У вас вопросы?
У нас ответы:) SamZan.net

СаввараЛапласа Магнитное поле прямого тока кругового тока соленоида Магни~тное по~ле силовое поле дей

Работа добавлена на сайт samzan.net: 2016-06-09

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 5.3.2025

№1Магнитное поле. Магнитная индукция.Напряженность магнитного поля. Закон Био-Саввара-Лапласа Магнитное поле прямого тока кругового тока соленоида

Магни́тное по́ле — силовое поле, действующее на движущиесяэлектрические заряды и на тела, обладающие магнитным моментом, независимо от состояния ихдвижения[1], магнитная составляющая электромагнитного поля[2].

в системе единиц СГС:

Магни́тная инду́кция  — векторнаявеличина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какойсилой  магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно,  — это такой вектор, чтосила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна

Напряжённость магни́тного по́ля(стандартное обозначение Н) — векторнаяфизическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В Международной системе единиц (СИ) где  — магнитная постоянная.

В системе СГС

  1.  В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и Hпросто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС илиB = μ0μ H в системе СИ (см. Магнитная проницаемость, также см.Магнитная восприимчивость).

В системе СГС напряжённость магнитного поля измеряется в эрстедах(Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

Закон Био́—Савара—Лапла́са — физический закон для определения вектора индукции магнитного поля, порождаемого постояннымэлектрическим током. Был установлен экспериментально в1820 году Био и Саваром и сформулирован в общем видеЛапласом. Лаплас показал также, что с помощью этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).

№2 Сила ампера правило левой руки Взаимодействие параллельных токовзакон Ампера

№3Сила Лореца Правило левой руки Траектории движения частиц в магнитном поле Радиус и период обращения частицы в магнитном поле

Сила Лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует на точечнуюзаряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью  заряд  лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического  и магнитного полей. В Международной системе единиц (СИ) выражается как:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2].

Макроскопическим проявлением силы Лоренца является сила Ампера.

Для силы Лоренца, так же как и для сил инерции, третий закон Ньютона не выполняется. Лишь переформулировав третий закон Ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил Лоренца

Сила F, действующая на частицу с электрическим зарядом q, движущуюся со скоростью v, во внешнем электрическом E и магнитном B полях, такова:

где × векторное произведение. Все величины выделенные жирным являются векторами. Более явно:

где r — радиус-вектор заряженной частицы, t — время, точкой обозначена производная по времени.

Непрерывное распределение заряда[править | править исходный текст]

Сила Лоренца (на единичный 3-объём) f действующая на непрерывное распределение заряда (зарядовая плотность ρ) при движении. 3-плотность потока Jсоответствует движению заряженного элемента dq в объемеdV .

Для непрерывного распределения заряда, сила Лоренца принимает вид:

где dF — сила, действующая на маленький элемент dq.

(Левая рука)Четыре вытянутых пальца будут направлены по напрвлению силы тока(т.е)обратно движению заряженных частиц, в метале - эллектронов), а линии магнитной индукции должны входить в ладонь! то большой "оттопыренный" палец будет покзывать направление силы Лоренца! Сила ампера будет напрвлена точно на вас,

43. Движение заряженной частицы в магнитном поле. Сохраняющиеся и изменяющиеся величины. Расчет радиуса и шага спирали.

На заряженную частицу в электростатическом поле действует кулоновская сила, которую можно найти, зная напряженность поля в данной точке: . Эта сила сообщает ускорение

  

где m — масса заряженной частицы. Как видно, направление ускорения будет совпадать с направлением  , если заряд частицы положителен (q > 0), и будет противоположно  , если заряд отрицателен (q<0).

Если электростатическое поле однородное (  = const), то ускорение  a= const и частица будет совершать равноускоренное движение (при отсутствии других сил).

