Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Биотехнология это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов.
Объектами биотехнологии служат многочисленные представители групп живых организмов микроорганизмы (вирусы, бактерии, протисты, дрожжи и др.}, растения, животные, а также изолированные из них клетки и субклеточные структуры (орга-неллы). Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.
Главными направлениями биотехнологии являются: 1) производство с помощью микроорганизмов и культивируемых эука-риотических клеток биологически активных соединений (ферментов, витаминов, гормональных препаратов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также белков, аминокислот, используемых в качестве кормовых добавок; 2) применение биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы и т. и.) и для защиты растений от вредителей и болезней; 3) создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т. п.
Задачи, методы и достижения биотехнологии. Человечеству необходимо научиться эффективно изменять наследственную природу живых организмов, чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.
2) Питательные среды.
В микробиологической практике для выращивания микроорганизмов используют разнообразные питательные среды, которые по составу подразделяют на естественные или натуральные, полусинтетические и синтетические среды.
Натуральные среды состоят из продуктов растительного и животного происхождения - мяса, молока, картофеля, моркови и т.п. Примерами натуральных сред являются:
• мясо-пептонный бульон, состоящий из экстракта мяса (500 г мяса на 1 л воды), 0,5% NaCl и 1% пептона (продуктов неполного разложения белка);
• неохмеленное пивное сусло, приготовляемое на основе солода (проросших зерен ячменя), гидролизованного до сахаров;
• дрожжевая среда, состоящая из экстракта дрожжей (7-10 г сухих дрожжей на 1 л воды)), к которому добавляют углеводы (1-2%), минеральные соли К2НРО4 (0,1%) и NaCl (0,5%);
• картофельная среда, которая готовится путем отвара картофеля (200 г картофеля на 1 л воды) и др.
На натуральных средах хорошо развиваются микроорганизмы, так как в таких средах имеются, как правило, все компоненты, необходимые для их роста.
Полусинтетические среды в своем составе наряду с соединениями известной химической природы содержат вещества, в точно указанной концентрации, неопределенного состава. К полусинтетическим средам относят мясопептонный бульон с глюкозой и фосфорнокислым калием, картофельную среду с глюкозой и пептоном, а также среды известного состава с добавкой различных факторов роста (гид-ролизата казеина, дрожжевого автолизата, кукурузного экстракта и т.д.)
Синтетические среды это среды, в состав которых входят известные химические соединения в определенных концентрациях. Например, состав среды Чапека для культивирования грибов следующий: глюкоза - 30 г; азотнокислый натрий - 2 г; фосфорнокислый калий -1 г; сернокислый магний - 0,5 г; хлористый калий - 0,5 г; сернокислое железо - 0,01 г; вода - 100 мл.
Утилизация пищевых отходов. Пищевые отходы - один из самых распространённых и разнообразных видов отходов. Это могут быть как отходы от мясокомбинатов, пищевых фабрик, так и остатки еды из ресторанов и просто бытовой мусор. Измельчённые пищевые отходы быстрее перегнивают и разлагаются, не создавая долгосрочной среды для развития вредоносных бактерий.
Утилизация отходов металлургического комплекса.Основную массу отходов этого комплекса представляют вскрышные и вмещающие породы добычи руд, отходы их обогащения, металлургические шлаки. В черной и цветной металлургии образуется огромное количество пылей и шламов, значительное количество их накопилось также в шламонакопителях и отвалах. Эти отходы содержат в своем составе соединения железа, магния, марганца, кальция, цинка, свинца, серы и других элементов. В настоящее время разработаны рекомендации по утилизации шлама сероочистки. Для использования в цементной промышленности рекомендуется их сначала подвергнуть обжигу при температуре 1100--1150° С, что позве лит перевести часть серы из шлама в диоксид серы, а затем использовать для производства серной кислоты. Далее сухой шлам можно использовать как добавку к шихте при производстве цемента. Другим направлением утилизации серосодержащих шламов является применение их в сельском хозяйстве качестве мелиоранта для кислых, оподзоленных и солонцеватых почв. Шлам является дополнительным источником серы, кальция, позволяет нейтрализовать повышенную кислотность почв.
