У вас вопросы?
У нас ответы:) SamZan.net

Распределенная обработка информации

Работа добавлена на сайт samzan.net: 2016-03-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 6.4.2025

Распределенная обработка информации

Предпосылки появления распределенной технологии обработки информации

Появление малых ЭВМ, микроЭВМ и, наконец, персональных компьютеров потребовало нового подхода к организации систем обработки данных, к созданию новых информационных технологий. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных (рис. 1).

Рис. 1. Система распределенной обработки данных

Распределенная обработка данных — обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.

Распределенная обработка данных заключается в том, что пользователь и его прикладные программы (приложения) получают возможность работать со средствами, расположенными в рассредоточенных узлах сетевой системы. Системы, имеющие программы распределенной среды, включают компьютеры, называемые серверами и клиентами. Каждый сервер имеет свою группу клиентов. Программное обеспечение сетевой среды обслуживается и поддерживается сетевыми операционными системами. В роли сервера выступает главный, более мощный компьютер.

Для реализации распределенной обработки данных были созданы многомашинные ассоциации, структура которых разрабатывается по одному из следующих направлений:

  •  многомашинные вычислительные комплексы (МВК);
  •  компьютерные (вычислительные) сети.

Многомашинный вычислительный комплекс — группа установленных вычислительных машин, объединенных с помощью специальных средств сопряжения и выполняющих совместно единый информационно-вычислительный процесс.

Процесс  некоторая последовательность действий для решения задачи, определяемая программой.

Многомашинные вычислительные комплексы могут быть:

  •  локальными при условии установки компьютеров в одном помещении, не требующих для взаимосвязи специального оборудования и каналов связи;
  •  дистанционными, если некоторые компьютеры комплекса установлены на значительном расстоянии от центральной ЭВМ и для передачи данных используются телефонные каналы связи.

Пример. К мэйнфрейму (большой ЭВМ), обеспечивающему режим пакетной обработки информации, подключена с помощью устройства сопряжения мини-ЭВМ. Обе ЭВМ находятся в одном машинном зале. Мини-ЭВМ обеспечивает подготовку и предварительную обработку данных, которые в дальнейшем используются при решении сложных задач на мэйнфрейме. Это локальный многомашинный комплекс.

Пример. Три ЭВМ объединены в комплекс для распределения заданий, поступающих на обработку. Одна из них выполняет диспетчерскую функцию и распределяет задания в зависимости от занятости одной из двух других обрабатывающих ЭВМ. Это локальный многомашинный комплекс.

Пример. ЭВМ, осуществляющая сбор данных по некоторому региону, выполняет их предварительную обработку и передает для дальнейшего использования на центральную ЭВМ по телефонному каналу связи. Это дистанционный многомашинный комплекс.

Компьютерная (вычислительная) сеть — совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных.

Структура компьютерной сети

Компьютерные сети являются высшей формой многомашинных ассоциаций. Выделим основные отличия компьютерной сети от многомашинного вычислительного комплекса.

Первое отличие — размерность. В состав многомашинного вычислительного комплекса входят обычно две, максимум три ЭВМ, расположенные преимущественно в одном помещении. Вычислительная сеть может состоять из десятков и даже сотен ЭВМ, расположенных на расстоянии друг от друга от нескольких метров до десятков, сотен и даже тысяч километров.

Второе отличие — разделение функций между ЭВМ. Если в многомашинном вычислительном комплексе функции обработки данных, передачи данных и управления системой могут быть реализованы в одной ЭВМ, то в вычислительных сетях эти функции распределены между различными ЭВМ.

Третье отличие — необходимость решения в сети задачи маршрутизации сообщений. Сообщение от одной ЭВМ к другой в сети может быть передано по различным маршрутам в зависимости от состояния каналов связи, соединяющих ЭВМ друг с другом.

Информационные системы, использующие возможности компьютерных сетей, обеспечивают выполнение следующих задач [12]:

  •  хранение и обработка данных;
  •  организация доступа пользователей к данным;
  •  передача данных и результатов обработки данных пользователям.

Эффективность решения перечисленных задач обеспечивается:

  •  дистанционным доступом пользователей к аппаратным, программным и информационным ресурсам;
  •  высокой надежностью системы;
  •  возможностью оперативного перераспределения нагрузки;
  •  специализацией отдельных узлов сети для решения определенного класса задач;
  •  решением сложных задач совместными усилиями нескольких узлов сети;
  •  возможностью осуществления оперативного контроля всех узлов сети.

Основные показатели качества компьютерных сетей включают следующие элементы: полнота выполняемых функций, производительность, пропускная способность, надежность сети, безопасность информации, прозрачность сети, масштабируемость, интегрируемость, универсальность сети.

Объединение в один комплекс средств вычислительной техники, аппаратуры связи и каналов передачи данных предъявляет специфические требования со стороны каждого элемента компьютерной сети, а также требует формирования специальной терминологии.

Абоненты сети — объекты, генерирующие или потребляющие информацию в сети.

Абонентами сети могут быть отдельные ЭВМ, комплексы ЭВМ, терминалы, промышленные роботы, станки с числовым программным управлением и т.д. Любой абонент сети подключается к станции.

Станция — аппаратура, которая выполняет функции, связанные с приемом и передачей информации.

Совокупность абонента и станции принято называть абонентской системой. Для организации взаимодействия абонентов необходима физическая передающая среда.

Физическая передающая среда — линии связи или пространство, в котором распространяются электрические сигналы, и аппаратура передачи данных.

На базе физической передающей среды строится коммуникационная сеть, которая обеспечивает передачу информации между абонентскими системами.

Такой подход позволяет рассматривать любую компьютерную сеть как совокупность абонентских систем и коммуникационной сети. Обобщенная структура компьютерной сети приведена на рис.2.

Рис. 2. Обобщенная структура компьютерной сети

Классификация вычислительных сетей

В зависимости от территориального расположения абонентских систем компьютерные сети можно разделить на три основных класса:

  •  глобальные сети (WAN — Wide Area Network);
  •  региональные сети (MAN — Metropolitan Area Network);
  •  локальные сети (LAN — Local Area Network).