Вид траектории частицы зависит от начальных условий. Если вначале заряженная частица покоилась   или ее начальная скорость сонаправлена с ускорением , то частица будет совершать равноускоренное прямолинейное движение вдоль поля и ее скорость будет расти. Если , то частица будет тормозиться в этом поле.

Если угол между начальной скоростью и ускорением острый 0 < α < 90° (или тупой), то заряженная частица   будет двигаться по параболе.  

Во всех случаях при движении заряженной частицы будет изменяться модуль скорости, а следовательно, и кинетическая энергия частицы.

1.  Заряженная частица влетает в магнитное поле со скоростью , направленной вдоль поля  или противоположно  направлению магнитной индукции поля  .

В этих случаях сила Лоренца     и частица будет продолжать двигаться равномерно прямолинейно.

2. Заряженная частица движется перпендикулярно линиям магнитной индукции

тогда сила Лоренца  , следовательно, и сообщаемое ускорение будут постоянны по модулю и перпендикулярны к скорости частицы.

В результате частица будет двигаться по окружности , радиус которой можно найти на основании второго закона Ньютона:

  

Отношение      — называют удельным зарядом частицы.

  

Период вращения частицы

то есть период вращения не зависит от скорости частицы и радиуса траектории.

3. Скорость заряженной частицы направлена под углом  к вектору.

  

Движение частицы можно представить в виде суперпозиции равномерного прямолинейного движения вдоль поля со скоростью  и движения по окружности с постоянной по модулю скоростью  в плоскости, перпендикулярной полю.

Радиус окружности определяется аналогично предыдущему случаю, только надо  заменить  на   , то есть

В результате сложения этих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю. Шаг винтовой линии

Направление, в котором закручивается спираль, зависит от знака заряда частицы.

Если скорость заряженной частицы составляет угол α с направлением вектора    неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, тο R и h уменьшаются с ростом B. На этом основана фокусировка заряженных частиц в магнитном поле.

Если на движущуюся заряженную частицу помимо магнитного поля с индукцией  действует одновременно и электростатическое поле с напряженностью , то равнодействующая сила, приложенная к частице, равна векторной сумме электрической силы и силы Лоренца:  . Характер движения и вид траектории зависят в данном случае от соотношения этих сил и от направления электростатического и магнитного полей.

Формула силы Лоренца дает возможность найти ряд закономерностей движения заряженных частиц в магнитном поле. Зная направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле можно найти знак заряда частиц, которые движутся в магнитных полях. 

Для вывода общих закономерностей будем полагать, что магнитное поле однородно и на частицы не действуют электрические поля. Если заряженная частица в магнитном поле движется со скоростью v вдоль линий магнитной индукции, то угол α между векторами v и Вравен 0 или π. Тогда сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно. 

В случае, если заряженная частица движется в магнитном поле со скоростью v, которая перпендикулярна вектору В, то сила ЛоренцаF=Q[vB] постоянна по модулю и перпендикулярна к траектории частицы. По второму закону Ньютона, сила Лоренца создает центростремительное ускорение. Значит, что частица будет двигаться по окружности, радиус r которой находится из условия QvB=mv2/r , следовательно 

 (1) 

Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот, 

 

Подствавив (1), получим 

 (2) 

т. е. период вращения частицы в однородном магнитном поле задается только величиной, которая обратна удельному заряду (Q/m) частицы, и магнитной индукцией поля, но при этом не зависит от ее скорости (при v<<c). На этом соображении основано действие циклических ускорителей заряженных частиц. 

В случае, если скорость v заряженной частицы направлена под углом α к вектору В (рис. 170), то ее движение можно задать в виде суперпозиции: 1) прямолинейного равномерного движения вдоль поля со скоростью vparall=vcosα ; 2) равномерного движения со скоростью vperpend=vsinα по окружности в плоскости, которая перпендикулярна полю. Радиус окружности задается формулой (1) (в этом случае надо вместо v подставить vperpend=vsinα). В результате сложения двух данных движений возникает движение по спирали, ось которой параллельна магнитному полю (рис. 1). Шаг винтовой (спиральной) линии 

 

Подставив в данное выражение (2), найдем 

 

Направление, в котором закручивается спираль, определяется знаком заряда частицы. 

