Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Сила - количественная мера механического взаимодействия материальных тел, характеризующаяся величиной, направлением и точкой приложения. Сила является векторной величиной. Прямая, по которой направлен вектор силы , называетсялинией действия силы (рис. 1.1).
Равнодействующей распределенной нагрузки будет сила , равная по модулю площади фигуры , измеряемой в соответствующем масштабе. Линия действия силы проходит через центр тяжести этой площади.
Для прямоугольника линия действия силы проходит через точку пересечения его диагоналей, а в случае треугольника через точку пересечения его медиан.
пусть на твердое тело действует сила , приложенная в точке . Приложим в произвольной точке , лежащей на линии действия силы , две уравновешенные силы и ,причем , . Согласно аксиоме 2 полученная система из трех сил эквивалентна силе . Но силы и согласно аксиоме 1 уравновешиваются и их можно отбросить, следовательно, сила эквивалентна системе , а потому и данной силе .
Аксиома 3 (закон параллелограмма). Равнодействующая двух сил, приложенных к одной точке тела под углом друг к другу, выражается по величине и по направлению диагональю параллелограмма, построенного на заданных силах (рис.1.6):
2) Реакция шарнирно-подвижной опоры без трения направлена перпендикулярно к опорной поверхности (рис. 1.9, а).
4) Реакция гибкой нерастяжимой связи (нити, канаты, цепи) или стержневой связи (прямолинейного стержня, вес которого не учитывается, с шарнирами на концах) направлена вдоль этой связи (рис. 1.10, а, б).
6) Реакция подпятника (рис, 1.11, б) может иметь любое направление в пространстве. При решении задач она раскладывается аналогично реакции сферического шарнира.
Если линии действия всех сил системы пересекаются в одной точке, то система называется системой сходящихся сил, а точка пересечения точкой схода. Пусть ктвердому телу приложена некоторая система сходящихся сил. На основании следствия из аксиом 1 и 2 можно перенести точки приложения всех сил в точку схода. Тогда мы получим пучок сил, приложенных в одной точке. Рассмотрим для определенности пучок трех сил и покажем, что он имеет равнодействующую (рис. 1.12). Для этого сначала на основании аксиомы параллелограмма определим равнодействующую сил и : , которая приложена к точке схода . Далее так же найдем равнодействующую сил и :
В данной лекции рассматриваются следующие вопросы
1. Проекция силы на ось и на плоскость.
2. Геометрический способ сложения сил.
3. Равновесие системы сходящихся сил.
4. Момент силы относительно центра или точки.
5. Теорема Вариньона о моменте равнодействующей.
6. Пара сил.
7. Момент пары.
8. Свойства пар.
9. Сложение пар.
10. Теорема о параллельном переносе силы.
11. Приведение плоской системы сил к данному центру.
12. Условия равновесия произвольной плоской системы сил.
13. Случай параллельных сил.
14. Решение задач.
Изучение этих вопросов необходимо в дальнейшем для изучения центра тяжести, произвольной пространственной системы сил, сил трения скольжения, моментов трения качения, решения задач в дисциплине «Сопротивление материалов».
Проекция силы на ось и на плоскость.
Перейдем к рассмотрению аналитического (численного) метода решения задач статики. Этот метод основывается на понятии о проекции силы на ось. Как и для всякого другого вектора, проекцией силы на ось называется скалярная величина, равная взятой с соответствующим знаком длине отрезка, заключенного между проекциями начала и конца силы. Проекция имеет знак плюс, если перемещение от ее начала к концу происходит в положительном направлении оси, и знак минус - если в отрицательном. Из определения следует, что проекции данной силы на любые параллельные и одинаково направленные оси равны друг другу. Этим удобно пользоваться при вычислении проекции силы на ось, не лежащую в одной плоскости с силой.
Рис. 12
Обозначать проекцию силы на ось Ох будем символом . Тогда для сил, изображенных на рис. 12, получим:
, .
Но из чертежа видно, что , .
Следовательно,
, ,
т. е. проекция силы на ось равна произведению модуля силы на косинус угла между направлением силы и положительным направлением оси. При этом проекция будет положительной, если угол между направлением силы и положительным направлением оси - острый, и отрицательной, если этот угол - тупой; если сила перпендикулярна к оси, то ее проекция на ось равна нулю.