Глобальная компьютерная сеть объединяет абонентов, расположенных в различных странах, на различных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи. Глобальные компьютерные сети позволят решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам.

Региональная компьютерная сеть связывает абонентов, расположенных на значительном расстоянии друг от друга. Она может включать абонентов внутри большого города, экономического региона, отдельной страны. Обычно, расстояние между абонентами региональной компьютерной сети составляет десятки — сотни километров.

Локальная компьютерная сеть объединяет абонентов, расположенных в пределах небольшой территории. В настоящее время не существует четких ограничений на территориальный разброс абонентов локальной компьютерной сети. Обычно такая сеть привязана к конкретному месту. К классу локальных компьютерных сетей относятся сети отдельных предприятий, фирм, банков, офисов и т.д. Протяженность такой сети можно ограничить пределами 2 - 2,5 км.

Объединение глобальных, региональных и локальных компьютерных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целесообразные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. На рис. 3 приведена одна из возможных иерархий компьютерных сетей. Локальные компьютерные сети могут входить как компоненты в состав региональной сети, региональные сети — объединяться в составе глобальной сети и, наконец, глобальные сети могут также образовывать сложные структуры.

Рис. 3. Иерархия компьютерных сетей

Пример. Компьютерная сеть Internet является наиболее популярной глобальной сетью. В ее состав входит множество свободно соединенных сетей. Внутри каждой сети, входящей в Internet, существуют конкретная структура связи и определенная дисциплина управления. Внутри Internet структура и методы соединений между различными сетями для конкретного пользователя не имеют никакого значения.

Персональные компьютеры, ставшие в настоящее время непременным элементом любой системы управления, привели к буму в области создания локальных вычислительных сетей. Это, в свою очередь, вызвало необходимость в разработке новых информационных технологий.

Практика применения персональных компьютеров в различных отраслях науки, техники и производства показала, что наибольшую эффективность от внедрения вычислительной техники обеспечивают не отдельные автономные ПК, а локальные вычислительные сети.

Топологии компьютерных сетей

Топология представляет физическое расположение сетевых компонентов (компьютеров, кабелей и др.). Выбором топологии определяется состав сетевого оборудования, возможности расширения сети, способ управления сетью.

Существуют следующие топологии компьютерных сетей [12]:

  •  шинные (линейные, bus);
  •  кольцевые (петлевые, ring);
  •  радиальные (звездообразные, star);
  •  смешанные (гибридные).

Практически все сети строятся на основе трех базовых топологий: топологии «шина», «звезда» и «кольцо». Базовые топологии достаточно просты, однако на практике часто встречаются довольно сложные комбинации, сочетающие свойства и характеристики нескольких топологий.

В топологии «шина», или «линейная шина» (linear bus), используется один кабель, именуемый магистралью или сегментом, к которому подключены все компьютеры сети (рис. 4). Эта топология является наиболее простой и распространенной реализацией сети.

Так как данные в сеть передаются лить одним компьютером, производительность сети зависит от количества компьютеров, подключенных к шине. Чем больше компьютеров, тем медленнее сеть.

Зависимость пропускной способности сети от количества компьютеров в ней не является прямой, так как, кроме числа компьютеров, на быстродействие сети влияет множество других факторов: тип аппаратного обеспечения, частота передачи данных, тип сетевых приложений, тип сетевого кабеля, расстояние между компьютерами в сети.

Рис. 4. Сеть с шинной топологией

«Шина» является пассивной топологией — компьютеры только «слушают» передаваемые по сети данные, но не передают их от отправителя к получателю. Выход из строя какого-либо компьютера не оказывает влияния на работу всей сети. В активных топологиях компьютеры регенерируют сигналы с последующей передачей их по сети.

Основой последовательной сети с радиальной топологией (топологией «звезда») является специальный компьютер — сервер, к которому подключаются рабочие станции, каждая по своей линии связи. Вся информация передается через сервер, в задачи которого входит ретрансляция, переключение и маршрутизация информационных потоков в сети (рис. 5). Такая сеть является аналогом системы телеобработки, в которой все абонентские пункты содержат в своем составе компьютер.

Недостатками такой сети являются: высокие требования к вычислительным ресурсам центральной аппаратуры, потеря работоспособности сети при отказе центральной аппаратуры, большая протяженность линий связи, отсутствие гибкости в выборе пути передачи информации. Если выйдет из строя рабочая станция (или кабель, соединяющий ее с концентратором), то лишь эта станция не сможет передавать или принимать данные по сети. На остальные рабочие станции в сети этот сбой не повлияет.

При использовании топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо (рис. 6). Сигналы передаются в одном направлении и проходят через каждый компьютер. Каждый компьютер является повторителем, усиливая сигналы и передавая их следующему компьютеру. Если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Рис. 5. Сеть с топологией «звезда»

Способ передачи данных по кольцевой сети называется передачей маркера. Маркер последовательно, от компьютера к компьютеру, передается до тех пор, пока его не получит тот компьютер, который должен передать данные. Передающий компьютер добавляет к маркеру данные и адрес получателя и отправляет его дальше по кольцу.

Данные передаются через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя. Далее принимающий компьютер посылает передающему сообщение — подтверждение о приеме данных. Получив сообщение — подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

Рис. 6. Сеть с кольцевой топологией

Топология полносвязной вычислительной сети представлена на рис. 7. В структуре такой сети можно выделить коммуникационную и абонентскую подсети. Коммуникационная подсеть — это ядро вычислительной сети, которое связывает рабочие станции и серверы сети друг с другом. Звенья абонентской подсети (серверы, рабочие станции) подключаются к узлам коммутации абонентскими каналами связи.

Рис. 7. Полносвязная вычислительная сеть. УК — устройство коммутации'

Техническое обеспечение компьютерных сетей

Техническое обеспечение компьютерных сетей включает следующие компоненты [52]:

  •  серверы, рабочие станции;
  •  каналы передачи данных;
  •  интерфейсные платы и устройства преобразования сигналов;
  •  маршрутизаторы и коммутационное оборудование.