Если скорость v заряженной частицы составляет угол α с направлением вектора В неоднородного магнитного поля, у которого индукция возрастает в направлении движения частицы, то r и h уменьшаются с увеличением В. На этом основана фокусировка заряженных частиц в магнитном поле. 


Рис.1

№4Теорема о циркуляции вектораиндукции магнитного поля в ваккууме

Введем, аналогично циркуляции вектора напряженности электростатического поля, циркуляцию вектора магнитной индукции.Циркуляцией вектора В по заданному замкнутому контуру называется интеграл 

 

где dl — вектор элементарной длины контура, который направлен вдоль обхода контура, Bl=Bcosα — составляющая вектора В в направлении касательной к контуру (с учетом выбора направления обхода контура), α — угол между векторами В и dl

Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В): циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной μ0 на алгебраическую сумму токов, охватываемых этим контуром: 

 (1) 

где n — число проводников с токами, которые охватываются контуром L любой формы. Каждый ток в уравнении (1) учитывается столько раз, сколько раз он охватывается контуром. Ток считается положительным, если его направление образует с направлением обхода по контуру правовинтовую систему; отрицательным считается ток противоположного направления. 


Рис.1



Например, для системы токов, изображенных на рис. 1, 

 

Выражение (1) выполняется только для поля в вакууме, поскольку, как будет показано дальше, для поля в веществе нужно учитывать молекулярные токи. 


Рис.2



Продемонстрируем справедливость теоремы о циркуляции вектора В на примере магнитного поля прямого тока I, который перпендикулярн плоскости чертежа и направлен к нам (рис. 2). Возьмем в качестве контура окружность радиуса r. В каждой точке этого контура вектор В одинаков по модулю и направлен по касательной к окружности (она есть и линия магнитной индукции). Значит, циркуляция вектора В равна 

 

Используя формулу (1), получим В•2πr=μ0I (в вакууме), откуда 

 

Значит, используя теорему о циркуляции вектора В мы получили выражение для магнитной индукции поля прямого тока, выведенное ранее на основании закона Био-Савара-Лапласа. 

Сравнивая выражения для циркуляции векторов Е и В, можно увидеть, что между ними существует принципиальное различие. Циркуляция вектора Е электростатического поля всегда равна нулю, т. е. электростатическое поле потенциально. Циркуляция вектораВ магнитного поля не равна нулю. Такое поле носит название вихревое

Теорема о циркуляции вектора В имеет в теории о магнитном поле такое же значение, как теорема Гаусса в электростатике, поскольку дает возможность находить магнитную индукцию поля без использования закона Био-Савара-Лапласа.

№5Магнитный поток теорема Гаусса для магнитного поля

Магни́тный пото́к — поток  как интеграл вектора магнитной индукции  через конечную поверхность . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где  — единичный векторнормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

В соответствии с теоремой Гаусса для магнитной индукции поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

Или, в дифференциальной форме — дивергенция магнитного поля равна нулю:

Это означает, что в классической электродинамике невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле.

.3. Теорема Гаусса

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка ΔS. Произведение модуля вектора  на площадь ΔS и на косинус угла α между вектором  и нормалью  к площадке называется элементарным потоком вектора напряженности через площадку ΔS (рис. 1.3.1): 

ΔΦ = E ΔS cos α = En ΔS,

где En – модуль нормальной составляющей поля 

Рисунок 1.3.1.

К определению элементарного потока ΔΦ

Рассмотрим теперь некоторую произвольную замкнутую поверхность S. Если разбить эту поверхность на малые площадки ΔSi, определить элементарные потоки ΔΦi поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора  через замкнутую поверхность S (рис. 1.3.2): 

В случае замкнутой поверхности всегда выбирается внешняя нормаль.