Рис.13
Проекцией силы на плоскость Оху называется вектор , заключенный между проекциями начала и конца силы на эту плоскость (рис. 13). Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная, так как она характеризуется не только своим численным значением, но и направлением в плоскости Оху. По модулю , где угол между направлением силы и ее проекции .
В некоторых случаях для нахождения проекции силы на ось бывает удобнее найти сначала ее проекцию на плоскость, в которой эта ось лежит, а затем найденную проекцию на плоскость спроектировать на данную ось. Например, в случае, изображенном на рис. 13, найдем таким способом, что
Геометрический способ сложения сил.
Решение многих задач механики связано с известной из векторной алгебры операцией сложения векторов и, в частности, сил. Величину, равную геометрической сумме сил какой-нибудь системы, будем называть главным вектором этой системы сил. Понятие о геометрической сумме сил не следует смешивать с понятием о равнодействующей, для многих систем сил, как мы увидим в дальнейшем, равнодействующей вообще не существует, геометрическую же сумму (главный вектор) можно вычислить для любой системы сил.
Геометрическая сумма (главный вектор) любой системы сил определяется или последовательным сложением сил системы по правилу параллелограмма, или построением силового многоугольника. Второй способ является более простым и удобным. Для нахождения этим способом суммы сил , , …, (рис. 14, a), откладываем от произвольной точки О (рис. 14, б) вектор Oa, изображающий в выбранном масштабе cилу F1, от точки a откладываем вектор , изображающий силу F2, от точки b откладываем вектор bc, изображающий силу F3 и т. д.; от конца m предпоследнего вектора откладываем вектор mn, изображающий силу Fn. Соединяя начало первого вектора с концом последнего, получаем вектор = , изображающий геометрическую сумму или главный вектор слагаемых сил:
или
От порядка, в котором будут откладываться векторы сил, модуль и направление не зависят. Легко видеть, что проделанное построение представляет собою результат последовательного применения правила силового треугольника.
Рис.14
Фигура, построенная на рис. 14,б, называется силовым (в общем случае векторным) многоугольником. Таким образом, геометрическая сумма или главный вектор нескольких сил изображается замыкающей стороной силового многоугольника, построенного из этих сил (правило силового многоугольника). При построении векторного многоугольника следует помнить, что у всех слагаемых векторов стрелки должны быть направлены в одну сторону (по обводу многоугольника), а у вектора - в сторону противоположную.
Равнодействующая сходящихся сил. При изучении статики мы будем последовательно переходить от рассмотрения более простых систем сил к более сложным. Начнем с рассмотрения системы сходящихся сил. Сходящимися называются силы, линии действия которых пересекаются в одной точке (см. рис. 14, а).
По следствию из первых двух аксиом статики система сходящихся сил, действующих на абсолютно твердое тело, эквивалентна системе сил, приложенных в одной точке (на рис. 14, а в точке А).
Последовательно применяя аксиому параллелограмма сил, приходим к выводу, что система сходящихся сил имеет равнодействующую, равную геометрической сумме (главному вектору) этих сил и приложенную в точке их пересечения. Следовательно, если силы , , …, сходятся в точке A (рис. 14, а), то сила, равная главному вектору , найденному построением силового многоугольника, и приложенная в точкеА, будет равнодействующей этой системы сил.
Равновесие системы сходящихся сил.
Из законов механики следует, что твердое тело, на которое действуют взаимно уравновешенные внешние силы, может не только находиться в покое, но и совершать движение, которое мы назовем движением «по инерции». Таким движением будет, например, поступательное равномерное и прямолинейное движение тела.
Отсюда получаем два важных вывода: 1) Условиям равновесия статики удовлетворяют силы, действующие как на покоящееся тело, так и на тело, движущееся «по инерции». 2) Уравновешенность сил, приложенных к свободному твердому телу, является необходимым, но не достаточным условием равновесия (покоя) самого тела; в покое тело будет при этом находиться лишь в том случае, если оно было в покое и до момента приложения к нему уравновешенных сил.
