Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Лекція: Умовиводи.
1. Знання, які ми виводимо з уже існуючих є опосередкованими чи виводними. Логічною формою отримання виводних знань є умовиводи.
Умовивод – це форма мислення, за допомогою якої із одного чи декількох суджень виводиться нове судження. Любий умовивід складається з засновків і висновка, перехід – вивод (логічне – слідування).
В залежності від строгості правил виводу розрізняють два види умовиводів: демонстративні (необхідні) – наслідок необхідно слідує із засновків і недемонстративні (правдоподібні) – лише ймовірне слідування висновку із засновків. По направленості логічного слідування, тобто по характеру зв’язку між знанням різної ступені загальності, яке виражене в засновках і висновку. З цієї точки зору розрізняють три види умовиводів: дедуктивні (від загального знання до часткового), індуктивні (від часткового до загального) і умовиводи по аналогії (від часткового до часткового).
Розглянемо дедуктивний умовивод.
Дедуктивним (лат. deductio – “виведення”) є умовивод, в якому перехід від загального до часткового є логічно необхідним. В залежності від кількості засновків дедуктивні виводи з категоричних суджень діляться на безпосередні – висновок виводиться з одного засновку, і опосередковані – з двох засновків.
До побудованих за допомогою переробки безпосередніх умовиводів відносяться: 1) перетворення, 2) обернення; 3) протиставлення предикату; 4) умовивод за логічним квадратом.
1) Перетворення – переробка судження в судження, протилежне по якості з предикатом, який протирічить предикату вихідного судження (~~р≡р). А перетворюється в Е ; Е в А ;
І в О ; О в І .
2) Обернення – перетворення судження в результаті якого суб’єкт вихідного судження стає предикатом, а предикат – S висновку. Підкоряється правилу: термін, не розподілений в засновку, не може бути розподілений в висновку. Простим чи чистим є обернення без зміни кількості судження – це обернення судження, в яких обидва терміни розподілені чи нерозподілені. Якщо ж вихідного судження нерозподілений, то він залишиться таким в висновку, де він стане S, тому його обсяг обмежиться. Це обернення з обмеженням.
А обертається в І, тобто з обмеженням (S+) – (P-) (S-) – (P-).
І в І
Е в Е
Частковоствердне виділяючи судження (Р+) перетворюється в загально ствердне
О – не підлягає оберненню.
3) Протиставлення предикату – це перетворення судження, в результаті якого S стає поняття, яке протирічить Р, а Р – S вихідного судження.
А перетворюється в Е
Е в І
І за допомогою протиставлення не перетворюється.
О в І
4) Умовиводи за “логічним квадратом”. Виводи встановлюють слідування істинності чи хибності одного судження з істинністю чи хибністю іншого.
Розглянемо ці виводи:
Відношення протиріччя (котрадикторності) (А-О, Е-І) схеми: A~O, ~AO, E~I, ~EI.
Відношення протилежності (контрарності) (А-Е) схеми: A~E, E~A, ~A(Ev~E), ~E(Av~A).
Відношення часткової сумісності (субконтрарності) (І-О) схеми по яким будуються виводи: ~IO, ~OI, I(Ov~O), O(Iv~I).
Відношення підпорядкування (А-І, Е-О) схеми: AI, EO, EO, I(Av~A), O(Ev~E), ~I~A, ~O~E, ~A(Iv~I), E(Ov~O).
3. Широко розповсюдженим видом опосередкованих умовиводів є простий категоричний силогізм – який містить три категоричних судження – два засновки і висновок.
Поняття, які входять в силогізм є термінами силогізму. Розрізняють три терміни силогізму: менший, більший і середній.
Менший термін – це поняття, яке у висновку стає суб’єктом; більшим терміном є поняття, яке у висновку стає предикатом. Це крайні терміни і відповідно позначаються: менший – S, більший – Р. S – міститься у меншому засновку, Р – у більшому. Середній термін це поняття, яке входить в засновки, але відсутнє у висновку – позначається латинською буквою М (medin).
Звинувачений (М) має право на захист (Р).
Гусєв (S) – звинувачений (М).
Гусєв (S) має право на захист (Р).
Отже, простий категоричний силогізм – це умовивід про відношення двох крайніх термінів на основі їх відношення до середнього терміну. Логічний перехід від засновків до висновку в категоричному силогізмі базується на аксіомі силогізму: все, що стверджується чи заперечується відносно всіх предметів усякого класу, стверджується або заперечується відносно кожного предмету і будь-якої частини предметів цього класу.
