У вас вопросы?
У нас ответы:) SamZan.net

2013 г Амплитудная модуляция ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе по дисц

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

    4

Министерство образования и науки РФ

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

 Кафедра радиоэлектроники и телекоммуникационных систем

               Допускаю к защите

      Руководитель работы

         Б.В.Агалаков

                                                                                                                                                       подпись                  И.О.Фамилия

      «  »    2013 г.

Амплитудная модуляция

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

Теория электрической связи

Выполнил студент группы ТК-10-1                                          Р.Р. Загидуллин

                                                                                                                                                  подпись    И.О. Фамилия

Нормоконтролёр                                            Б.В. Агалаков___

                                                                                                                                                  подпись    И.О. Фамилия

       Курсовая работа защищена

       с оценкой    

Иркутск, 2013 г.

Министерство образования и науки Российской Федерации

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ЗАДАНИЕ

НА КУРСОВУЮ РАБОТУ

По курсу  Теория электрической связи

Студенту  Загидуллину Р.Р.

Тема проекта Функция Берга

Исходные данные: Рассмотреть использование работы усилителя в режиме отсечки коллекторного тока для амплитудной модуляции

Рекомендуемая литература

1. Баскаков С.И. Радиотехнические цепи и сигналы. ФГУП Издательство «Высшая школа», 2005 г.

2. Гоноровский И.С  Радиотехнические цепи и сигналы: Учебник для вузов. – 4-е издание, перераб. и доп. – М.: Радио и  связь, 2005г.-512с.

3. Радиотехнические цепи и сигналы. Примеры и задачи: Р 15 Учеб. Пособие для вузов/Г.Г. Галустов, И.С. Гоноровский, М.П. Демин и др.; Под ред. И.С. Гоноровского. – М.: Радио и связь, 1989 – 248с.

4. Клюев Л.Л. Теория электрической связи: учебник / Л.Л. Клюев. – Минск: Технопрерспектива, 2008. – 423с.

Дата выдачи задания “______” __________________________2013  г.

Дата представления работы руководителю “______” ___________2013  г.

Руководитель курсовой работы __________

Содержание

Введение…………………………………………………………………………….....4

1 Воздействие гармонического радиосигнала на нелинейные элементы…5

2 Работа усилителя в режиме отсечки коллекторного тока………………...8

3 Функция Берга………………………………………………………………..10

4 Примеры и задачи…………………………….……………………………...16

 Задача №1………………………………………………………………..16

 Задача №2………………………………………………………………..18

Заключение………………………………...………………………………………….20

Список использованных источников………………………………………………..21

Введение

Радиотехника – научно-техническая область, задачами которой являются:

1) изучения принципов генерации, усиления, излучения и приема электромагнитных колебаний и волн, относящихся к радиодиапазону;

2) практическое использование этих колебаний и волн для целей передачи, хранения и преобразования информации.

Радиотехника и радиоэлектроника получили всестороннее развитие в нашей стране. Большой общепризнанный вклад в фундаментальные основы радиотехники внесли отечественные ученые – академик Л.И.Мандельштам, Н.Д.Папалекси, В.А.Фок, А.И.Берг, В.А.Котельников и многие другие.

Аксель Иванович Берг(1892-1979)-академик, крупный советский ученный в области радиотехнике. Знаменит своими так называемыми «функциями Берга», которые часто встречаются в инженерных расчетах.

В наши дни радиотехника является бурно развивающейся научно-прикладной областью. Говоря о ближайших перспективах ее развития, следует подчеркнуть тенденцию перехода ко все более высокочастотным диапазонам электромагнитных колебаний и волн.

Есть все основания ожидать, что отрасли радиотехники будут и впредь расширяться и развиваться на базе прогресса во многих смежных областях науки и техники.

1 Воздействие гармонического радиосигнала на нелинейные элементы

Рассмотрим режим работы, представленный на рис.1, при котором напряжение сигнала  не выходит за пределы точки  и вольт-амперная характеристика удовлетворительно аппроксимируется степенным полиномом

  

                       

           Рисунок 1 - Слабонелинейный режим работы усилительного прибора

Сигнал   зададим сначала в форме гармонического колебания . Результаты анализа затем будут распространены на некоторые узкополосные радиосигналы.

         Подставим в (8.8) , получим

(1.1)

Форма тока  показана на рис.1.

         С помощью тригонометрических соотношений

, ,

,

и т.д.

