Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Основную часть информации, обрабатываемой на компьютере, составляют числовая, текстовая, графическая и аудиоинформация.
Кодирование чисел
Существуют два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.
Множество целых чисел, представимых в памяти ЭВМ, ограничено. Диапазон значений зависит от размера памяти, используемой для размещения чисел. В k-разрядной ячейке может храниться 2k различных значений целых чисел.
Чтобы получить внутреннее представление целого положительного числа N, хранящегося в k-разрядном машинном слове, необходимо:
Пример. Получить внутреннее представление целого числа 1607 в 2-х байтовой ячейке. Переведем число в двоичную систему: 160710 = 110010001112. Внутреннее представление в ячейке будет следующим: 0000 0110 0100 0111.
Для записи внутреннего представления целого отрицательного числа (-N) необходимо:
Пример. Получим внутреннее представление целого отрицательного числа -1607. Воспользуемся результатом предыдущего примера и запишем внутреннее представление положительного числа 1607: 0000 0110 0100 0111. Инвертированием получим обратный код: 1111 1001 1011 1000. Добавим единицу: 1111 1001 1011 1001 - это и есть внутреннее представление числа -1607.
Формат с плавающей точкой использует представление вещественного числа R в виде произведения мантиссы m на основание системы счисления n в некоторой целой степени p, которую называют порядком: R = m * n p.
Представление числа в форме с плавающей точкой неоднозначно. Например, справедливы следующие равенства:
12.345 = 0.0012345 x 104 = 1234.5 x 10-2 = 0.12345 x 102
Чаще всего в ЭВМ используют нормализованное представление числа в форме с плавающей точкой. Мантисса в таком представлении должна удовлетворять условию: 0.1p <= m < 1p. Иначе говоря, мантисса меньше 1 и первая значащая цифра - не ноль (p - основание системы счисления).
В памяти компьютера мантисса представляется как целое число, содержащее только значащие цифры (0 целых и запятая не хранятся), так для числа 12.345 в ячейке памяти, отведенной для хранения мантиссы, будет сохранено число 12345. Для однозначного восстановления исходного числа остается сохранить только его порядок, в данном примере - это 2.
Кодирование текста
Множество символов, используемых при записи текста, называется алфавитом. Количество символов в алфавите называется его мощностью.
Для представления текстовой информации в компьютере чаще всего используется алфавит мощностью 256 символов. Один символ из такого алфавита несет 8 бит информации, т. к. 28 = 256. Но 8 бит составляют один байт, следовательно, двоичный код каждого символа занимает 1 байт памяти ЭВМ.
Все символы такого алфавита пронумерованы от 0 до 255, а каждому номеру соответствует 8-разрядный двоичный код от 00000000 до 11111111. Этот код является порядковым номером символа в двоичной системе счисления.
Для разных типов ЭВМ и операционных систем используются различные таблицы кодировки, отличающиеся порядком размещения символов алфавита в кодовой таблице. Международным стандартом на персональных компьютерах является уже упоминавшаяся таблица кодировки ASCII.
Принцип последовательного кодирования алфавита заключается в том, что в кодовой таблице ASCII латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений.
Стандартными в этой таблице являются только первые 128 символов, т. е. символы с номерами от нуля (двоичный код 00000000) до 127 (01111111). Сюда входят буквы латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы. Остальные 128 кодов, начиная со 128 (двоичный код 10000000) и кончая 255 (11111111), используются для кодировки букв национальных алфавитов, символов псевдографики и научных символов. О кодировании символов русского алфавита рассказывается в главе "Обработка документов".
Кодирование графической информации
В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие части - растровую и векторную графику.
Растровые изображения представляют собой однослойную сетку точек, называемых пикселами (pixel, от англ. picture element). Код пиксела содержит информацию о его цвете.
Для черно-белого изображения (без полутонов) пиксел может принимать только два значения: белый и черный (светится - не светится), а для его кодирования достаточно одного бита памяти: 1 - белый, 0 - черный.
Пиксел на цветном дисплее может иметь различную окраску, поэтому одного бита на пиксел недостаточно. Для кодирования 4-цветного изображения требуются два бита на пиксел, поскольку два бита могут принимать 4 различных состояния. Может использоваться, например, такой вариант кодировки цветов: 00 - черный, 10 - зеленый, 01 - красный, 11 - коричневый.
На RGB-мониторах все разнообразие цветов получается сочетанием базовых цветов - красного (Red), зеленого (Green), синего (Blue), из которых можно получить 8 основных комбинаций:
R |
G |
B |
цвет |
0 |
0 |
0 |
черный |
0 |
0 |
1 |
синий |
0 |
1 |
0 |
зеленый |
0 |
1 |
1 |
голубой |
R |
G |
B |
цвет |
1 |
0 |
0 |
красный |
1 |
0 |
1 |
розовый |
1 |
1 |
0 |
коричневый |
1 |
1 |
1 |
белый |
Разумеется, если иметь возможность управлять интенсивностью (яркостью) свечения базовых цветов, то количество различных вариантов их сочетаний, порождающих разнообразные оттенки, увеличивается. Количество различных цветов - К и количество битов для их кодировки - N связаны между собой простой формулой: 2N = К.
В противоположность растровой графике векторное изображение многослойно. Каждый элемент векторного изображения - линия, прямоугольник, окружность или фрагмент текста - располагается в своем собственном слое, пикселы которого устанавливаются независимо от других слоев. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т. д.). Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.
Объекты векторного изображения, в отличии от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость). Подробнее о графических форматах рассказывается в разделе "Графика на компьютере".
Кодирование звука
Из курса физики вам известно, что звук - это колебания воздуха. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение. Для компьютерной обработки такой - аналоговый - сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел.
Поступим следующим образом. Будем измерять напряжение через равные промежутки времени и записывать полученные значения в память компьютера. Этот процесс называется дискретизацией (или оцифровкой), а устройство, выполняющее его - аналого-цифровым преобразователем (АЦП).
Для того чтобы воспроизвести закодированный таким образом звук, нужно выполнить обратное преобразование (для него служит цифро-аналоговый преобразователь - ЦАП), а затем сгладить получившийся ступенчатый сигнал.
Чем выше частота дискретизации (т. е. количество отсчетов за секунду) и чем больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук. Но при этом увеличивается и размер звукового файла. Поэтому в зависимости от характера звука, требований, предъявляемых к его качеству и объему занимаемой памяти, выбирают некоторые компромиссные значения.
Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но можно действовать по-иному. Человек издавна использует довольно компактный способ представления музыки - нотную запись. В ней специальными символами указывается, какой высоты звук, на каком инструменте и как сыграть. Фактически, ее можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 г. ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI.
Такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.
Существуют и другие, чисто компьютерные, форматы записи музыки. Среди них следует отметить формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку. При этом вместо 18-20 музыкальных композиций на стандартный компакт-диск (CDROM) помещается около 200. Одна песня занимает примерно 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.