Для равновесия приложенной к твердому телу системы сходящихся сил необходимо и достаточно, чтобы равнодействующая этих сил была равна нулю. Условия, которым при этом должны удовлетворять сами силы, можно выразить в геометрической или аналитической форме.
1. Геометрическое условие равновесия. Так как равнодействующая сходящихся сил определяется как замыкающая сторона силового многоугольника, построенного из этих сил, то может обратиться в нуль тогда и только тогда, когда конец последней силы в многоугольнике совпадает с началом первой, т. е. когда многоугольник замкнется.
Следовательно, для равновесия системы, сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный из этих сил, был замкнут.
2. Аналитические условия равновесия. Аналитически равнодействующая системы сходящихся сил определяется формулой
.
Так как под корнем стоит сумма положительных слагаемых, то R обратится в нуль только тогда, когда одновременно , , , т. е. когда действующие на тело силы будут удовлетворять равенствам:
Равенства выражают условия равновесия в аналитической форме: для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из трех координатных осей были равны нулю.
Если все действующие на тело сходящиеся силы лежат в одной плоскости, то они образуют плоскую систему сходящихся сил. В случае плоской системы сходящихся сил получим, очевидно, только два условия равновесия
Равенства выражают также необходимые условия (или уравнения) равновесия свободного твердого тела, находящегося под действием сходящихся сил.
Пример 1. На рис.15 показаны три силы. Проекции сил и на оси х, у, z очевидны:
Рис.15
Рис. 2.4.
|
А чтобы найти проекцию силы на ось х нужно использовать правило двойного проектирования.
Проектируем силу сначала на плоскость хОу, в которой расположена ось (рис.15), получим вектор , величиной а затем его проектируем на ось х:
Аналогично действуя, найдём проекцию на ось у: .
Проекция на ось z находится проще: .
Нетрудно убедиться, что проекции сил на ось V равны:
При определении этих проекций удобно воспользоваться рис.16, видом сверху на расположение сил и осей.
Рис.16
Вернёмся к системе сходящихся сил (рис. 17). Проведём оси координат с началом в точке пересечения линий действия сил, в точке О.
Мы уже знаем, что равнодействующая сил . Спроектируем это векторное равенство на оси. Получим проекции равнодействующей на оси x, y, z:
Они равны алгебраическим суммам проекций сил на соответствующие оси. А зная проекции равнодействующей, можно определить и величину её как диагональ прямоугольного параллелепипеда или
.
Направление вектора найдём с помощью направляющих косинусов (рис.17):
Рис.17
Пример 2. На шар, вес которого Р, лежащий на горизонтальной плоскости и привязанный к ней нитью АВ, действует сила F (рис.18). Определим реакции связей.
Рис.18
Следует сразу заметить, что все задачи статики решаются по одной схеме, в определённом порядке.
Продемонстрируем ее на примере решения этой задачи.
1. Надо выбрать (назначить) объект равновесия тело, равновесие которого следует рассмотреть, чтобы найти неизвестные.
В этой задаче, конечно, объект равновесия шар.
2. Построение расчётной схемы. Расчётная схема это объект равновесия, изображённый отдельно, свободным телом, без связей, со всеми силами, действующими на него: реакциями и остальными силами.
Показываем реакцию нити и нормальную реакцию плоскости (рис.18). Кроме них на шар действуют заданные силы и .
3. Надо установить какая получилась система сил и составить соответствующие уравнения равновесия.
Здесь получилась система сходящихся сил, расположенных в плоскости, для которой составляем два уравнения (оси можно проводить произвольно):
,
4. Решаем систему уравнений и находим неизвестные.
По условию задачи требовалось найти давление шара на плоскость. А мы нашли реакцию плоскости на шар. Но, по определению следует, что эти силы равны по величине, только давление на плоскость будет направлено в противоположную сторону, вниз.
Пример 3. Тело весом Р прикреплено к вертикальной плоскости тремя стержнями (рис.19). Определим усилия в стержнях.