Рисунок 1.3.2.

Вычисление потока Ф через произвольную замкнутую поверхность S

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля  через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

Для доказательства рассмотрим сначала сферическую поверхность S, в центре которой находится точечный заряд q. Электрическое поле в любой точке сферы перпендикулярно к ее поверхности и равно по модулю 

где R – радиус сферы. Поток Φ через сферическую поверхность будет равен произведению E на площадь сферы 4πR2. Следовательно, 

Окружим теперь точечный заряд произвольной замкнутой поверхностью S и рассмотрим вспомогательную сферу радиуса R0 (рис. 1.3.3).

Рисунок 1.3.3.

Поток электрического поля точечного заряда через произвольную поверхность S, окружающую заряд

Рассмотрим конус с малым телесным углом ΔΩ при вершине. Этот конус выделит на сфере малую площадку ΔS0, а на поверхности S – площадку ΔS. Элементарные потокиΔΦ0 и ΔΦ через эти площадки одинаковы. Действительно, 

ΔΦ0 = E0ΔS0,   ΔΦ = EΔS cos α = EΔS '.

Здесь ΔS' = ΔS cos α – площадка, выделяемая конусом с телесным углом ΔΩ на поверхности сферы радиуса n.

Так как  а  следовательно  Отсюда следует, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ0 через поверхность вспомогательной сферы: 

Аналогичным образом можно показать, что, если замкнутая поверхность S не охватывает точечного заряда q, то поток Φ = 0. Такой случай изображен на рис. 1.3.2. Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, поэтому в этой области силовые линии не обрываются и не зарождаются.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов вытекает из принципа суперпозиции. Поле любого распределения зарядов можно представить как векторную сумму электрических полей  точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S будет складываться из потоков Φiэлектрических полей отдельных зарядов. Если заряд qi оказался внутри поверхности S, то он дает вклад в поток, равный  если же этот заряд оказался снаружи поверхности, то вклад его электрического поля в поток будет равен нулю.

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Примером может служить задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса R. Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность Sв виде соосного цилиндра некоторого радиуса r и длины l, закрытого с обоих торцов (рис. 1.3.4).

Рисунок 1.3.4.

Вычисление поля однородно заряженного цилиндра. OO' – ось симметрии

При r ≥ R весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна 2πrl, так как поток через оба основания равен нулю. Применение теоремы Гаусса дает: 

где τ – заряд единицы длины цилиндра. Отсюда 

Этот результат не зависит от радиуса R заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Для определения напряженности поля внутри заряженного цилиндра нужно построить замкнутую поверхность для случая r < R. В силу симметрии задачи поток вектора напряженности через боковую поверхность гауссова цилиндра должен быть и в этом случае равен Φ = E 2πrl. Согласно теореме Гаусса, этот поток пропорционален заряду, оказавшемуся внутри замкнутой поверхности. Этот заряд равен нулю. Отсюда следует, что электрическое поле внутри однородно заряженного длинного полого цилиндра равно нулю.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

Рисунок 1.3.5.

Поле равномерно заряженной плоскости. σ – поверхностная плотность заряда. S – замкнутая гауссова поверхность

В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает: 

где σ – поверхностная плотность заряда, т. е. заряд, приходящийся на единицу площади.

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

№6Работа по перемещению проводника и контура с током в магнитном поле

   Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним подвижной перемычкой длиной l (рис. 2.17). Этот контур находится во внешнем однородном магнитном поле  , перпендикулярном к плоскости контура. При показанном на рисунке направлении тока I, вектор   сонаправлен с  .

Рис. 2.17

      На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо:

      Пусть проводник l переместится параллельно самому себе на расстояние  dx. При этом совершится работа:

      Итак,

 

,

 (2.9.1)

 

      Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником.

      Формула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции.