Рабочая станция — компьютер, через который пользователь получает доступ к ресурсам сети. Часто рабочую станцию, так же как и пользователя сети, называют клиентом сети.

Сервер — это предназначенный для обработки запросов от всех рабочих станций сети многопользовательский компьютер, предоставляющий этим станциям доступ к общим системным ресурсам. Сервер работает под управлением сетевой операционной системы. Наиболее

важным требованием, которое предъявляется к серверу, является высокая производительность и надежность работы.

Сервер приложений ~ это работающий в сети компьютер большой мощности, имеющий программное обеспечение (приложения), с которым могут работать клиенты сети.

Специализированные серверы применяют для создания и управления базами данных и архивами данных, поддержки многоадресной факсимильной связи и электронной почты, управления многопользовательскими терминалами (принтеры, плоттеры) и т.д. Можно привести следующие примеры специализированных серверов: файл-сервер, факс-сервер, почтовый сервер, сервер печати, серверы-шлюзы.

Файл-сервер. Основное назначение — работа с базами данных, сервер имеет объемные дисковые запоминающие устройства, часто на отказоустойчивых дисковых массивах RAID емкостью до терабайта.

Факс-сервер. Это выделенная рабочая станция для организации многоадресной факсимильной связи, с несколькими факс-модемными платами. Поддерживает защиту информации от несанкционированного доступа в процессе передачи, обладает системой хранения электронных факсов.

Почтовый сервер. Это выделенная рабочая станция для организации электронной почты, с электронными почтовыми ящиками.

Сервер печати предназначен для эффективного использования системных принтеров.

Серверы-шлюзы в Интернете играют роль маршрутизаторов. Практически всегда совмещают функции почтового сервера и сетевого брандмауэра, обеспечивающего безопасную работу в сети.

Хост-компьютерами называют такие компьютеры, которые имеют непосредственный доступ в глобальную сеть.

Узлы коммутации предназначены для приема, анализа и отправки данных по выбранному направлению. В сетях с маршрутизацией узлы коммутации осуществляют выбор маршрута.

Устройства коммутации являются наиболее важным оборудованием систем передачи информации в вычислительных сетях. Применение таких устройств значительно сокращает протяженность каналов связи в сетях с несколькими взаимодействующими абонентами.

Узлы коммутации могут осуществлять один из трех возможных видов коммутации при передаче данных: коммутацию каналов, коммутацию сообщений, коммутацию пакетов.

При коммутации каналов используются сообщения или пакеты, которые часто называют дейтаграммами.

Дейтаграмма — это пакет данных (сообщение), который содержит в своем заголовке информацию, необходимую для передачи его от источника к получателю независимо от всех предыдущих и последующих сообщений [12].

Метод коммутации применяется чаще всего при дуплексной передаче аудиоинформации (телефонная связь).

При коммутации сообщений данные передаются в виде дискретных порций разной длины (сообщений). Между источником и адресатом сквозной физический канал не устанавливается и ресурсы коммуникационной системы предварительно не распределяются. Отправитель только указывает адрес получателя. Узлы коммутации анализируют адрес, текущую занятость каналов и передают сообщение по доступному в данный момент времени каналу на ближайший узел сети в сторону получателя. В узлах коммутации имеются коммутаторы, управляемые связным процессором, которые также обеспечивают временное хранение данных в буферной памяти, контроль достоверности информации и исправление ошибок, преобразование форматов данных, формирование сигналов подтверждения получения сообщения. Применяется этот вид коммутации в электронной почте, телеконференциях [12J.

Метод коммутации пакетов был разработан в современных системах для повышения оперативности, надежности передачи и уменьшения емкости запоминающих устройств узлов коммутации. Длинные сообщения разделяются на несколько более коротких, которые называют пакетами. Данный вид коммутации обеспечивает наибольшую пропускную способность сети и наименьшую задержку при передаче данных. Недостатком коммутации пакетов является сложность его применения для систем, работающих в интерактивном режиме и в режиме реального времени [12].

В узлах коммутации применяются также концентраторы и удаленные мультиплексоры. Их назначение заключается в объединении и уплотнении входных потоков данных, поступающих от абонентов по низкоскоростным каналам связи, в один или несколько более скоростных каналов связи, и наоборот.

Концентраторы (хабы) используются для коммутации каналов в компьютерных сетях. Основные функции концентратора заключаются в повторении сигналов и концентрировании в себе функций объединения компьютеров в единую сеть.

Модем — устройство прямого (модулятор) и обратного (демодулятор) преобразования сигналов в вид, принятый для использования в определенном канале связи.

Модемы бывают разные, но в первую очередь их можно разделить на аналоговые и цифровые.

Аналоговые модемы самые распространенные и предназначены для выполнения следующих функций [12]:

  •  при передаче для преобразования широкополосных импульсов(цифрового кода) в узкополосные аналоговые сигналы;
  •  при приеме для фильтрации принятого сигнала от помех и детектирования, то есть обратного преобразования узкополосного аналогового сигнала в цифровой код.

Преобразование, выполняемое при передаче данных, обычно связано с их модуляцией.

Модуляция — это изменение какого-либо параметра сигнала в канале связи (модулируемого сигнала) в соответствии с текущими значениями передаваемых данных (модулирующего сигнала) [12].

Демодуляция — это обратное преобразование модулированного сигнала в модулирующий сигнал.

Протокол передачи данных представляет собой совокупность правил, определяющих формат данных и процедуры их передачи в канале связи. В протоколе подробно указывается, как представить данные, какой способ модуляции данных избрать с целью ускорения и защиты их передачи, как выполнить соединение с каналом и обеспечить достоверность передачи данных.

Модемы для цифровых каналов связи более правильно называть сетевыми адаптерами, так как классическая модуляция-демодуляция сигналов в них не осуществляется — входной и выходной сигналы такого модема являются импульсными.