Рис.19
В этой задаче объект равновесия узел С вместе с грузом. Он нарисован отдельно с реакциями, усилиями в стержнях , , , и весом . Силы образуют пространственную систему сходящихся сил. Составляем три уравнения равновесия:
Из первого уравнения следует: S2 = S3. Тогда из третьего:
а из второго:
Когда мы направляли усилие в стержне от узла, от объекта равновесия, предполагали, что стержни работают на растяжение. Усилие в стержне CD получилось отрицательным. Это значит стержень сжат. Так что знак усилия в стержне указывает как работает стержень: на растяжение или на сжатие.
Момент силы относительно центра (или точки).
Опыт показывает, что под действием силы твердое тело может наряду с поступательным перемещением совершать вращение вокруг того или иного центра. Вращательный эффект силы характеризуется ее моментом
Рассмотрим силу , приложенную в точке А твердого тела (рис. 20). Допустим, что сила стремится повернуть тело вокруг центра О. Перпендикуляр h, опущенный из центра O на линию действия силы , называется плечом силы относительно центра О. Так как точку приложения силы можно произвольно перемещать вдоль линии действия, то, очевидно, вращательный эффект силы будет зависеть: 1) от модуля силы F и длины плеча h; 2) от положения плоскости поворота ОАВ, проходящей через центр О и силу F; 3) от направления поворота к этой плоскости.
Рис.20
Ограничимся пока рассмотрением систем сил, лежащих в одной плоскости. В этом случае плоскость поворота для всех сил является общей и в дополнительном задании не нуждается.
Тогда для количественного измерения вращательного эффекта можно ввести следующее понятие о моменте силы: моментом силы относительно центра О называется величина, равная взятому с соответствующим знаком произведению модуля силы на длину плеча.
Момент силы относительно центра О будем обозначать символом m0(F). Следовательно,
В дальнейшем условимся считать, что момент имеет знак плюс, если сила стремится повернуть тело вокруг центра О против хода часовой стрелки, и знак минус, - если по ходу часовой стрелки. Так, для силы , изображенной на рис.20,а, момент относительно центра О имеет знак плюс, а для силы, показанной на рис.20,б, - знак минус.
Отметим следующие свойства момента силы:
1) Момент силы не изменяется при переносе точки приложения силы вдоль ее линии действия.
2) Момент силы относительно центра О равен нулю только тогда, когда сила равна нулю или когда линия действия силы проходит через центр О (плечо равно нулю).
3) Момент силы численно выражается удвоенной площадью треугольника ОАВ (рис. 20,б)
Этот результат следует из того, что
Теорема Вариньона о моменте равнодействующей.
Докажем следующую теорему Вариньона: момент равнодействующей плоской системы сходящихся сил относительно любого центра равен алгебраической сумме моментов слагаемых сил относительно того же центра.
Рис.21
Рассмотрим систему сил , , …, , сходящихся в точке А (рис.21). Возьмем произвольный центр О и проведем через него ось Ох, перпендикулярную к прямой ОА; положительное направление оси Ох выбираем так, чтобы знак проекции любой из сил на эту ось совпадал со знаком ее момента относительно центра О.
Для доказательства теоремы найдем соответствующие выражения моментов m0(), m0(), … . По формуле . Но, как видно из рисунка, , где F1x - проекция силы на ось Ох; следовательно
.
Аналогично вычисляются моменты всех других сил.
Обозначим равнодействующую сил , , …, , через , где . Тогда, по теореме о проекции суммы сил на ось, получим . Умножая обе части этого равенства на ОА, найдем:
или,
.
Пара сил. Момент пары.
Парой сил (или просто парой) называются две силы, равные по величине, параллельные и направленные в противоположные стороны (рис.22). Очевидно, , и .
Рис.22
Несмотря на то, что сумма сил равна нулю, эти силы не уравновешиваются. Под действием этих сил, пары сил, тело начнёт вращаться. И вращательный эффект будет определяться моментом пары:
.
Расстояние a между линиями действия сил называется плечом пары.
Если пара вращает тело против часовой стрелки, момент её считается положительным (как на рис.22), если по часовой стрелке отрицательным.
Для того, чтобы момент пары указывал и плоскость, в которой происходит вращение, его представляют вектором.
Вектор момента пары направляется перпендикулярно плоскости, в которой расположена пара, в такую сторону, что если посмотреть оттуда, увидим вращение тела против часовой стрелки (рис. 23).
