Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

тема состоящая из атомного ядра несущего элементарный положительный электрический заряд и электрона нес

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 30.5.2024

Основы физики атомного ядра и элементарных частиц

3.4.1

Атом водорода — физическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра может входитьпротон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон преимущественно находится в тонком концентрическом шаровом слое вокруг атомного ядра, образуя электронную оболочку атома. Наиболее вероятный радиус электронной оболочки атома водорода в стабильном состоянии равен боровскому радиусу a0 = 0,529 Å.

Атом водорода имеет специальное значение в квантовой механике и релятивистской квантовой механике, поскольку для негопроблема двух тел имеет точное или приближенное аналитическое решения. Эти решения применимы для разных изотопов водорода, с соответствующей коррекцией.

В квантовой механике атом водорода описывается двухчастичной матрицей плотности или двухчастичной волновой функцией. Также упрощенно рассматривается как электрон в электростатическом поле бесконечно тяжёлого атомного ядра, не участвующего в движении (или просто в кулоновском электростатическом потенциале вида 1/r). В этом случае атом водорода описывается редуцированной одночастичной матрицей плотности или волновой функцией.

В 1913 году Нильс Бор предложил модель атома водорода, имеющую множество предположений и упрощений, и вывел из неёспектр излучения водорода. Предположения модели не были полностью правильны, но тем не менее приводили к верным значениям энергетических уровней атома.

Ква́нтовое число́ в квантовой механике — характеризует численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы.

Правилами отбора в спектроскопии называют ограничения и запрет на переходы между уровнями квантомеханической системы с поглощением или излучением фотона, наложенные законами сохранения и симметрией.

3.4.2

 

3.4.3

При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии.

Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) —классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химикомД. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен[1] вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и т. п.). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

3.4.4

А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса(более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколькофемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Атом состоит из ядра и окружающего его электронного "облака". Находящиеся в электронном облакеэлектроны несут отрицательный электрический заряд. Протоны, входящие в состав ядра, несутположительный заряд.

В любом атоме число протонов в ядре в точности равно числу электронов в электронном облаке, поэтому атом в целом – нейтральная частица, не несущая заряда.

Атом может потерять один или несколько электронов или наоборот – захватить чужие электроны. В этом случае атом приобретает положительный или отрицательный заряд и называется ионом.

Практически вся масса атома сосредоточена в его ядре, так как масса электрона составляет всего лишь 1/1836 часть массы протона. Плотность вещества в ядре фантастически велика – порядка 1013 - 1014 г/см3. Спичечный коробок, наполненный веществом такой плотности, весил бы 2,5 миллиарда тонн!

Внешние размеры атома – это размеры гораздо менее плотного электронного облака, которое примерно в 100000 раз больше диаметра ядра.

Кроме протонов, в состав ядра большинства атомов входят нейтроны, не несущие никакого заряда. Масса нейтрона практически не отличается от массы протона. Вместе протоны и нейтроны называются нуклонами (от латинского nucleus – ядро).

Электроны, протоны и нейтроны являются главными "строительными деталями" атомов и называютсясубатомными частицами. Их заряды и массы в кг и в специальных “атомных” единицах массы (а.е.м.) показаны в таблице 2-1.

Таблица 2-1. Субатомные частицы.

Частица

Заряд

Масса:

 

 

кг

а.е.м.

Протон

+1

1,67·10-27

1,00728

Нейтрон

0

1,67·10-27

1,00867

Электрон

-1

9,11·10-31

0,000549

Из таблицы 2-1 видно, что массы субатомных частиц чрезвычайно малы. Показатель степени (например, десять в минус двадцать седьмой степени) показывает, сколько нулей после запятой нужно записать, чтобы получилась десятичная дробь, выражающая массу субатомной частицы в килограммах. Это ничтожнейшая часть килограмма, поэтому массу субатомных частиц удобнее выражать в атомных единицах массы (сокращенно – а.е.м.). За атомную единицу массы принята ровно 1/12 часть массы атома углерода, в ядре которого содержится 6 протонов и 6 нейтронов. Схематическое изображение такого "эталонного" атома углерода приведено на рис. 2-5 (б). Атомную единицу массы можно выразить и в граммах: 1 а.е.м. = 1,660540·10-24 г.