Выражение (1.1) приводим к виду

(1.2)

Из этого выражения видны следующие проявления нелинейности вольт-амперной характеристики при гармоническом воздействии:

  1.  Ток покоя  получает приращение, обусловленное коэффициентами при четных степенях полинома :

;              (1.3)

  1.  Амплитуда  гармоники основной частоты  гармоники основной частоты  связана с амплитудой возбуждения  нелинейным соотношением, обусловленным нечетными степенями полинома :

                                (1.4)

  1.  Ток содержит высшие гармоники с частотами , кратными частоте воздействия . Гармоники с частотами обусловлены четными степенями, а гармоники с частотами -нечетными полинома.

Очевидны также следующие положения:

  1.  Наивысший порядок гармоник совпадает со степенью  полинома, аппроксимирующего характеристику нелинейного злемента;
  2.  Полная фаза  гармоники

Выражения (1.1) - (1.4) полностью сохраняют свою структуру при замене постоянной начальной фазы модулированной фазой Из этого следует, что сформулированные выше положения можно распространять также и на воздействие частотно-модулированного сигнала на безынерционный нелинейный элемент (при постоянной амплитуде). Необходимо лишь каждую из гармоник тока с амплитудой  трактовать как несущее колебание, модулированное по углу. Это объясняется тем, что при угловой модуляции амплитуда колебания, несмотря на возникновение спектра боковых частот, остается неизменной.

         Для первой (основной) гармоники индекс угловой модуляции совпадает с , а для высших гармоник индекс . Соответственно в  раз увеличивается и девиация частоты.

         Сказанное иллюстрируется рис.2. Частота модуляции . С увеличением номера гармоники ширина спектра боковых частот возрастает, но, как отмечалось выше, амплитуда суммарного колебания остается равной .

Рисунок 2 - Спектр тока при гармоническом воздействии на резистивный элемент (а) и тоже при частотной модуляции (б)

Для амплитудно-модулированного колебания, когда , нелинейность характеристики может коренным образом исказить форму передаваемого сигнала.

2 Работа усилителя в режиме отсечки коллекторного тока

         Рассмотрим теперь работу нелинейного элемента в режиме существенно более нелинейном (рис.3,а), получаемом при сдвиге рабочей точкивлево и соответствующем увеличении амплитуды возбуждающего напряжения . В данном случае целесообразно применить кусочно-линейную аппроксимацию вольт-амперной характеристики .

                                      

                Рисунок 3 - Существенно нелинейный режим усилительного прибора

         При гармоническом возбуждении ток приобретает импульсную форму (рис.3,б). Угол , соответствующий изменению тока от максимального значения  до нуля, получил название угла отсечки тока. Длительность импульсов тока равна  (см. рис.3,б). Из рис. 3, очевидно следующее выражение:

                      (2.1)

Амплитуда тока

                 (2.2)

Где -крутизна линейной части вольт-амперной характеристики, определяются выражением

 , ,

         При гармоническом возбуждении нелинейного элемента форма импульса тока в пределах  близка к отсеченной косинусоиде и, если кривизной вольт-амперной характеристики на нижнем сгибе (см. рис.3, а), мгновенное значение тока можно выразить уравнением  

,                    (2.3)

Символ   обозначена амплитуда импульса, которая получилась бы при  .

Так как амплитуда реального импульса  соответствует моменту  имеет место соотношения

откуда

=

Подставив это выражение в (2.3), получим окончательно

 

                     (2.4)

Основываясь на этом выражении, нетрудно определить коэффициенты ряда Фурье для периодической последовательности импульсов, представленной на рисунке 4. Вследствие четности функции  относительно [см.(2.4)] ряд содержит одни лишь косинусоидальные члены. Применяя формулы

находим

    (2.5)

. (2.1)

                           

Рисунок 4 - Импульсный ток, соответствующий режиму, представленному на

 рис.3.

3 Функции Берга

Аналогично можно получить общее выражение для амплитуды й гармоники

                                                             (3.1)

 Отношения

 

 

 =

 =   

=     

=                                                            

 …

 = .                                                        (3.2)

Называются коэффициентами соответственно постоянной составляющей, первой гармоники и т.д. (функции Берга).

 

      Рисунок 5 - Коэффициенты разложения импульсов тока в ряд Фурье в зависимости от угла отсечки

                                                   Рисунок 6 -

                                                       Рисунок 7 -  

                                                        Рисунок 8 -  

                                                          Рисунок 9 -  

                                                       Рисунок 10 -  

                                                        Рисунок 11 -  

Графики коэффициентов  а также отношения  при изменении угла отсечки от  показаны на рис.5. При  ток вообще равен нулю (нелинейный элемент заперт на протяжении всего периода); при   отсечка тока отсутствует и режим работы становится линейным.