Нетрудно доказать, что вектор момента пары есть вектор этого векторного произведения (рис. 23). И заметим, что он равен вектору момента силы относительно точки А, точки приложения второй силы:
.
О точке приложения вектора будет сказано ниже. Пока приложим его к точке А.
Рис.23
1) Проекция пары на любую ось равна нулю. Это следует из определения пары сил.
2) Найдём сумму моментов сил и составляющих пару, относительно какой-либо точки О (рис.24).
Рис.24
Покажем радиусы-векторы точек А1 и А2 и вектор , соединяющий эти точки. Тогда момент пары сил относительно точки О
.
Но . Поэтому .
Но , а .
Значит .
Момент пары сил относительно любой точки равен моменту этой пары.
Отсюда следует, что, во-первых, где бы не находилась точка О и, во-вторых, где бы не располагалась эта пара в теле и как бы она не была повёрнута в своей плоскости, действие её на тело будет одинаково. Так как момент сил, составляющих пару, в этих случаях один и тот же, равный моменту этой пары .
Поэтому можно сформулировать ещё два свойства.
3) Пару можно перемещать в пределах тела по плоскости действия и переносить в любую другую параллельную плоскость.
4) Так как действие на тело сил, составляющих пару, определяется лишь её моментом, произведением одной из сил на плечо, то у пары можно изменять силы и плечо, но так, чтобы момент пары остался прежним. Например, при силах F1=F2=5 H и плече а = 4 см момент пары m= 20 H×см. Можно силы сделать равными 2 Н, а плечо а = 10 см. При этом момент останется прежним 20 Нсм и действие пары на тело не изменится.
Все эти свойства можно объединить и, как следствие, сделать вывод, что пары с одинаковым вектором момента и неважно где расположенные на теле, оказывают на него равное действие. То есть такие пары эквивалентны.
Исходя из этого, на расчётных схемах пару изображают в виде дуги со стрелкой, указывающей направление вращения, и рядом пишут величину момента m. Или, если это пространственная конструкция, показывают только вектор момента этой пары. И вектор момента пары можно прикладывать к любой точке тела. Значит вектор момента пары свободный вектор.
И ещё одно дополнительное замечание. Так как момент пары равен вектору момента одной из сил её относительно точки приложения второй силы, то момент пары сил относительно какой-либо оси z есть проекция вектора момента пары на эту ось:
,
где угол между вектором и осью z.
Пусть даны две пары с моментами m1 и m2, расположенные в пересекающихся плоскостях (рис.25).
Сделаем у пар плечи одинаковыми, равными а = АВ. Тогда модули сил, образующих первую пару, должны быть равны: , а образующих вторую пару: .
Эти пары показаны на рис.25, где , . И расположены они в своих плоскостях так, что плечи пар совпадают с прямойАВ на линии пересечения плоскостей.
Рис.25
Рис. 4.4.
|
Сложив силы, приложенные к точкам А и В, построением параллелограммов, получим их равнодействующие и . Так как , то эти силы и будут образовывать пару, момент которой , где радиус-вектор точкиВ, совпадающий с АВ.
Так как , то момент полученной пары
.
Следовательно, в результате сложения пар, расположенных в пересекающихся плоскостях, получится пара сил. Момент её будет равен векторной сумме моментов слагаемых пар.
При сложении нескольких пар, действующих в произвольных плоскостях, получим пару с моментом
.
Конечно, эта результирующая пара будет располагаться в плоскости перпендикулярной вектору .
Равенство нулю результирующей пары будет означать, что пары, действующие на тело, уравновешиваются. Следовательно, условие равновесия пар
.
Если пары расположены в одной плоскости, векторы моментов их будут параллельны. И момент результирующей пары можно определить как алгебраическую сумму моментов пар.
Рис.26
Например, пары, показанные на рис.26, расположены в одной плоскости и моменты их:
m1=2 Hсм , m2=5 Hсм, m3=3 Hсм. Пары уравновешиваются, потому что алгебраическая сумма их моментов равна нулю:
.
Теорема о параллельном переносе силы.