Загальні правила категоричного силогізму:
І. Правила термінів:
(М-) – Р
S – (M -)
М – (Р+)
М – (S-)
(S-) – (P+).
ІІ. Правила засновків:
М – Р
S – M
--//-- .
(М+) – (Р-)
(S-) – (М-)
(S-) – (P-).
Фігури категоричного силогізму:
Фігури силогізму – це його різновиди, які розрізняються місцем середнього терміна в засновках.
Модусом простого категоричного силогізму є різновиди силогізмів, які різняться кількістю і якістю засновків.
1 фігура: ААА, ЕАЕ, АІІ, ЕІО.
2 фігура: ЕАЕ, АЕЕ, ЕІО, АОО,
3 фігура: ААІ, ІАІ, АІІ, ЕАО, ОАО, ЕІО.
4 фігура: ААІ, АЕЕ, ІАІ, ЕАО, ЕІО.
Правила 1-ї фігури: 1. Більший засновок – загальне судження.
2. Менший – ствердне судження.
1 фігура – найбільш типова форма дедуктивного умовиводу.
Правила 2-ї фігури: 1. Більший засновок – загальне судження.
2. Один із засновків – заперечне судження.
Правила 3-ї фігури: 1. Менший – ствердне.
2. Висновок – часткове судження.
Правила 4-ї фігури не розглядаються, бо вони не ти пічні для мислення – звича йно це виводи 1 фігури.
Умовиводи з суджень з відношеннями:
Умовиводи, засновки і висновки яких є судженнями з відношеннями, є умовиводи з відношеннями.
Петро – брат Івана.
Іван – брат Сергія.
Петро – брат Сергія.
Логічною основою умовиводів з суджень з відношеннями є властивості відношень, найважливіші з них: 1) симетричне (спів мірне) відношення між х↔у, і у↔х; хRy ↔ yRx;
2) рефлексивне (відображення) – це відношення рівності і одночасності (а=в, то а=а, в=в) xRy yRx.
3) транзитивне (перехід) – ця якщо воно має місце між х і z, тоді, коли воно має місце між х і у та між у і z – це відношення рівності (а=в, в=с, то а=с) і одночасності (х коли у і у коли z, то х коли подія z), відношення “більше-менше” (а менше в, в – с, отже а – с) і ін. (пізніше, більше і т.д.). (xRy Λ yRz) xRz.
Лекція: Умовиводи ІІ
1. Умовиводи будуються не тільки з простих, але і зі складних суджень. Широко використовуються умовиводи, засновки яких є умовними чи роз’єднувальними судженнями, які виступають в різних відношеннях один з одним: з категоричними судженнями. Особливість цих умовиводів у тому, що виведення висновку із засновків визначається не відношеннями між термінами, як в категоричному силогізмі, а характером логічного зв’язку між судженнями. До них відносяться:
Чисто умовний умовивід – обидва засновки є умовними судженнями:
Якщо а, то в. В символічному записі:
Якщо в, то с. (рq ) Λ (qr)
Якщо а, то с. pr
Висновок в ньому будується на правилі: наслідок наслідку є наслідок підстави (основания).
Умовно-категоричний умовивід – умовивід, в якому один із засновків – умовне, а другий засновок і висновок – категоричні судження.
Якщо а, то в. В символічному записі:
a (рq ), р
в q
(1) Цей умовивід дістав назву стверджуючого модусу (modus ponens – МР). Міркування направлене від ствердження основи до ствердження наслідку.
Modus ponens дає достовірні висновки.
(2) Інший модус, який дає достовірний висновок, є заперечуючий модус (modus tollens – МТ), в якому засновок виражений категоричним судженням, заперечує істинність наслідку, а висновок заперчує істинність основи (підстави). Міркування направлено від заперечення наслідку до заперечення основи.
Якщо А, то В. В символічному записі:
В (рq ), ~q
Ā ~p
(3) Міркування направлено від заперечення основи до заперечення наслідку.
Якщо А, то В. В символічному записі:
не-А рq, ~р
не-В ~q
(4) Міркування направлено від ствердження наслідку до ствердження основи:
Якщо а, то в. В символічному записі:
в рq, q
а p
Два перших модуси виражають закони логіки і є правильними модусами умовно-категоричного судження. Вони підлягають правилу: ствердження основи веде до ствердження наслідку і заперечення наслідку – до заперечення основи. Два інших модуси (3) і (4) достовірних висновків не дають і є неправильними модусами. Вони підкоряються правилу: заперечення основи не веде з необхідністю до заперечення наслідку і ствердження наслідку не веде з необхідністю до ствердження основи.