Вместо модема в локальных сетях также используются сетевые адаптеры (сетевые карты), выполненные в виде плат, устанавливаемых в разъем материнской платы.

Сетевые адаптеры можно подразделить на две группы: адаптеры для клиентских компьютеров, адаптеры для серверов [12].

В адаптерах для клиентских компьютеров основная часть работы по приему и передаче сообщений перекладывается на программное обеспечение. Такой адаптер дешевле и проще, но он достаточно сильно загружает центральный процессор компьютера. Адаптеры для серверов используют в своей работе собственные процессоры. Этот тип адаптеров значительно дороже адаптеров для клиентских компьютеров.

Локальные вычислительные сети

Локальные сети обычно объединяют ряд компьютеров, работающих под управлением одной операционной системы.

В зависимости от территориального расположения абонентских систем компьютерные сети можно разделить на три основных класса:

  •  глобальные сети (WAN — Wide Area Network);
  •  региональные сети (MAN — Metropolitan Area Network);
  •  локальные сети (LAN — Local Area Network).

Глобальная компьютерная сеть объединяет абонентов, расположенных в различных странах, на различных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи. Глобальные компьютерные сети позволят решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам.

Региональная компьютерная сеть связывает абонентов, расположенных на значительном расстоянии друг от друга. Она может включать абонентов внутри большого города, экономического региона, отдельной страны. Обычно, расстояние между абонентами региональной компьютерной сети составляет десятки — сотни километров.

Локальная компьютерная сеть объединяет абонентов, расположенных в пределах небольшой территории. В настоящее время не существует четких ограничений на территориальный разброс абонентов локальной компьютерной сети. Обычно такая сеть привязана к конкретному месту. К классу локальных компьютерных сетей относятся сети отдельных предприятий, фирм, банков, офисов и т.д. Протяженность такой сети можно ограничить пределами 2 - 2,5 км.

Объединение глобальных, региональных и локальных компьютерных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целесообразные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. На рис. 8.4 приведена одна из возможных иерархий компьютерных сетей. Локальные компьютерные сети могут входить как компоненты в состав региональной сети, региональные сети — объединяться в составе глобальной сети и, наконец, глобальные сети могут также образовывать сложные структуры.

В однородных сетях применяется однотипный состав программного и аппаратного обеспечения.

Различают одноранговые ЛВС и ЛВС на основе сервера.

В одноранговых сетях нет единого центра управления взаимодействием рабочих станций и единого устройства для хранения данных. Функции управления сетью распределены между станциями. Сетевая операционная система распределена по всем рабочим станциям. На каждом компьютере должны быть установлены программные средства администрирования сетью. Каждая станция сети может быть как клиентом, так и сервером. Каждый компьютер, работающий в одноранговой сети, имеет свои собственные сетевые программные средства. Достоинства одноранговых сетей: низкая стоимость, высокая надежность. Недостатки одноранговых сетей: возможность подключения небольшого числа рабочих станций (не более 10), сложность управления сетью, трудности обновления и изменения программного обеспечения станций, сложность обеспечения защиты информации.

Рис. 8. Классификация локальных вычислительных сетей1

В серверных сетях один из компьютеров, который называют сервером, реализует процедуры, предназначенные для использования всеми рабочими станциями, управляет взаимодействием рабочих станций и выполняет ряд сервисных функций. В процессе обработки данных клиент формирует запрос на сервер для выполнения тех или иных процедур: чтение файла, поиск информации в базе данных, печать файла и т. п.

В качестве межсетевого интерфейса для соединения сетей между собой используются повторители, мосты, маршрутизаторы, шлюзы [12].

Повторители — устройства, которые усиливают электрические сигналы и обеспечивают сохранение формы и амплитуды сигнала при передаче его на большие расстояния.

Мосты — устройства, которые регулируют трафик между сетями, используют одинаковые протоколы передачи данных на сетевом и высших уровнях и выполняют фильтрацию информационных сообщений в соответствии с адресами получателей.

Маршрутизаторы — обеспечивают соединение логически не связанных сетей. Они анализируют сообщение, определяют его дальнейший наилучший путь, выполняют его некоторое протокольное преобразование для согласования и передачи в другую сеть, создают нужный логический канал и передают сообщение по назначению.

Шлюзы — устройства, позволяющие объединить вычислительные сети, использующие различные протоколы OSI на всех ее уровнях. Мосты, маршрутизаторы и шлюзы в локальной вычислительной сети — это, как правило, выделенные компьютеры со специальным программным обеспечением и дополнительной связной аппаратурой.

Коммуникационные информационные технологии и технологиям доступа к распределенным ресурсам.

Технологии распределенной обработки информации обеспечиваются коммуникационными информационными технологиями и технологиями доступа к распределенным ресурсам.

  1.  Наиболее известные коммуникационные информационные технологии — это электронная почта, телеконференции, системы информационных досок. Электронная почта существует для отправления сообщения от одного пользователя к другому через его «почтовый ящик», находящийся на сервере, например, у Интернет-провайдера. При возможности пользователь проверяет наличие почты и забирает ее. Существует множество программных продуктов осуществления операций с почтой (отправка, прием, рассылка по множеству адресов), к ним относится Microsoft Outlook 2000.

Телеконференции отличаются от электронной почты тем, что происходит пересылка писем между многими общающимися адресатами в рамках тематической дискуссии. Удобство электронной почты во всех ее видах состоит в мгновенном доступе адресата к посланному сообщению, так как письмо идет всего несколько секунд.

Информационным бюллетеням (форумам) не свойственна интерактивность, присущая телеконференциям. При этом письмо помещается на «доску объявлений», а заинтересованные лица могут ему ответить.

  1.  Технологии доступа к распределенным ресурсам

Технологии доступа к распределенным ресурсам представляют собой совокупность следующих решений: удаленного терминального доступа, удаленного доступа к устройствам, технологий передачи файлов, удаленного вызова различных функций, распределенной файловой системы, технологий разделения памяти.