<="" p="">

Рис. 2-5. Атомы состоят из положительно заряженного ядра и электронного облака. а) В состав ядра атома водорода входит только 1 протон, а электронное облако заполняется одним электроном. б) В ядре атома углерода 6 протонов и 6 нейтронов, а в электронном облаке – 6 электронов. в) Существует также изотопный углерод, ядре которого на 1 нейтрон больше. Содержание этого изотопа в природном углероде составляет чуть более 1% (об изотопах см. ниже). Линейные размеры атомов очень малы: их радиусы составляют от 0,3 до 2,6 ангстрема (1 ангстрем = 10–8 см). Радиус ядра около 10–5 ангстрема, то есть 10–13 см. Это в 100000 раз меньше размеров электронной оболочки. Поэтому правильно показать относительные пропорции ядер и электронных оболочек на рисунке невозможно. Если бы атом увеличился до размеров Земли, то ядро имело бы всего около 60 м в диаметре и могло бы поместиться на футбольном поле.

Масса атома, выраженная в килограммах или граммах, называется абсолютной атомной массой. Чаще пользуются относительной атомной массой, которая выражается в атомных единицах массы (а.е.м.). Относительная атомная масса представляет собой отношение массы какого-нибудь атома к массе 1/12 части атома углерода. Иногда говорят более коротко: атомный вес. Последний термин вовсе не устаревший, как иногда пишут в учебниках – он широко используются в современной научной литературе, поэтому мы тоже будем его применять. Относительная атомная масса и атомный вес, фактически, безразмерные величины (масса какого-либо атома делится на массу части атома углерода), поэтому обозначение "а.е.м." после численного значения обычно опускают (но можно и написать, в этом не будет ошибки). Термины “относительная атомная масса”, “атомная масса”, “атомный вес”в научном химическом языке обычно используются равноправно и между ними просто не делают различий. В Международном союзе химиков (IUPAC) существует Комиссия по относительной распространенности изотопов и атомным весам (Commission on Isotopic Abundances and Atomic Weights или сокращенно – CIAAW), но не "Комиссия по относительным атомным массам". Однако все химики прекрасно понимают, что речь идет об одном и том же.

В российских учебниках и заданиях ЕГЭ пользуются термином относительная атомная масса, которую обозначают символом Ar. Здесь "r" – от английского "relative" – относительный. Например, Ar = 12,0000 – относительная атомная масса углерода 126C равна 12,0000. В современной научной литературе относительная атомная масса и атомный вес – синонимы.

** Из курса физики вы помните, что вес физического тела является переменной величиной. Например, на Земле и на Луне одно и то же физическое тело имеет разный вес, но масса тела – величина постоянная. Поэтому термин “относительная атомная масса” считается более строгим. Для многих вычислений удобно массы протона и нейтрона в шкале а.е.м. считать округленно равными единице.

На рис. 2-5 показаны атомы двух разных видов. Может возникнуть вопрос: почему двух, а не трех видов – ведь на рисунке изображены три атома? Дело в том, что атомы (б) и (в) относятся к одному и тому же химическому элементу углероду, в то время как атом (а) – совсем другой элемент (водород). Что же такое химические элементы и чем они отличаются друг от друга?

Водород и углерод отличаются числом протонов в ядре и, следовательно, числом электронов в электронной оболочке. Число протонов в ядре атома называют зарядом ядра атома и обозначают буквой Z. Это очень важная величина. Когда мы перейдем к изучению Периодического закона, то увидим, что число протонов в ядре совпадает с порядковым номером атома в Периодической таблице Д.И.Менделеева.

Как мы уже говорили, заряд ядра (число протонов) совпадает с числом электронов в атоме. Когда атомы сближаются, то в первую очередь они взаимодействуют друг с другом не ядрами, а электронами. Число электронов определяет способность атома образовывать связи с другими атомами, то есть его химические свойства. Поэтому атомы с одинаковым зарядом ядра (и одинаковым числом электронов) ведут себя в химическом отношении практически одинаково и рассматриваются как атомы одного химического элемента.