Образующийся при очистке сточных вод трубопрокатного производства шлам содержит окалину и масла. В процессе очистки в первичных отстойниках отделяется крупная окалина, которая периодически извлекается из отстойника и утилизируется в качестве добавки к агломерационной шихте. Во вторичных отстойниках улавливается мелкая окалина и маслопродукты, эти продукты ухудшают прочность гранул шихты, снижают ее проницаемость. Полому шихту предварительно обрабатывают известняком или шлаками других металлургических производств, а также используют в агломерационном или сталеплавильном производствах. Другим способом подготовки замасленной окалины к утилизации является обработка ее жидким сталеплавильным шлаком. Обогащенный окалиной застывший шлак является ценным металлургическим сырьем.
Утилизация отходов химического производства. Отходы производства фосфора, фосфорной кислоты и фосфорных удобрений являются наиболее многотоннажными отходами химического промышленного комплекса. Наибольший удельный вес в фосфорной промышленности приходится на производство фосфорных удобрений -- суперфосфата. Сырьем для получения этих продуктов являются руды, содержащие в своем составе фосфориты Са3(РО4)2 и апатиты -- фтор-апатит Са3(РО4)2 * CaF2 и хлор-апатиг Са,(РО4)2 * СаС12. Кроме основных минералов, эти руды содержат в своем составе минералы-примеси, в следовых количествах уран, торий, ванадий. Фосфорные руды представляют собой осадочные породы, сцементированные фосфатами кальция.
При добыче фосфорных руд огромные массы вскрышных пород, представляющие собой пески, глины, сланцы с примесями серы и фосфора, поступают в отвалы и практически не используются. Исходя из состава их можно использовать для производства пористых заполнителей (аглопоритов) и как банки к сырью при производстве керамических изделий. Зола и шлак являются крупнотоннажными отходами. Одним из наиболее перспективных направлений утилизации золошлаковых отходов является производство из них пористых заполнителей для легких бетонов. Мелкий заполнитель может быть заменен золой. В качестве крупных заполнителей применяют щебень из топливных шлаков, аглопорит на основе золы, зольный обжиговый и безобжиговый гравий и глинозольный керамзит. Утилизация зол и шлаков требует решения целого комплекса вопросов от разработки технических условий на их применение, технологических линий по их переработке, транспортных и погрузочно-разгрузочных средств до перестройки психологии хозяйственников в отношении вторичных минеральных ресурсов.
Эффективность биотехнологического производства определяется, в первую очередь, производительностью основного оборудования. Поэтому проведению стадии основной ферментации уделяется большое внимание. Под ферментацией понимают всю совокупность последовательных операций от внесения в заранее приготовленную и нагретую до требуемой температуры среду посевного материала и до завершения процесса роста клеток или биосинтеза целевого продукта. По окончании ферментации образуется сложная смесь, состоящая из клеток продуцента, раствора непотребленных питательных компонентов и накопившихся в среде продуктов биосинтеза. Такую смесь называют культуральной жидкостью.
Процесс ферментации может осуществляться 2-мя способами: поверхностного культивирования, когда выращивание производственной культуры производят на среде, содержащей твердые частицы субстрата; 2) глубинного культивирования, когда выращивание той же культуры микроорганизмов происходит во всем объеме жидкой питательной среды, содержащей растворенный субстрат. Более распространенным в микробиологической промышленности является метод глубинного культивирования . По сравнению с поверхностным способом он является более интенсивным, позволяет вырабатывать за единицу времени и объема большее количество целевого продукта. глубинное культивирование проводят в емкостных аппаратах, которые называются ферментаторами или ферментерами. Чтобы обеспечить доминирующий рост производственному штамму, пользуются приемом, суть которого сводится к увеличению доли посевного материала, передаваемого в основной аппарат. Она может достигать 20-25%. Технологическое оформление процессов биосинтеза различается также в зависимости от отношения организма-продуцента к кислороду. С этой точки зрения различают аэробные и анаэробные процессы.
Для максимизации прибыли необходимо произвести оптимизацию следующих технологических параметров:
выхода продукта в расчете на потребленный субстрат;
концентрация продукта;
скорость образования продукта.