      Выведем выражение для работы по перемещению замкнутого контура с током в магнитном поле.

      Рассмотрим прямоугольный контур с током 1-2-3-4-1 (рис. 2.18). Магнитное поле направлено от нас перпендикулярно плоскости контура. Магнитный поток  , пронизывающий контур, направлен по нормали   к контуру, поэтому  .

Рис. 2.18

      Переместим этот контур параллельно самому себе в новое положение 1'-2'-3'-4'-1'. Магнитное поле в общем случае может быть неоднородным и  новый контур будет пронизан магнитным потоком  .

      Площадка 4-3-2'-1'-4, расположенная между старым и новым контуром, пронизывается потоком  .

      Полная работа по перемещению контура в магнитном поле равна алгебраической сумме работ, совершаемых при перемещении каждой из четырех сторон контура:

где  ,   равны нулю, т.к. эти стороны не пересекают магнитного потока, при своём перемещение (очерчивают нулевую площадку).

 .

      Провод 1–2 перерезает поток (  ), но движется против сил действия магнитного поля.

 .

      Тогда общая работа по перемещению контура

  или

 

,

 (2.9.2)

 

здесь   – это изменение магнитного потока, сцепленного с контуром.

      Работа, совершаемая при перемещении замкнутого контура с током в магнитном поле, равна произведению величины тока на изменение магнитного потока, сцепленного с этим контуром.

      Элементарную работу по бесконечно малому перемещению контура в магнитном поле можно найти по формуле

 

,

 (2.9.5)

 

      Выражения (2.9.1) и (2.9.5) внешне тождественны, но физический смысл величины dФ различен.

      Соотношение (2.9.5), выведенное нами для простейшего случая, остаётся справедливым для контура любой формы в произвольном магнитном поле. Более того, если контур неподвижен, а меняется  , то при изменении магнитного потока в контуре на величину dФ, магнитное поле совершает ту же работу 

№7опыты фарадея. явление электромагнитной индукции

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года (точная дата определена записью в его дневнике). Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потокачерез поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Закон Фарадея[править | править исходный текст]

Согласно закону электромагнитной индукции Фарадея (в СИ):

где

 — электродвижущая сила, действующая вдоль произвольно выбранного контура,

  — магнитный поток через поверхность, натянутую на этот контур.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

где

 — электродвижущая сила,

 — число витков,

 — магнитный поток через один виток,

 — потокосцепление катушки.

Векторная форма[править | править исходный текст]

В дифференциальной форме закон Фарадея можно записать в следующем виде:

 (в системе СИ)

или

 (в системе СГС).

В интегральной форме (эквивалентной):

(СИ)

или

 (СГС)

Здесь  — напряжённость электрического поля — магнитная индукция — произвольная поверхность,  — её граница. Контур интегрирования  подразумевается фиксированным (неподвижным).

Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).

  1.  В этом виде закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля (в дифференциальной или интегральной форме соответственно)[1].

Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца, порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство  продолжает соблюдаться, но ЭДС в левой части теперь не сводится к  (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).

  1.  Некоторые авторы, например, М. Лившиц в журнале «Квант» за 1998 год[2] отрицают корректность применения термина закон Фарадея или закон электромагнитной индукции и т. п. к формуле  в случае подвижного контура (оставляя для обозначения этого случая или его объединения со случаем изменения магнитного поля, например, терминправило потока)[3]. В таком понимании закон Фарадея — это закон, касающийся лишь циркуляции электрического поля (но не ЭДС, создаваемой с участием силы Лоренца), и в этом понимании понятие закон Фарадея в точности совпадает с содержанием соответствующего уравнения Максвелла.
  2.  Однако возможность (пусть с некоторыми оговорками, уточняющими область применимости) совпадающей формулировки «правила потока» с законом электромагнитной индукции нельзя назвать чисто случайной. Дело в том, что, по крайней мере для определенных ситуаций, это совпадение оказывается очевидным проявлением принципа относительности. А именно, например, для случая относительного движения катушки с присоединенным к ней вольтметром, измеряющим ЭДС, и источника магнитного поля (постоянного магнита или другой катушки с током), в системе отсчета, связанной с первой катушкой, ЭДС оказывается равной именно циркуляции электрического поля, тогда как в системе отсчета, связанной с источником магнитного поля (магнитом), происхождение ЭДС связано с действием силы Лоренца на движущиеся с первой катушкой носители заряда. Однако та и другая ЭДС обязаны совпадать, поскольку вольтметр показывает одну и ту же величину, независимо от того, для какой системы отсчета мы ее рассчитали.