Нукло́ны (от лат. nucleus — ядро) — общее название для протонов и нейтронов.

С точки зрения электромагнитного взаимодействия протон и нейтрон — разные частицы, так как протон электрически заряжен, а нейтрон — нет. Однако, с точки зрения сильного взаимодействия, которое является определяющим в масштабе атомных ядер, эти частицы неразличимы, поэтому и был введен термин «нуклон», а протон и нейтрон стали рассматриваться как два различных состояния нуклона, различающихся проекцией изотопического спина. Близость свойств изоспиновых состояний нуклона является одним из проявлений изотопической инвариантности.

Нуклоны относятся к семейству барионов(группа N-барионов). Они являются самыми лёгкими из известных барионов.

Зарядовое число атомного ядра (синонимы: атомный номер, атомное число, порядковый номер химического элемента) — количество протонов в атомном ядре. Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому номеру соответствующего ядру химического элемента в таблице Менделеева.

Термин «атомный» или «порядковый» номер обычно используется в атомной физике и в химии, тогда как эквивалентный термин «зарядовое число» — в ядерной физике. В неионизированном атоме количество электронов в электронных оболочкахсовпадает с зарядовым числом.

Зарядовое число обычно обозначается буквой Z. Ядра с одинаковым зарядовым числом, но различным массовым числом A(которое равно сумме числа протонов Z и числа нейтронов N) являются различными изотопами одного и того же химического элемента, поскольку именно заряд ядра определяет структуру электронной оболочки атома и, следовательно, его химические свойства.

Ма́ссовое число́ атомного ядра — суммарное количество протонов и нейтронов (называемых общим термином «нуклоны») в ядре. Обычно обозначается буквой A. Массовое число близко к атомной массе изотопа, выраженной в атомных единицах массы, но совпадает с ней только для углерода-12, поскольку атомная единица массы (а. е. м.) определяется сейчас как 112массы атома 12С. Во всех остальных случаях атомная масса не является целым числом, в отличие от массового числа. Так, массовое число изотопа хлора 35Cl равно 35, а его атомная масса составляет 34,96885 а.е.м.

Массовое число в обозначении конкретного нуклида (вида атомных ядер) пишется верхним левым индексом, например 232Th. Нуклиды с одинаковым массовым числом называются изобарами (например, изобарами являются нуклиды 14C и 14N).

Знание массового числа позволяет оценить массу ядра и атома. Если известно массовое число, то масса М атома и его ядра оценивается из следующего соотношения М  А·mN, где mN ≈ 1,67·10−27 кг — масса нуклона, то есть протона или нейтрона. Например, в состав атома алюминия-27 и его ядра входит 27 нуклонов (13 протонов и 14 нейтронов). Его масса примерно равна 27·1,67·10−27 кг ≈ 4,5·10−26 кг. Если необходимо получить массу ядра с большей точностью, то нужно учесть, что нуклоны в ядре связаны силами ядерного притяжения, и поэтому в соответствии с соотношением E = mc2 масса ядра уменьшается. В массу атома также следует добавить суммарную массу электронов на орбитах вокруг ядра. Однако все эти поправки не превышают 1 %.[1]

Массовое число совпадает с барионным числом ядра. Барионное число сохраняется во всех известных процессах, поэтому любые радиоактивные распады и ядерные реакции не приводят к изменению суммы массовых чисел ядер в левой и правой части реакции. Например, при альфа-распаде урана-238

23892U 

→ 

23490Th 

42He

в левой части массовое число начального ядра равно 238, в правой части реакции — два ядра с массовыми числами 234 и 4, что в сумме даёт 238. С учётом того, что массовое число альфа-частицы (ядра гелия-4) равно 4, альфа-распад снижает массовое число распадающегося ядра на 4 единицы. Любые типы бета-распада (бета-минус-распад, позитронный распад,электронный захват, все типы двойного бета-распада) не изменяют массовое число, поскольку в этом процессе происходит лишь превращение некоторых нуклонов ядра из одного вида в другой (протонов в нейтроны или обратно). Изомерный переходтакже не изменяет массовое число ядра.

