Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Зміст
1. Короткі теоретичні відомості
2. Розробка алгоритму розвязання задачі
3. Результати обчислень і оцінка похибки
Висновки
Література
Додаток
1. Короткі теоретичні відомості
Часто задачі техніки і природознавства математично зводяться до відшукання розвязку певного диференціального рівняння (або системи таких рівнянь), який задовольняє певні початкові умови (задачі Коші). Про інтегрувати таке рівняння в скінченому вигляді вдається досить рідко. при цьому дістають здебільшого такий вигляд, до якого шукана функція входить неявно, а тому користуватись ним не зручно.
На практиці застосовують здебільшого наближене інтегрування диференціальних рівнянь. Воно дає змогу знайти наближений розвязок задачі Коші або у вигляді певного аналітичного виразу (наприклад, ряду Тейлора), або у вигляді деякої таблиці значень.
Розглянемо окремі методи чисельного розвязування задачі Коші для звичайного диференціального рівняння першого порядку, розвязаного відносно похідної. Наближений розвязок задачі Коші записують у вигляді певної таблиці значень.
Задача Коші полягає в тому, щоб знайти розвязок y(x) диференціального рівняння
, (1.1)
який задовольняє початкову умову
(1.2)
Геометрично це означає, що треба знайти ту інтегральну криву y(x) рівняння (1.1), яка проходить через точку (x0,y0).
Задача Коші (1.1) (1.2) має єдиний розвязок, наприклад при виконанні умови такої теореми.
Теорема (Пікара). Якщо функція f(x,y) двох змінних х і у неперервна в замкнутому прямокутнику
з центром у точці (х0,у0) і задовольняє в ньому умову Лівшиця по змінній у, тобто існує число K>0, яке не залежить від х і у, таке, що
(1.3)
для будь-яких точок (х1,у1) і (х2,у2) , то існує єдина диференційована функція , яка є розвязком диференціального рівняння (1.1). Цей розвязок визначений і неперервно диференційований принаймні на відрізку [x0-h; x0+h], де