные волны с длиной волны от 0,4мкм(фиолетовый) до 0,7мкм(красный). В электромагнитной световой волне векторы H,E и с будучи взаимно перпендикулярными ,составляют правую тройку векторов. Свет со всевозможными равновероятными ориентациями вектора Е называется естественным.
Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным. Так, если в результате каких-либо внешних воздействий появляется преимущественное (но не исключительное!) направление колебаний вектора Е (рис. 272, б), то имеем дело с частично поляризованным светом. Свет, в котором вектор Е (и, следовательно, Н) колеблется только в одном направлении, перпендикулярном лучу (рис. 272, в), называется плоскополяризованным (линейно поляризованным).
Плоскость, проходящая через направление колебаний светового вектора плоскополяризованной волны и направление распространения этой волны, называется плоскостью поляризации. Плоскополяризованный свет является предельным случаем эллиптически поляризованного света света, для которого вектор Е изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу.
Степенью поляризации называется величина
где Imax, и Imin соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором. Для естественного света Imax=Imin и Р=0, для плоскополяризованного Imin =0 и Р=1.
Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные главной плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е, например кристалл. Из природных кристаллов, давно используемых в качестве поляризатора, следует отметить турмалин.
Рассмотрим классические опыты с турмалином (рис. 273).
Направим естественный свет перпендикулярно пластинке турмалина T1, вырезанной параллельно так называемой оптической оси ОО'. Вращая кристалл T1 вокруг направления луча, никаких изменений интенсивности прошедшего через турмалин света не наблюдаем. Если на пути луча поставить вторую пластинку турмалина T2 и вращать ее вокруг направления луча, то интенсивность света, прошедшего через пластинки, меняется в зависимости от угла к между оптическими осями кристаллов по закону Малюса:
где I0 и I соответственно интенсивности света, падающего на второй кристалл и вышедшего из него.
Пластинка Т1, преобразующая естественный свет в плоскополяризованный, является поляризатором. Пластинка Т2, служащая для анализа степени поляризации света, называется анализатором. Обе пластинки совершенно одинаковы (их можно поменять местами).
Если пропустить естественный свет через два поляризатора, главные плоскости которых образуют угол , то из первого выйдет плоскополяризованный свет, интенсивность которого I0=1/2Iест, из второго, согласно (190.1), выйдет свет интенсивностью I=I0cos2 . Следовательно, интенсивность света, прошедшего через два поляризатора,
откуда I0=1/2Iест (поляризаторы параллельны) и Imin = 0