3.4.5

Между нуклонами в ядре действуют силы притяжения – ядерные силы. Ядерные силы относятся, наряду с гравитационными и электромагнитными, к числу так называемых фундаментальных сил природы. В квантовой механике вместо понятия “сила” чаще используется понятие “взаимодействие”. Синонимом выражения “ядерные силы” является выражение “сильное взаимодействие”. Этим выражением подчеркивается тот факт, что ядерные силы гораздо более “сильные”, чем электромагнитные и тем более гравитационные. Ведь ядерные силы удерживают в ядре одноименно заряженные протоны, которые по закону Кулона отталкиваются, и незаряженные нейтроны. Не будь ядерных сил, ядра разлетелись бы на отдельные нуклоны. Таким образом, ядерные силы самые “сильные” в природе.

Ядерные силы обладают рядом специфических свойств:

1. В отличие от электромагнитных и гравитационных сил, радиус действия которых равен бесконечности, ядерные силы являются короткодействующими, так как они очень быстро убывают с расстоянием. На расстояниях, превышающих примерно r0»10-15 м, ядерные силы становятся практически равными нулю. Величина r0 называется радиусом действия ядерных сил.

2. Ядерные силы обладают свойством насыщения, заключающимся в том, что каждый нуклон в ядре взаимодействует лишь с определенным числом ближайших соседей.

3. Величина сильного взаимодействия зависит от взаимной ориентации спинов нуклонов.

4. Ядерные силы обладают свойством зарядовой независимости, выражающимся в том, что величина ядерных сил не зависит от электрического заряда взаимодействующих нуклонов.

Свойства насыщения и короткодействия ядерных сил объясняются их природой. Эти силы относятся к числу так называемых обменных сил, т.е. возникают между двумя частицами благодаря обмену третьей частицей. Такой частицей, выполняющей роль “переносчика” сильного взаимодействия, является p - мезон. Существует три типа p - мезонов: p +, p -, p 0 – мезоны. Нуклон в ядре испускает p -мезон, который затем поглощается соседним нуклоном. В свою очередь, этот второй нуклон испускает p -мезон, который поглощается первым нуклоном. Обмен мезонами и приводит к взаимодействию между нуклонами.

Термоядерная реа́кция — разновидность ядерной реакции, при которой лёгкиеатомные ядра объединяются в более тяжёлые, за счёт кинетической энергии их теплового движения.

Спин ядра

    Собственный момент количества движения - спин нуклона 1/2. Его величина дается соотношением.

s = ћ[1/2(1/2 + 1)]1/2.

Полный момент количества движения ядра , который также называют спином ядра, получается в результате сложения спинов и орбитальных моментов составляющих это ядро нуклонов

 = 1 + ... + i + 1 + ... + i,    i = A.

Величина спина ядра дается соотношением

J = ћ/[1/2(1/2 + 1)]1/2.

Проекция спина J3 в единицах ћ принимает значения

J3 = +J, +(J - 1), ..., 1/2, -1/2, ..., -(J - 1), -J    для полуцелых J,

J3 = +J, +(J - 1), ..., 0..., -(J - 1), -J           для целых J.

3.4.6

  Радиоактивность – самопроизвольные превращения атомных ядер, сопровождающиеся испусканием элементарных частиц или более лёгких ядер. Ядра, подверженные таким превращениям, называют радиоактивными, а процесс превращения – радиоактивным распадом. 
    Радиоактивный распад возможен только тогда, когда он энергетически выгоден, т.е. сопровождается выделением энергии. Условием этого является превышение массы М исходного ядра суммы масс m
i продуктов распада, т.е. неравенство

M >∑mi.

Бета-излучение (бета-лучи) — поток электронов или позитронов, испускаемых при бета-радиоактивном распаде атомов (см. Радиоактивность). Радиоактивные изотопы(см.), распад которых сопровождается бета-излучением, называют бета-излучателями. Если такому распаду не сопутствует гамма-излучение, говорят о чистом бета-излучателе. К ним относятся радиоактивные изотопы фосфора 32),серы (S35), кальция (Са45) и др.