(рq ) Λ р)q – табл. істинності (приклад), ствердний модус.
Можливо і так: і основа і наслідок більшого засновку є як ствердними, так і заперечу вальними судженнями: р~q, p .
~q
Виділяючи умовні судження достовірні у всіх чотирьох модусах.
Розділово-категоричний – умовивід, в якому один із засновків – розділовий, а інший засновок і висновок – категоричні судження. Розрізняють два модуси розділово-категоричного умовиводу: 1) Ствердно-заперечний (modus ponento tollens – MPT) – менший засновок - категоричне судження – стверджує один член V, висновок – також категоричне судження – заперечує інший її член:
а або в В символічному записі:
а р v q, р
не-в ~q
Висновок достовірний, якщо виконується правило: більший засновок повинен бути виключаючим розділовим судженням, чи судження строгої V-ї.
2) Заперечно-ствердний модус (modus tollendo ponens – MNP) – менший засновок заперечує один диз’юнкт, висновок стверджує інший:
а чи в В символічному записі:
не а <р v q>, ~р < ... > - закрит. v.
в q
Висновок достовірний, якщо виконане правило: в більшому засновку повинні бути перераховані всі можливі судження – диз’юнктивне, тобто, велкий засновок повинен бути повним (закритим) диз’юнктивним висловлюванням.
Умовно-розділювальний – умовивід, в якому один засновок умовне, а інший розділове судження (чи лемматичний умовивід lemma – припущення). Розділове судження може містити дві і більше альтернативи, тому тематичний умовивід ділиться на дилеми, трилеми і т.д.
Розглянемо на прикладі дилеми структуру і види умовно-розділового умовиводу.
Розрізняють дві дилеми: конструктивну і деструктивну.
В простій конструктивній дилемі умовний засновок містить дві основи з яких витікає один і той же наслідок. Міркування направлене від ствердження істинності основи до ствердження істинності наслідку.
Якщо а , то с; якщо в, то с В символічному записі:
а або в (pr) Λ (qr), p v q
с r
В складній конструктивній дилемі умовний засновок містить дві основи і два наслідки. Міркування направлене від ствердження істинності основ до ствердження істинності наслідків: а чи с .
в чи d
В простій деструктивній дилемі умовний засновок містить одну основу, з якого випливає два можливих наслідки. Міркування направлене: від заперечення істинності наслідків до заперечення істинності основ.
Якщо а , то с; якщо a, то с В символічному записі:
не-в чи не-с (pr) Λ (рr), ~q v ~r
не-а ~p
В складній деструктивній дилемі умовний засновок містить дві основи і два наслідки. Міркування направлене від заперечення істинності наслідків до заперечення істинності основи:
Якщо а , то в; якщо с, то d В символічному записі:
не-в чи не-d (pq) Λ (rs), ~q v ~s
не-а або не-с ~p v ~r
ІІ. Видами дедуктивних умовиводів також є такі силогізми:
1) Скорочений (ентимема) – силогізм з пропущеним засновком чи висновком. Пропущені частини силогізму маються на увазі (подразумеваются). Розрізняють три види ентимем: з пропущеним більшим, меншим засновком і з пропущеним висновком. Форму ентимем приймають також умовиводи з умовними і розділовими судженнями в засновках.
Умовно-категоричні – з пропущеним більшим засновком.
Розділово-категоричні – з пропущеним більшим засновком.
Розділово-категоричні – з пропущеним висновком.
2) Складний силогізм чи полісилогізм – це поєднання простих силогізмів, в яких висновок передуючого силогізму (просилогізма) стає засновком наступного (епісилогізма). Розрізняють прогресивний і регресивний полісилогізми:
В прогресивному висновок просилогізма стає більшим засновком епісилогізма.
АB А – посадовий злочин
CA В – суспільно небезпечне діяння.
CB С – халатність (злочин)
DC D – наказуємо (дача хабаря).
DB.
В регресивному полісилогізмі висновок просилогізма стає меншим засновком епісилогізма:
А – В
С – В
В – В
С - В
В процесі міркування полі силогізм приймає звичайно скорочену форму, деякі з його засновків опускаються. Полісилогізм, в якому пропущені деякі засновки, називається соритом (грец. “купа” (купа засновків) є два види соритів:
А – В
С – В
D - B
2) Регресивний полісилогізм з пропущеними меншими засновками. До складноскорочених належить також епіхейрема. Епіхейрема – це складноскорочений силогізм, обидва засновки якого є ентимемами.