Оптимизация технологии биосинтеза метаболитов состоит из следующих основных этапов :
1) Первоначальная селекция штамма микроорганизмов;
2) Определение оптимальных значений температуры, рН, тоничности и потребности в кислороде;\
3) Определение оптимального режима питания и накопления биомассы;
4) Изменение генетической структуры организма для увеличения образования продукта.
Ферментационное оборудование предназначено для глубинного культивирования микроорганизмов, в том числе и в стерильных условиях.
По способу проведения глубинное культивирование различают:
Глубинное культивирование проводят в аппаратах, называемых ферментаторами или ферментерами.
Ферментеры, используемые в периодическом режиме, делятся на:
При проведении глубинного культивирования непрерывно в проточном режиме используемые ферментеры по принципу действия делятся на:
а) Хемостаты; б) Турбидостаты.
Для каждого биотехнологического процесса должна быть разработана подходящая схема, а сам процесс должен постоянно наблюдаться u1080 и тщательно контролироваться. Для большинства практических биотехнологических процессов такими системами являются ферменторы или биореакторы, которые обеспечивают необходимые физические условия, способствующие наилучшему взаимодействию катализатора со средой и поставляемым материалом. Биореакторы варьируют от простых сосудов до весьма сложных систем с различным уровнем компьютерного оснащения.
Биореакторы изготавливаются в двух вариантах или типах. Первый тип для нестерильных систем, когда нет абсолютной необходимости оперировать с чистыми культурами микроорганизмов (например, ферментация при пивоварении, производство пекарских дрожжей и т. п.).
Биореакторы второго типа предназначены для асептических процессов, обычно используемых в производстве таких соединений как, антибиотики, аминокислоты, полисахариды и одноклеточный бактериальный белок. В реакторах такого типа все посторонние микроорганизмы должны быть исключены, что, естественно, связано со значительными сложностями при их конструировании и разработке самого биотехнологического процесса.
Основное требование к биореакторам любого типа сводится к обеспечению оптимальных условий роста продуцента или накоплению синтезируемого им продукта. Для достижения указанных целей необходимо разрабатывать технологию, призванную оптимизировать процесс, а именно: использовать подходящий источник энергии, набор питательных веществ должен соответствовать питательным потребностям организма-продуцента, из ростовой среды должны быть удалены соединения, ингибирующие его жизнедеятельность, должна быть подобрана соответствующая посевная доза и, наконец, обеспечены все остальные требуемые физико-химические условия.
Главная задача получение максимального количества клеток с одинаковыми свойствами при их выращивании u1074 в определенных тщательно контролируемых условиях. Фактически один и тот же биореактор (лишь с небольшими изменениями) может быть использован для производства ферментов, антибиотиков, органических кислот или одноклеточного белка.
Крайне важным является обеспечение должного уровня теплообмена в биореакторах, поскольку жизнедеятельность и метаболическая активность объектов зависит в значительной степени от колебаний температуры. Поддержание температуры в определенном узком диапазоне диктуется:
1) резким снижением активности ферментов по мере падения температуры и
2) необратимой инактивацией (денатурацией) макромолекул (в первую очередь белков) при ее повышении до критических значений.
Температурный оптимум у каждого организма лежит в определенных пределах. Большинство биотехнологических процессов осуществляется в мезофильных условиях (3050 0С). Специфическим элементом биореактора является система, обеспечивающая стерильность процесса. Стерилизация осуществляется на разных этапах процесса, как до его начала, так и при осуществлении и после окончания.
Таким образом, в соответствии с основными принципами реализации биотехнологических процессов современные биореакторы должны обладать следующими системами:
• эффективного перемешивания и гомогенизации среды выращивания;
• обеспечения свободной и быстрой диффузии газообразных компонентов системы (аэрирование в первую очередь);
• теплообмена, обеспечивающего поддержание оптимальной температуры внутри реактора и ее контролируемые изменения;
• пеногашения;
• стерилизации сред, воздуха и самой аппаратуры;
• контроля и регулировки процесса и его отдельных этапов.