Из рассмотрения графиков функции  можно вывести важное заключение: при работе с углом отсечки меньше отношение амплитуды первой гармоники к постоянной составляющей  больше единицы. Видно, что с уменьшением  отношение

растет                                                              (3.3)

Кроме того, с повышением номера гармоники максимумы функций перемещаются в область малых значений  Все эти обстоятельства существенно влияют на выбор режима работы нелинейного элемента при некоторых других преобразованиях.

4 Примеры и задачи

Задача№1

Кусочно-линейная аппроксимация проходной характеристики транзистора (рис.12) определяется параметрами: крутизна линейной части , напряжение, соответствующей точке излома, . Вывести уравнение колебательной характеристики , где  амплитуда первой гармоники коллекторного ток; найти первые пять гармоник коллекторного тока, где  амплитуда гармонического напряжения на базе при  = 0,4 В ?

 

                            Рисунок 12

 

Решение:

Амплитуда первой гармоники тока , где  - коэффициент Берга . Целесообразно выразить  непосредственно через  с помощью соотношения . Тогда можно прийти к следующему результату:

.

 

  4,902096

,        

 

 

 

 

 

Подставляя значения получим

0,02413 А

Задача№2.

 

                                             Рисунок 13

В цепь коллектора резонансного усилителя включен параллельный колебательный контур (рис.13). Частота колебаний на входе усилителя равна резонансной частоте контура. Амплитуда . Сопротивление контура при резонансе  (при не полном включении контура). Постоянная составляющая напряжения коллекторе . При кусочно-линейной аппроксимации характеристики транзистора его параметры: крутизна характеристики  , напряжение нижнего сгиба  Определить коэффициент усиления и КПД усилителя при напряжении

Решение:

Амплитуда первой гармоники коллекторного тока равна

Угол отсечки

= 1,91 рад. =

.

.

Средняя крутизна среза

=

Коэффициент усиления

Амплитуда напряжения на коллекторе

Коэффициент полезного действия равен

КПД =

Заключение

В данном курсовом проекте рассмотрел воздействие гармонического радиосигнала на нелинейные элементы, работу усилителя в режиме отсечки коллекторного тока, функции Берга, которые часто используются в инженерных расчетах.

Научился находить коэффициенты гармоник коллекторного тока с помощью функций Берга, рассмотрел ряд примеров, где используются функции Берга.

Список использованных источников

1.Баскаков С.И. Радиотехнические цепи и сигналы. ФГУП Издательство «Высшая школа», 2005 г.

2.Гоноровский И.С  Радиотехнические цепи и сигналы: Учебник для вузов. – 4-е издание, перераб. и доп. – М.: Радио и  связь, 2005г.-512с.

3.Радиотехнические цепи и сигналы. Примеры и задачи: Р 15 Учеб. Пособие для вузов/Г.Г. Галустов, И.С. Гоноровский, М.П. Демин и др.; Под ред. И.С. Гоноровского. – М.: Радио и связь, 1989 – 248с.

4.Клюев Л.Л. Теория электрической связи: учебник / Л.Л. Клюев. – Минск: Технопрерспектива, 2008. – 423с.




1. Реферат- Елементи та структура програми мови Паскал
2. ГЕОТРЭВЕЛ 88795150006 89289834593 88795150006 geotrvel26@bk
3. Курсовая работа- Конкурентные преимущества организации
4. Профилактика стоматологических заболеваний
5. Методологія та методика наукових дослідженнь напряму підготовки 8
6. Преступление в уголовном праве РФ
7. Introduction. The number of rticles devoted to the interction of molecules with strong lser field incresed considerbly in recent yers
8. Ох и Ах весы Ход занятия
9. Экспертиза в системе доказательств 6 2.html
10. Юридическая служба на предприятии, ее роль и функци
11. зробити тобто виконати певні дії або утриматися від здійснення певних дій; prestre надати річ у тимчасове
12. воздействие производственной пыли содержащей диоксид кремния.
13. Экономика и экономическая наука
14. Характеристика системы государственных органов Испании
15. это научно обоснованное предвидение основных параметров движения населения и будущей демографической ситу.
16. Einhrd.html
17. Вариант 113601 Задача 1 В партии из 15 изделий 6 дефектных.html
18. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата фізикоматематичних наук
19. ТЕМАТИЧНИЙ ПЛАН ВИВЧЕННЯ ДИСЦИПЛІНИ VI семестр з
20. Арон Раймон