C – A
A – D
B – D
C - D
ІІІ. Правило логіки висловлювань:
ВЕ УЕ
(введення кон’юнкції)
П.Експ. (УК).
Лекція: Індуктивні умовиводи
План
1. Логічний перехід від знання про окремі явища до узагальненого знання здійснюється в формі індуктивного умовиводу, чи індукції (лат. industio - наведення).
Індуктивним є умовивід, в якому на основі належності ознаки окремим предметам чи частинам деякого класу роблять висновок про його належність класу в цілому.
Основна функція індуктивних виводів в процесі пізнання – генералізація, тобто отримання загальних суджень. В залежності від повноти і закінченості емпіричного дослідження розрізняють два види індуктивних умовиводів: повну і неповну індукцію.
Повна – умовивід, в якому на основі належності кожному елементу чи частині класу певної ознаки робиться висновок про приналежність ознаки класу в цілому.
Повна індукція
S2 ---//---- P
…………….
Sn ---//--- P
Всім предметам класу К притаманна ознака Р.
Ці умовиводи мають справу лише із закритими класами (число дозволяє реєструвати). Тут повнота інформації про кожний елемент класу є достатньою підставою для логічного перенесення ознаки на весь клас. Тому вивод в умовиводі повної індукції носить демонстративний характер. Істинність засновків – істинність висновку.
2. Неповна індукція – це умовивід, в якому на основі належності ознаки деяким елементам чи частинам класу робиться висновок про її належність класу в цілому (поля пшениці).
Неповна індукція
S2 ---//---- P
…………….
Sn ---//--- P
Класу К, напевно, притаманна ознака Р.
Індуктивний перехід від деяких до всіх не претендує на логічну необхідність, бо повторюваність ознаки може бути результатом спів падання. Їй характерно ослаблене логічне слідування - істинні засновки забезпечують отримання не достовірного, а лише проблематичного висновку. Отже, неповна індукція належить до правдоподібного (недемонстративного) умовиводу.
По способу відбору вихідного матеріалу розрізняють два види неповної індукції: 1) індукцію шляхом перерахування, яка отримала назву популярної індукції і 2) індукцію шляхом відбору – наукова індукція.
Популярна індукція – це узагальнення, якому шляхом перерахування встановлюють належність ознаки деяким предметам чи частинам класу і на цій онові проблематично робиться висновок про її належність всьому класу. Деколи її називають індукцією через просте перерахування. Обґрунтованість висновків в популярній індукції визначається головним чином кількісним показником: співвідношення досліджуваної множини предметів (взірця чи вибірки) до всього класу (популяції). (фактичні презумпції – досвідне узагальнення – тікання від суду, погроза вбивства, вкрадені речі (речовий доказ) свідчать про злочин і т.д.). Вона має евристичну функцію, наводить на думку що повторюваність невипадкова. Але в умовах, коли досліджуються лише деякі представники класу, є можливість помилкового узагальнення. Обов’язково враховувати – суперечливі випадки, суб’єктивізм відбору версій, які говорять лише за, і ті, що проти відкидають, з множини фактів вибирають лише ті, які є переважаючими в досвіді і будують на їх основі поспішне узагальнення (суєвірря).
3. Наукова індукція – це умовивід, в якому узагальнення будується шляхом відбору необхідних і виключення випадкових обставин. В залежності від способів дослідження розрізняють: (1) індукцію методом відбору (селекції) і (2) індукцію методом виключення (елімінації).
(1) Індукція методом відбору, чи селективна індукція – це умовивід, в якому висновок про приналежність ознаки класу (множині) базується на знанні про взірець (підмножині), отриманий методичним відбором явищ з різних частин цього класу. Тут треба врахувати показовість (представительность) чи репрезентативність взірця і різноманітність умов спостереження.
(2) Індукція методом виключення, чи елімінативна індукція – це система умовиводів, в якій висновки про причину досліджуваних явищ будуються шляхом виявлення обставин, які підтверджують, і виключення обставин, не задовольняючих властивостям причинного зв’язку. Причинним є таки зв’язок між двома явищами, коли одно з них – причина – передує і викликає інше – дію. Важливими властивостями причинного зв’язку, які визначають методичність елімінативної індукції, виступають такі її характеристики, як: 1) все загальність, 2) послідовність в часі, 3) необхідність, 4) однозначність.
(1) Все загальність причинного зв’язку означає, що в світі не існує безпричинних явищ (крім самого світу);
(2) Послідовність в часі – причина – завжди передує дії (зразу – довго) (poct hoc, ergo propter hoc – після нього значить по причині цього) /Блискавка – грім – одне явище/.