Га́мма-излуче́ние (гамма-лучи, γ-лучи) — видэлектромагнитного излучения с чрезвычайно малой длиной волны — менее 2·10−10 м — и, вследствие этого, ярко выраженнымикорпускулярными и слабо выраженными волновыми свойствами[1].

Альфа-излучение (альфа-лучи) — один из видов ионизирующих излучений; представляет собой поток быстро движущихся, обладающих значительной энергией, положительно заряженных частиц (альфа-частиц).
Основным источником альфа-излучения служат альфа-излучатели —
 радиоактивные изотопы, испускающие альфа-частицы в процессе распада. Особенностью альфа-излучений является его малая проникающая способность. Пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким (сотые доли миллиметра в биологических средах, 2,5—8 см в воздухе). 

3.4.7

Деле́ние ядра́ — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

Цепна́я я́дерная реа́кция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении.

3.4.8

Я́дерная реа́кция — это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением большого количества энергии. Впервые ядерную реакцию наблюдалРезерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газебольше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощьюкамеры Вильсона были получены фотографии этого процесса.

По механизму взаимодействия ядерные реакции делятся на два вида:

  •  реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10МэВ).
  •  прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.

3.4.9

Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части.

Следует иметь в виду, что некоторые элементарные частицы (электрон, нейтрино, кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы. Другие элементарные частицы (так называемые составные частицы — протон, нейтрон и т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно (см. Конфайнмент). Всего вместе с античастицами открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются за время от приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды (от 10-24 до 10-22, для резонансов).

Строение и поведение элементарных частиц изучается физикой элементарных частиц.

Классификация[править | править исходный текст]

По величине спина[править | править исходный текст]

Все элементарные частицы делятся на два класса:

  •  бозоны — частицы с целым спином (например, фотон, глюон, мезоны, бозон Хиггса).
  •  фермионы — частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);

По видам взаимодействий[править | править исходный текст]

Элементарные частицы делятся на следующие группы:

Составные частицы[править | править исходный текст]

  •  адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:
    •  мезоны — адроны с целым спином, то есть являющиеся бозонами;
    •  барионы — адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядроатома, — протон и нейтрон.

Фундаментальные (бесструктурные) частицы[править | править исходный текст]

  •  лептоны — фермионы, которые имеют вид точечных частиц (то есть не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.
  •  кварки — дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
  •  калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:
    •  фотон — частица, переносящая электромагнитное взаимодействие;
    •  восемь глюонов — частиц, переносящих сильное взаимодействие;
    •  три промежуточных векторных бозона W+, W и Z0, переносящие слабое взаимодействие;
    •  гравитон — гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

Адроны и лептоны образуют вещество. Калибровочные бозоны — это кванты разных типов взаимодействий.

Кроме того, в Стандартной модели с необходимостью присутствует хиггсовский бозон, первые экспериментальные указания на существование которого появились в 2012 году.

3.4.10

Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействиеэлементарных частиц. Наряду с электрослабой теорией, КХД составляет общепринятый в настоящее время теоретический фундамент физики элементарных частиц.




1. Мы влюбляемся нас не любят
2. Современные методы управления- сущность, содержание, основные достоинства и недостатки
3. Особенности организационных форм обучения в профессиональном училище
4. Московский государственный гуманитарноэкономический институт
5. Реферат- Финансирование политических партий России и Беларуси
6. Франкфуртская школа является собирательным названием применяемым к мыслителям связанным с Институтом со
7. Реферат- Египет (Egypet turizm)
8. Тема Понятие института Ситуационные вопросы Дайте комментарий к следующему утверждению- Экон
9. Объекты гражданского оборота.html
10. ГОРЕ ОТ УМА Своей комедией А
11. Информационная система военного округа
12.  Шизоидные темпераменты
13. Реферат на тему- Чрезвычайные ситуации техногенного характера студентки 3 курса 17гру
14. Омский государственный технический университет З
15. вариант И цена приятная
16. Тема Облік операцій із кредитування 1
17. сравнительная характеристика натяжных потолков сравнение натяжных потолков с другими видами
18. Subject Pronouns ~ Plurl nouns Numbers nme is John
19. Вирусы
20. ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ МГИМО У МИД РОССИИ ~ ЯРГУ ИМ