Выделились несколько самостоятельных технологий распределенной обработки данных [14]:

  •  клиент-сервер;
  •  реплицирования;
  •  объектного связывания.

Реальные распределенные информационные системы, как правило, построены на основе сочетания этих технологий.

Системы на основе технологии клиент-сервер развились из первых централизованных многопользовательских информационных систем на основе мэйнфреймов и получили наиболее широкое распространение в корпоративных информационных системах.

При реализации данной технологии отступают от одного из основных принципов создания распределенных систем — отсутствия центрального узла [14].

Принцип централизации хранения и обработки данных является | базовым принципом технологии клиент-сервер.

Можно выделить следующие идеи, лежащие в основе технологии клиент-сервер [14]:

  •  общие для всех пользователей данные, расположенные на одном  Iили нескольких серверах;
  •  множество пользователей, осуществляющих доступ к общим данным.

Важное значение в технологии клиент-сервер имеют понятия сервера и клиента.

Под сервером в широком смысле понимается любая система, процесс, компьютер, владеющие каким-либо вычислительным ресурсом (памятью, временем процессора, файлами и т. д.). Клиентом называется любая система, процесс, компьютер, пользователь, делающие запрос к серверу на использование ресурса [14].

Настольные (локальные) СУБД, в случае их использования несколькими пользователями в компьютерной сети, функционируют на основе технологии файл-сервер, которая появилась раньше технологии клиент-сервер. Дело в том, что настольные СУБД не содержат специальных сервисов, управляющих данными, а используют для этой цели файловые сервисы операционной системы. Поэтому вся обработка данных в таких СУБД осуществляется в клиентском приложении. При выполнении запросов все данные (даже те, которые не удовлетворяют запросу, а это могут быть сразу несколько таблиц) должны быть доставлены клиентскому приложению. Это приводит к перегрузке сети при увеличении числа пользователей и объема БД, а также грозит нарушением целостности данных.

Одним из важнейших преимуществ архитектуры клиент-сервер является снижение сетевого трафика при выполнении запросов. Клиент посылает запрос серверу на выборку данных, запрос обрабатывается сервером, и клиенту передается не вся таблица (как было бы в технологии файл-сервер), а только результат обработки запроса.

Вторым преимуществом архитектуры клиент-сервер является возможность хранения так называемой бизнес-логики (например, правил ссылочной целостности или ограничений на значения данных) на сервере, что позволяет избежать дублирования кода в различных клиентских приложениях, использующих общую базу данных.

Во многих случаях узким местом клиент-серверных ИС является недостаточно высокая производительность из-за необходимости передачи по сети все-таки большого количества данных.

Построение быстродействующих информационных систем обеспечивают технологии репликации данных.

Репликой называют копию БД, размещенную на другом компьютере сети для автономной работы пользователей. Основная идея репликации заключается в том, что пользователи работают автономно с общими данными, растиражированными по локальным базам данных. Производительность работы системы повышается из-за отсутствия необходимости обмена данными по сети. Для реализации технологии репликации программное обеспечение СУБД дополняется функциями тиражирования данных, их структуры, системной информации, информации о конфигурировании распределенной системы [14].

При этом, однако, возникают две проблемы реализации одного из принципов функционирования распределенных систем — принципа непрерывности согласованного состояния данных [14]:

  •  обеспечение согласованного состояния данных во всех репликах БД;
  •  обеспечение согласованного состояния структуры данных во всехрепликах БД.

Обеспечение согласованного состояния данных, в свою очередь, основывается на реализации одного из двух принципов [14]:

  •  принципа непрерывного размножения обновлений;
  •  принципа отложенных обновлений (обновления реплик могутбыть отложены до специальной команды или ситуации).

Принцип непрерывного размножения обновлений является основополагающим при построении так называемых «систем реального времени» (например, систем управления воздушным движением, систем бронирования билетов пассажирского транспорта и др.), где требуется непрерывное и точное соответствие реплик во всех узлах и компонентах распределенных систем в любой момент времени. Реализация этого принципа заключается в том, что любая транзакция считается ] успешно завершенной, если она успешно завершена на всех репликах системы.

В ряде предметных областей режим реального времени с точки зрения непрерывности согласования данных не требуется. Такого рода информационные системы можно строить на основе принципа отложенных обновлений. Накопленные в какой-либо реплике изменения данных передаются командой пользователя для обновления всех остальных реплик системы. Такая операция называется синхронизацией реплик.

Унификация взаимодействия прикладных компонентов с ядром информационных систем в виде SQL-серверов, наработанная для клиент-серверных систем, позволила выработать аналогичные решения и по интегрированию разрозненных локальных баз данных под управлением настольных СУБД. Такая технология получила название 1 объектного связывания данных [14].

Технология объектного связывания данных решает задачу обеспечения доступа из одной локальной БД, открытой одним пользователем, К данным другой локальной БД, возможно, находящейся на другом компьютере, открытой другим пользователем. Решение этой задачи основывается на поддержке современными настольными СУБД технологии объектов доступа к данным — DAO (Data Access Objects). Под объектом понимается интеграция данных и методов их обработки в одно целое, на чем, как известно, основываются технологии объектно-ориентированного программирования [14].

Технология объектного связывания данных основана на протоколе ODBC (Open Database Connectivity), который является стандартом доступа к данным БД клиент-серверных систем (посредством SQL-запросов), а также к любым данным, находящимся под управлением реляционных СУБД.

Подобный принцип построения распределенных систем при больших объемах данных в связанных таблицах приводит к существенному увеличению сетевого трафика, так как по сети постоянно передаются страницы файлов баз данных. Другой проблемой является отсутствие надежных механизмов безопасности данных и обеспечение ограничений целостности. Так же как и в технологии файл-сервер, совместная работа нескольких пользователей с одними и теми же данными обеспечивается только функциями операционной системы по одновременному доступу к файлу нескольких приложений [14].

Распределенные базы данных

Первоначальные ИС, основанные на базах данных, имели строго централизованную архитектуру. Данные были сосредоточены физически и логически на одном компьютере. Централизованная организация базы данных позволяет облегчить обеспечение ее безопасности, целостности и непротиворечивости данных.