Потенциальная форма[править | править исходный текст]

При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:

 (в случае отсутствия безвихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).

В общем случае, при учёте и безвихревого (например, электростатического) поля имеем:

Правило Ленца

Правило Ленца - правило для определения направления индукционного тока: индукционный ток, возникающий при относительном движении проводящего контура и источника магнитного поля, всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшего этот ток. Сформулировано в 1833 г. Э. Х. Ленцем.
Если ток увеличивается, то и магнитный поток увеличивается.


В обобщенной формулировке правило Ленца гласит, что возникающий в замкнутом контуре индукционный ток своим магнитным полем 
противодействует тому изменению магнитного потока, которое вызвало этот ток.

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток

№8Индуктивность контура самоиндукция закон фарадея для самоиндукции


Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I

Φ = LI.

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называетсягенри (Гн). Индуктивность контура или катушки равна 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб: 

1 Гн = 1 Вб / 1 А.

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17

B = μ0 I n,

где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все N витков соленоида, равен 

Φ = B S N = μ0 n2 S l I.

Следовательно, индуктивность соленоида равна 

L = μ0 n2 S l = μ0 n2 V,

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с магнитной проницаемостью μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз: 

Lμ = μ L = μ0 μ n2 V.

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно закона Фарадея равна 

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Рисунок 1.21.1.

Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2 R Δt.

Ток в цепи равен 

Выражение для ΔQ можно записать в виде 

ΔQ = –L I ΔI = –Φ (IΔI.

В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I0 до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I0 до 0. Это дает 

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ (I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Рисунок 1.21.2.

Вычисление энергии магнитного поля

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна 

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить: 

где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина 

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергииДж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.

№9взаимная индукция

Переходим к рассмотрению явления взаимной индукции. Оно состоит в том, что при изменения силы электрического тока в каком-нибудь контуре меняющееся магнитное поле этого тока индуцирует ЭДС в соседних контурах. Возьмем два контура 1 и 2 (рис.).


 Предположим, что сила тока в первом контуре равна I1. Поток магнитной индукции Ф, создаваемый этим током, пропорционален I1. Обозначим через Ф21 ту часть потока Ф, которая пронизывает контур 2, тогда мы можем положить:


 На рисунке поток Ф21 изображается теми линиями магнитной индукции, которые пронизывают оба контура (1 и 2).
 При изменении силы тока I1 в первом контуре будет меняться поток Ф21, и во втором контуре возникает ЭДС индукции величина которой определяется соотношением


 Если размеры и положения контуров остаются неизменными, то коэффициент L21 в формуле (1) постоянен и


откуда


 Коэффициент L21 называется коэффициентом взаимной индукции контура 2 и контура 1.
 Очевидно, все сказанное можно повторить для того случая, когда меняется ток в контуре 2, а индуцируется ток в контуре 1. Тогда, обозначая силу тока во втором контуре через I2 возникающую ЭДС в первом контуре через E1 получим:


 Коэффициент L12 называется коэффициентом взаимной индукции контура 1 и контура 2.
 Как будет показано ниже,

Индуктивность взаимная, величина, характеризующая магнитную связь двух или более электрических цепей (контуров). Если имеется два проводящих контура (1 и 

Рис. к статье Индуктивность взаимная.