Равнодействующая системы сходящихся сил непосредственно находится с помощью аксиомы параллелограмма сил. Для двух параллельных сил эта задача была решена путем приведения их к сходящимся силам. Очевидно, что аналогичную задачу легко будет решить и для произвольной системы сил, если найти и для них метод приведения к силам, приложенным в одной точке.
Ранее мы установили, что вектор силы можно переносить по линии действия в любую точку тела.
Попробуем силу (рис. 27) перенести в какую-нибудь точку О, не расположенную на линии действия.
Рис.27
Приложим к этой точке две уравновешивающиеся силы и , параллельные силе и равные ей по величине:
В результате получим силу , приложенную к точке О. То есть мы как бы перенесли заданную силу из точки А в точку О, но при этом появилась пара, образованная силами и . Момент этой пары , равен моменту заданной силы относительно точки О.
Этот процесс замены силы равной ей силой и парой называется приведением силы к точке О.
Точка О называется точкой приведения; сила , приложенная к точке приведения, приведённой силой. Появившаяся пара присоединённой парой.
Приведение плоской системы сил к данному центру.
Пусть на твердое тело действует какая-нибудь система сил , , …, , лежащих в одной плоскости. Возьмем в этой плоскости произвольную точку О, которую назовем центром приведения, и, перенесем все силы в центр О (рис. 28, а). В результате на тело будет действовать система сил приложенных в центре О, и система пар, моменты которых будут равны:
Рис.28
Силы, приложенные в центре О, можно заменить одной силой , приложенной в том же центре; при этом или
Точно так же, по теореме о сложении пар, все пары можно заменить одной парой, лежащей в той же плоскости. Момент этой пары или
Величина , равная геометрической сумме всех сил системы, называется, как известно, главным вектором системы; величину Мо, равную сумме моментов всех сил системы относительно центра О, будем называть главным моментом системы относительно центра О. В результате мы доказали следующую теорему: всякая плоская система сил, действующих на абсолютно твердое тело, при приведении к произвольно взятому центру О заменяется одной силой R, равной главному вектору системы и приложенной в центре приведения О, и одной парой с моментом М0, равным главному моменту системы относительно центра О (рис. 28, в).
Условия равновесия произвольной плоской системы сил. Случай параллельных сил.
Для равновесия любой плоской системы сил необходимо и достаточно, чтобы одновременно выполнялись условия: R = 0, M0 = 0.
Здесь О - любая точка плоскости.
Найдем вытекающие из равенств аналитические условия равновесия.
Величины R и Мо определяются равенствами:
где Но R может равняться нулю только тогда, когда одновременно Rx = 0 и Ry = 0. Следовательно, условия будут выполнены, если будет:
Равенства выражают, следующие аналитические условия равновесия: для равновесия произвольной плоской системы сил, необходимо и достаточно, чтобы суммы проекций всех сил на каждую из двух координатных осей и сумма их моментов относительно любого центра, лежащего в плоскости действия сил, были равны нулю.
Теорема о трех моментах. Для равновесия плоской системы сил, действующих на твердое тело, необходимо и достаточно, чтобы суммы моментов этих сил системы относительно трех любых точек, расположенных в плоскости действия сил и не лежащих на одной прямой, были равны нулю.
; ;
Равновесие плоской системы параллельных сил.
В случае, когда все действующие на тело силы параллельны друг другу, мы можем направить ось Ох перпендикулярно к силам, а осьОу параллельно им (рис. 29). Тогда проекция каждой из сил на Ox будет равна нулю и первое из 3-х равенств обратится в тождество вида 0 = 0. В результате для параллельных сил останется два условия равновесия:
Где ось Оу параллельна силам.
Рис.29
Статически определимые и статически неопределимые задачи.
Для любой плоской системы сил, действующих на твердое тело, имеется три независимых условия равновесия. Следовательно, для любой плоской системы сил из условий равновесия можно найти не более трех неизвестных.
В случае пространственной системы сил, действующих на твердое тело, имеется шесть независимых условия равновесия. Следовательно, для любой пространственной системы сил из условий равновесия можно найти не более шести неизвестных.
Задачи, в которых число неизвестных не больше числа независимых условий равновесия для данной системы сил, приложенных к твердому телу, называются статически определимыми.
В противном случае задачи статически неопределимы.
Решение задач.