Вместе с тем рост объема базы данных и числа пользователей, получающих к ней доступ, территориальное развитие организации (и связанная с ней необходимость распределенной обработки данных) приводят к возникновению ряда проблем, свойственных централизованной архитектуре [14]:

  •  большой объем обмена данными (высокий трафик);
  •  снижение надежности обмена данными;
  •  снижение общей производительности;
  •  рост затрат на разработку БД.

Возможным решением перечисленных проблем является организация децентрализованного храпения данных. При децентрализации достигается [14]:

  •  параллельная обработка данных и распределение нагрузки;
  •  повышение эффективности обработки данных при выполнении удаленных запросов;
  •  уменьшение затрат на обработку данных;
  •  упрощение процедуры управления ИС.

Распределенная база данных — это набор отношений, хранящихся в разных узлах компьютерной сети и логически связанных таким образом, чтобы составлять единую совокупность данных [14, 33].

Распределенная база данных предполагает хранение данных на нескольких узлах сети, обработку данных и их передачу между этими узлами в процессе выполнения запросов. Разбиение данных в распределенной базе данных может достигаться путем хранения различных таблиц на разных компьютерах или хранения разных фрагментов одной таблицы на разных компьютерах. Для пользователя (или прикладной программы) не должно иметь значения, каким образом распределены данные между компьютерами. Работа с распределенной базой данных должна осуществляться так же, как и с централизованной.

Впервые задача об исследовании основ и принципов создания и функционирования распределенных информационных систем была поставлена известным специалистом в области баз данных К. Дейтом.

В основе распределенных ИС лежат две основные идеи [14]:

  •  работа множества пользователей с общей БД;
  •  объединение распределенных данных на логическом и физическом уровнях в общей БД.

Перечислим основные принципы создания и функционирования распределенных БД [14]:

  •  прозрачность размещения данных для пользователя (пользователю распределенная БД должна представляться точно так же,   ;как и нераспределенная);
  •  изолированность пользователей друг от друга (на работу одного пользователя с БД не должна влиять работа других пользователей с ней);
  •  синхронизация БД и непротиворечивость состояния данных в любой момент времени.

Дадим более подробный перечень принципов распределенной БД, сформулированных К. Дейтом [33].

  1.  Локальная автономия. Это качество означает, что управление данными на каждом из узлов распределенной системы выполня- ается локально. База данных, расположенная на одном из узлов,   ]является неотъемлемым компонентом распределенной системы. 1Будучи фрагментом общего пространства данных, она в то жевремя функционирует как полноценная локальная база данных, 1а управление ею осуществляется локально, независимо от других iузлов системы.
  2.  Независимость узлов. Все узлы равноправны и не зависимы, а расположенные на них БД являются равноправными поставщиками данных в общее пространство данных. База данных на каждом из узлов самодостаточна — она включает полный собственный словарь данных и полностью защищена от несанкционированного доступа.
  3.  Непрерывность операций. Это возможность непрерывного доступа к данным в рамках распределенной БД вне зависимости от их расположения и вне зависимости от операций, выполняемых на локальных узлах.
  4.  Прозрачность расположения. Пользователь, обращающийся к БД, ничего не должен знать о реальном, физическом размещении данных в узлах информационной системы.
  5.  Прозрачная фрагментация. Возможность распределенного (т. с. на различных узлах) размещения данных, логически представляющих собой единое целое. Существует фрагментация двух типов :горизонтальная и вертикальная. Первая означает, что строки таблицы хранятся на различных узлах. Вторая означает распределение столбцов логической таблицы по нескольким узлам.
  6.  Прозрачное тиражирование. Тиражирование данных — это асинхронный процесс переноса изменений объектов исходной базы данных в базы, расположенные на других узлах распределенной системы.
  7.  Обработка распределенных запросов. Возможность выполнения операций выборки данных из распределенной БД, посредством запросов, сформулированных на языке SQL.
  8.  Обработка распределенных транзакций. Возможность выполнения операций обновления распределенной базы данных, не нарушающих целостность и согласованность данных. Эта цель достигается применением двухфазного протокола фиксации транзакций.
  9.  Независимость от оборудования. Это свойство означает, что в качестве узлов распределенной системы могут выступать компьютеры любых моделей и производителей.
  10.   Независимость от операционных систем. Это качество вытекает из предыдущего и означает многообразие операционных систем, управляющих узлами распределенной системы.
  11.   Прозрачность сети. Доступ к любым базам данных осуществляется но сети. Спектр поддерживаемых конкретной СУБД сетевых протоколов не должен быть ограничением системы, основанной на распределенной БД.
  12.   Независимость от СУБД, Это качество означает, что в распределенной системе могут работать СУБД различных производителей, и возможны операции поиска и обновления в базах данных различных моделей и форматов.

Важнейшую роль в технологии создания и функционирования распределенных баз данных играет технология «представлений».

Представлением называется сохраняемый в базе данных авторизованный глобальный запрос на выборку данных. Авторизованность означает возможность запуска такого запроса только конкретно поименованным в системе пользователем. Глобальность заключается в том, что выборка данных может осуществляться из всей базы данных, в том числе из данных, расположенных на других узлах сети [14].

Результатом глобальных авторизованных запросов является создание для конкретного пользователя виртуальной БД со своим перечнем таблиц, связей.

Корпоративные компьютерные сети

Корпоративные сети — это сети масштаба предприятия, корпорации. Данные сети используют коммуникационные возможности Интернета и поэтому не зависят от территориального размещения серверов и рабочих станций. Корпоративные сети называются сетями Интранет[12].

Интранет — это внутрифирменная или межфирменная компьютерная сеть, обладающая расширенными возможностями благодаря использованию в ней интернет-технологий. Интранет — это система хранения, передачи, обработки и доступа к внутрифирменной информации с использованием средств локальных сетей и сети Интернет. Она должна обеспечивать выполнение следующих базовых сетевых технологий: сетевое администрирование, поддержка сетевой файловой системы, интегрированная передача сообщений, работа в World Wide Web; сетевая печать, защита информации от несанкционированного доступа [12].