(3) Причинний зв’язок відрізняється властивістю необхідності (дія необхідно є, коли є її причина), однозначний характер причинного зв’язку проявляється в тому, що кожна конкретна причина завжди викликає пенву, відповідну їй дію.
Сучасна логіка описує п’ять методів встановлення причинних зв’язків: (1) метод подібності, (2) метод різниці (відмінності); (3) сполучний метод подібності і сумісності, (4) метод супутніх змін; (5) метод залишку (остач.). Розглянемо логічну структуру цих методів.
(1) По методу подібності порівнюють декілька випадків, в кожному з яких досліджуване явища настає і при цьому всі випадки схожі в одному і відмінні у всіх інших обставинах. Тобто, цей метод знаходження спільного в різному.
Напевно, В є причиною d.
Цей метод вимагає загального знання про можливі причини досліджуваного явища, повинні бути виключені всі обставини, які не є необхідними, виділяють подібне і те, що повторюється. Для достовірного висновку повинні бути відомі всі передуючі обставини, які є закритою множиною причин, і відомо, що кожна обставина не вступає у взаємодію з іншою.
Modus tol. Pon.
AvBvCvFvM
┐A┐B┐C┐F┐M
Може, В
(2) Метод відмінності – порівнюють два випадки, в одному з яких досліджуване явище настає, а в іншому не настає; при цьому другий випадок відрізняється від першого лише однією обставиною, а всі інші є схожі. Цей метод знаходження різного в схожому.
Може, М є причиною d.
(3) Поєднаний метод – є комбінацією двох перших методів, де виявляють як схоже в різному, так і різне в схожому.
Може, В є причиною d.
(4) Метод застосовується при аналізі випадків, в яких має місце видозмінення одного з передуючих обставин, яке супроводжується видозміною досліджуваної дії. АВС – обставини передуючі, 1, 2, ..., n - степінь зміни цих обставин, то :
Може, C є причиною d. |
Метод залишку 1) АВС викликаэ хуz 2) A --//-- x 3) B --//-- y C --//--z |
1) ABC --//-- abcd 2) A --//-- a 3) B --//-- b 4) C --//-- c Напевно, існує деякий Х, який викликає d |
Особливим видом умовиводів неповної індукції є статистичне узагальнення – умовивід неповної індукції, в якому встановлена в засновках кількісна інформація про частоту певної ознаки в досліджуваній групі (взірці) переносить в висновку на всю множину явищ такого роду (хуліганство – частота – в стані оп’яніння 95% і 5% , отже, частота хуліганств на 95% із-за алкоголю).
Лекція: Взаємозв’язок індукції та дедукції
в процесі міркування (ІV).
План
1. Індукція і дедукція у процесі пізнання знаходяться в нерозривному зв’язку і єдності. Взаємозв’язок індукції і дедукції забезпечує логічну можливість міркування при застосуванні методів, а точність вираженого в засновках знання визначає степінь обґрунтованості отримуваних висновків. Наприклад, розглянуті методи встановлення причинних зв’язків по своїй логічній структурі відносяться до складних міркувань, в яких власне індуктивні узагальнення будуються за допомогою дедуктивних виводів. Спираючись на властивості причинного зв’язку, дедукція виступає логічним засобом елімінації (виключення) випадкових обставин, тим самим вола логічно коректує: направляє індуктивне узагальнення. Щоб здобути дедуктивний висновок, треба мати загальне положення, більший засновок. Але загальне положення не дане нам у готовому вигляді, воно є результатом дослідження і узагальнення одиничних фактів. Але і під час дослідження і потім узагальнення часткових фактів ми обов’язково орієнтуємось на те чи інше загальне положення, яке є наслідком дедукції.
Але в конкретному пізнавальному акті індукція і дедукція можуть по черзі виступати на передній план. Так, слідчий злочину, має відтворити на їх основі злочинну подію в цілому досить часто у формі індукції. Але, висловивши індуктивним шляхом припущення про те, що таке ця злочинна подія, коли вона вчинена, він неминуче користується потім дедукцією: з цього припущення виводить наслідки (інші факти – ознаки злочинної події), котрі перевіряють потім на практиці.
Теж саме ми спостерігаємо, коли порівнюємо два такі моменти, як висування версії і юридичну оцінку учиненого. Висування версії відбувається досить часто у формі індукції. Кримінально-правова класифікація учиненого – це процес дедуктивний і не може відбуватися у формі індукції. Але й тут індукція і дедукція невільні одне від одної, не відірвані, а взаємопов’язані.
М Р Р М М Р Р М
S M S M M S M P