2, см. рис.), то часть линий магнитной индукции, создаваемых током в первом контуре, будет пронизывать площадь, ограниченную вторым контуром (т. е. будет сцеплена с контуром 2). Магнитный поток Ф12 через контур 2, созданный током I1в контуре 1, прямо пропорционален току:



Коэффициент пропорциональности M12 зависит от размеров и формы контуров 1 и 2, расстояния между ними, их взаимного расположения, а также от магнитной проницаемости окружающей среды и называется взаимной индуктивностью или коэффициентом взаимной индукции контуров 1 и 2. В системе СИ Индуктивность взаимная измеряется в генри.

  Если ток I2 течёт в контуре 2, то магнитный поток Ф12 через площадь контура 1 также пропорционален току:



причём M21 = M12.

  Наличие магнитной связи между контурами проявляется в том, что при изменении тока в одном из контуров появляется эдс индукции в соседнем контуре. Согласно закону индукции электромагнитной,



(3)



где E2 и E1 — возникающие в контурах 2 и 1 эдс индукции, а DФ12 и D Ф21 — изменение магнитных потоков через соответствующие контуры за время Dt.

  Через Индуктивность взаимная выражается взаимная энергия W12 магнитного поля токов I1 и I2:



знак в (4) зависит от направления токов.

№10энергия магнитного поля

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

                                      Wм = LI2/ 2

 

Формула очень похожа на формулу для кинетической энергии, роль массы m выполняет индуктивность L, а скорости vсоответствует сила тока I.

      Рассмотрим случай, о котором мы уже говорили (рис. 5.6).

Рис. 5.6

      Сначала замкнем соленоид на источник ЭДС  , в нем будет протекать ток  . Затем в момент времени   переключим ключ в положение 2 – замкнем соленоид на сопротивлениеR. В цепи будет течь убывающий ток I. При этом будет совершена работа:   ,  или

       

 

,

 (5.5.1)

 

      Эта работа пойдет на нагревание проводников. Но откуда взялась эта энергия? Поскольку других изменений, кроме исчезновения магнитного поля в окружном пространстве, не произошло, остается заключить, что энергия была локализована в магнитном поле. Значит, проводник с индуктивностью L, по которой течет ток I, обладает энергией

 

,

 (5.5.3)

 

      Выразим энергию магнитного поля через параметры магнитного поля. Для соленоида:

 .

 ; отсюда 

      Подставим эти значения в формулу (5.5.3):

 

,

 (5.5.4)

 

      Обозначим w – плотность энергии, или энергия в объеме V, тогда

 

,

 (5.5.5)

 

      но т.к.  , то

 

 или 

 (5.5.6)

 

      Энергия однородного магнитного поля в длинном соленоиде может быть рассчитана по формуле

 

,

 (5.5.7)

 

а плотность энергии

 

,

 (5.5.8)

 

      Плотность энергии магнитного поля в соленоиде с сердечником будет складываться из энергии поля в вакууме и в магнетике сердечника:

 ,   отсюда      .

      Т.к. в вакууме  , имеем




1. Реферат- Источники налогового права
2. го президента США до избрания его президентом ОГЛАВЛЕНИЕ [1] Глава 1Первы
3. E Bei den strken Verben und in der Umgngssprche разгов
4. Лабораторна робота 13 Представлення растрової графічної інформації в комп~ютері Мета- Ознайомитись з
5. Человек был неразрывно связан с растительным миром с момента своего появления на земле
6. тема выживания населения и защита территорий в чрезвычайных ситуациях; Часть 3- Радиационная безопасность
7. Расчёт производительности вентиляторной установки типа ВОД
8. психологической деятельности
9. летие В четверг 28 ноября Коми региональное отделение Всероссийского общества слепых отпраздновало сво
10. х геймов- вопрос ответ блиц ты мне я тебе темная лошадка