Корпоративные информационные системы — это интегрированные информационные системы управления территориально распределенной корпорацией, основанные на углубленном анализе данных, широком использовании систем информационной поддержки принятия решений, электронном делопроизводстве.

Основными характеристиками КИС являются [12]:

  •  поддержка полного цикла управления в масштабах корпорации;
  •  значительные масштабы системы и объекта управления;
  •  неоднородность составляющих технического и программного обеспечения компонентов ИС управления;
  •  единое информационное пространство выработки управленческих решений (управление финансами, персоналом, управление производством, логистика, маркетинг);
  •  функционирование в неоднородной операционной среде на нескольких вычислительных платформах;
  •  управление в реальном масштабе времени;
  •  высокая надежность, открытость и масштабируемость информационных компонентов.

Глобальная компьютерная сеть Интернет

Общие сведения

Интернет представляет собой объединение разнообразных компьютерных сетей (глобальных, региональных, локальных), соединенных между собой каналами связи. Основными функциями сети Интернет являются: информационная, коммуникационная, совещательная, коммерческая, развлекательная.

Основой для организации сети Интернет явилась компьютерная сеть министерства обороны США ARPANet (ARPAAdvanced Research Projects Agency), созданная в начале 70-х годов для связи компьютеров научных и военных учреждений, предприятий оборонной промышленности. Сеть строилась при участии Пентагона как устойчивая к внешним воздействиям закрытая инфраструктура, способная выжить в условиях ядерного нападения, то есть огромное внимание уделялось ее надежности [12].

В настоящее время основными клиентами Интернет являются частные лица и негосударственные компьютерные сети. Сеть обеспечивает обмен информацией между всеми компьютерами, которые входят в состав сетей, подключенных к ней. Основу ее составляют высокоскоростные магистральные сети. К магистральной сети через точки сетевого доступа NAP (Network Access Point) подсоединяются автономные системы, которые имеют свое административное управление, свои внутренние протоколы маршрутизации. Основные структурные ячейки Интернета — это локальные вычислительные сети. Но существуют и локальные компьютеры, самостоятельно подключенные к Интернету. Каждый подключенный к сети компьютер обладает своим сетевым адресом, по которому его можно найти.

Важный параметр Интернета — скорость доступа к сети, которая определяется пропускной способностью каналов связи между автономными системами, внутри автономных систем и абонентских каналов доступа к автономным системам. Сеть имеет архитектуру клиент-сервер, то есть имеются компьютеры, в основном получающие информацию из сети,— клиенты, а есть компьютеры, снабжающие клиентов информацией, — серверы.

Система адресации в Интернете

Адреса компьютеров, подключенных к сети, должны соответствовать особым требованиям. Адрес должен иметь формат, позволяющий выполнять его синтаксическую автоматическую обработку, и должен нести некоторую информацию об адресуемом объекте [10]. Поэтому адреса компьютеров в сети могут иметь двойную кодировку:

  •  обязательную кодировку, удобную для работы системы телекоммуникации в сети;
  •  необязательную кодировку, удобную для абонента сети.

Цифровой IP-адрес представляет собой 32-разрядное двоичное число. Он разделяется на четыре блока по 8 бит, которые можно записать в десятичном виде, и содержит полную информацию, необходимую для идентификации компьютера. В десятичном коде IP-адрес имеет вид: 152.37.72.138.

IP-адрес состоит из двух частей: адреса сети (идентификатора сети, Network ID) и адреса хоста (идентификатора хоста, Host ID) в этой сети. IP-адреса выделяются в зависимости от размера организации и типа ее деятельности. Для обеспечения максимальной гибкости IP-адреса выделяются в зависимости от количества сетей и компьютеров в организации и разделяются на классы А, В и С. Еще существуют классы D и Е, но они используются для специфических служебных целей. Три класса IP-адресов позволяют распределять их в зависимости от размера сети организации. В сети класса А адрес определяется первым октетом IP-адреса (слева направо). Значение первого октега, находящееся в пределах 1-126, зарезервировано для гигантских транснациональных корпораций. В мире может существовать всего лишь 126 сетей класса А, каждая из которых может содержать почти 17 млн компьютеров.

Класс В использует два первых октета в качестве адреса сети, а значение первого октета может быть в пределах 128-191. В сети класса В может быть около 65 тыс. компьютеров, такие сети имеют крупнейшие университеты и другие большие организации.

В классе С под адрес сети отводится уже три первых октета, а значения первого октета могут быть в пределах 192-223. Это самые распространенные сети, их число может превышать 2 млн, а число компьютеров в каждой сети — до 254.

Если любой IP-адрес символически обозначить как набор октетов w.x.y.z, то структуру для сетей различных классов можно представить (табл. ) в следующем виде [10].

Таблица  Структура IP-адресов в сетях различных классов

Класс сети

Значение нериш о октета (w)

Октеты номера сети

Октеты

номера хоста

Число

ВОЗМОЖНЫХ

сетей

Число

хостов в таких сетях

А

1-126

W

x.y.z

126

16 777 214

В

128-191

W.X

16 384

65 534

С

192-223

w.x.y

z

2 097 151

254

Всякий раз, когда посылается сообщение какому-либо компьютеру в Интернет, IP-адрес используется для указания адреса отправителя и получателя.

Доменный адрес состоит из нескольких отделяемых друг от друга точкой буквенно-цифровых доменов (domain — область). Этот адрес построен на основе иерархической классификации: каждый домен определяет целую группу компьютеров, выделенных по какому-либо признаку, при этом домен группы, находящейся слева, является подгруппой правого домена. Например, географические двухбуквенные домены некоторых стран:

  •  Россия — ru;
  •  США-us;
  •  Великобритания — uk.

Существуют и домены, выделенные по тематическим признакам:

  •  правительственные учреждения — gov;
  •  коммерческие организации — com;
  •  учебные заведения - edu;
  •  сетевые организации — net.

Доменный адрес имеет произвольную длину, и, в отличие от цифрового адреса, он читается в обратном порядке. Так как преобразование доменного адреса в соответствующий ему цифровой IP-адрес осуществляют специальные серверы DNS (Domain Name Server) — серверы имен, то пользователю нет необходимости знать цифровые адреса.

Службы Интернета

Служба — это пара программ, взаимодействующих между собой согласно определенным правилам, протоколам. Одна из программ этой пары называется сервером, а вторая — клиентом. При работе служб Интернета происходит взаимодействие серверного клиентского оборудования и программного обеспечения.

Электронная почта (E-Mail) является одной из наиболее ранних служб Интернета. Ее обеспечением занимаются специальные почтовые серверы. Они получают сообщения от клиентов и пересылают их по цепочке к почтовым серверам адресатов, где эти сообщения накапливаются. При установлении соединения между адресатом и его почтовым сервером происходит автоматическая передача поступивших сообщений на компьютер адресата. Почтовая служба использует два прикладных протокола: SMTP и РОРЗ. Первый определяет порядок отправки корреспонденции с компьютера на сервер, а второй — порядок приема поступивших сообщений.

Списки рассылки (MailingList) — это специальные тематические серверы, собирающие информацию по определенным темам и переправляющие ее подписчикам в виде сообщений электронной почты.

Служба телеконференций (Usenet). Служба телеконференций похожа на циркулярную рассылку электронной почты, но одно сообщение может быть отправлено большой группе корреспондентов (такие группы называются телеконференциями или группами новостей). Обычное сообщение электронной почты пересылается по узкой цепочке серверов от отправителя к получателю. При этом не предполагается его хранение на промежуточных серверах. Сообщения, направленные на сервер группы новостей, отправляются с него на все серверы, с которыми он связан, если на них данного сообщения еще нет. Далее процесс повторяется [21].

Служба World Wide Web (WWW). Это самая популярная служба современной сети Интернет. Основу службы WWW составляют три технологии: гипертекст, язык разметки гипертекста — HTML (Hypertext Markup Language), универсальный адрес ресурса.

Гипертекст — это организация текстовой информации, при которой текст представляет собой множество фрагментов с явно указанными ассоциативными связями между этими фрагментами

Основная идея гипертекстовых технологий заключается в том, что поиск документальной информации происходит с учетом множества взаимосвязей, имеющихся между документами, а значит более эффективно, чем при традиционных методах поиска.

Доступ к информации осуществляется не путем последовательного просмотра текста, как в обычных информационно-поисковых системах, а путем движения от одного фрагмента к другому.

Универсальный адрес ресурса — URL (Universal Resource Locator) дополнительно к доменному адресу содержит указания на используемую технологию доступа к ресурсам и спецификацию ресурса внутри файловой структуры компьютера. Например, в URL http://www.tsure.ru/ University/FacuIties/Femp/mdex.htm указаны:

  •  http — протокол передачи гипертекста, используемый для доступа. В подавляющем большинстве случаев в WWW используетсяименно гипертекстовый протокол. При доступе по другому протоколу, например через службы FTP или Gopher, указываютсясоответственно ftp:// или gopher://;
  •  www.tsure.ru — доменный адрес веб-сервера университета. Адреса большей части серверов начинаются с префикса www, указывающего на то, что веб-сервер на данном компьютере запущен;
  •  University/Faculties/Femp/index.htm — спецификация файлаindex.htm.

Указывается путь к интересующему нас файлу в файловой системе компьютера и имя этого файла. В этой части адреса может быть помещена и другая информация, отражающая, например, параметры запроса пользователя и обрабатывающей запрос программы. Если спецификация файла не указана, то пользователю буден выдан файл, по умолчанию назначенный для представления сервера (сайта).

Служба передачи файлов (FTP). Необходимость в передаче файлов возникает при приеме файлов программ, при пересылке крупных документов, а также при передаче больших по объему архивных файлов [52].

Протокол FTP работает одновременно с двумя соединениями между сервером и клиентом. По одному соединению идет передача данных, а второе соединение используется как управляющее.

IP-телефония. Технология, позволяющая использовать Интернет или любую другую IP-сеть в качестве средства организации и ведения телефонных разговоров и передачи факсов в режиме реального времени. Существует возможность оцифровать звук или факсимильное сообщение и переслать его так, как пересылаются цифровые данные. И в этом смысле IP-телефония использует Интернет для пересылки голосовых или факсимильных сообщений между двумя пользователями в режиме реального времени [52].

Общий принцип действия телефонных серверов IP-телефонии заключается в следующем: с одной стороны, сервер связан с телефонными линиями и может соединиться с любым телефоном мира, с другой стороны, сервер связан с Интернетом и может связаться с любым компьютером в мире. Сервер получает стандартный телефонный сигнал, оцифровывает его, сжимает, разбивает на пакеты и отправляет через Интернет по назначению с использованием протокола TCP/IP. Для пакетов, приходящих из Сети на телефонный сервер и уходящих в телефонную линию, операция происходит в обратном порядке. Для того чтобы осуществить связь с помощью телефонных серверов, организация или оператор услуги должны иметь серверы в тех местах, куда и откуда планируются звонки. Стоимость IP-связи на порядок меньше стоимости телефонного звонка по обычным телефонным линиям.




1. вариантов необходимо выбрать единственно правильный
2. Одной из таких замечательных стран где самые сказочные мечты превращаются в реальность является Тайланд
3. Классификация автоматизированных систем управления
4. Дмитрий Донской на Куликовом поле Кипренскому была присуждена Большая золотая медаль
5. он также снабжен нашим комментарием
6.  Начальникам управлений здравоохранения облисполкомов председателю комитета по здравоохранению Мингорис
7. Про що ти думаєш Про прийдешність
8. Весенние наблюдения птиц в балке Студеный Колодец.html
9. статья профессора В
10. она основана на традициях многолетних научных исследованиях современных технологиях и оборудовании обес