При решения задач этого раздела следует иметь в виду все те общие указания, которые были сделаны ранее.
Приступая к решению, надо, прежде всего, установить, равновесие какого именно тела следует в данной задаче рассмотреть. Затем, выделив это тело и рассматривая его как свободное, следует изобразить все действующие на тело заданные силы и реакции отброшенных связей.
Далее следует составить условия равновесия, применяя ту из форм этих условий, которая приводит к более простой системе уравнений (наиболее простой будет система уравнений, в каждое из которых входит по одному неизвестному).
Для получения более простых уравнений следует (если это только не усложняет ход расчета): а) составляя уравнения проекций, проводить координатную ось, перпендикулярно какой-нибудь неизвестной силе; б) составляя уравнения моментов, брать центр моментов в точке, где пересекается больше неизвестных сил.
При вычислении моментов иногда бывает удобно разлагать данную силу на две составляющие и, пользуясь теоремой Вариньона, находить момент силы как сумму моментов этих составляющих.
Решение многих задач статики сводится к определению реакций опор, с помощью которых закрепляются балки, мостовые фермы и т. п.
Вопросы для самопроверки
- Какая система сил называется сходящейся?
- Как определить равнодействующую системы сходящихся сил путем построения силового многоугольника?
- Сформулируйте геометрическое условие равновесия системы сходящихся сил.
- Что называется главным вектором системы сил?
- В чем различие между главным вектором и равнодействующей системы сил?
- Для какой системы сил равнодействующая и главный вектор совпадают?
- Назовите методы определения равнодействующей системы сходящихся сил.
- Как выражаются проекции равнодействующей системы сходящихся сил через проекции сил этой системы?
- Определите величину силы по известным проекциям=3кН; =4кН.
- Определить модуль и направления силы, если известны ее проекции =30H; =40H.
- Назовите необходимое и достаточное условие равновесия системы сходящихся сил.
- Что такое силовой многоугольник?
- Запишите условие равновесия системы сходящихся сил в векторной форме.
- Сформулируйте условия равновесия системы сходящихся сил в координатной форме.
- Какие задачи позволяют решать условия равновесия системы сходящихся сил?
- Какой из силовых многоугольников на рисунке относится к уравновешенной системе сходящихся сил?
- Как определяется направление равнодействующей системы сходящихся сил при построении силового многоугольника?
- Каковы условия и каковы уравнения равновесия системы сходящихся сил, расположенных в пространстве и плоскости?
- Возможно ли равновесие трех сходящихся сил, не лежащих в одной плоскости?
- Обязательно ли будет находиться в равновесии тело, если на него в одной плоскости действуют три силы и линии их действия пересекаются в одной точке?
- Что называется равнодействующей системы сил?
- Как сложить силы:
а) геометрически,
б) аналитически?
- Как разложить силу по двум заданным направлениям?
- Что называется моментом силы относительно центра на плоскости?
- Какая система сил называется парой?
- Можно ли заменить действие пары сил на тело одной силой?
- Что такое момент пары?
- Какая плоскость называется плоскостью действия пары?
- Какие пары называются эквивалентными?
- Что называется плечом пары?
- Запишите векторную и скалярную зависимости между элементами пары.
- Почему пара сил не имеет равнодействующей?
- Имеет ли пара сил равнодействующую?
- Каким образом можно уравновесить действие на тело пары сил?
- Что такое момент пары сил?
- Изменятся ли моменты пар сил, если положения сил, показанные на рис. а, изменить на положения, показанные на рис. б?
- Какие пары называются эквивалентными?
- Эквивалентны ли пары сил, изображенные на рисунке?
- Каким образом производится сложение пар сил?
- Сформулируйте условие равновесия пар сил.
- Какие уравнения и сколько их можно составить для уравновешенной плоской системы сходящихся сил?
- Сформулируйте теорему о равновесии трех непараллельных сил, лежащих в одной плоскости.
- Чем характеризуется действие пары сил на твердое тело?
- Как направлен вектор момента пары сил?
- Как определяются моменты пар сил, лежащих в одной плоскости?
- Каковы условия эквивалентности пар сил на плоскости и в пространстве?
- Какие преобразования пары сил не изменяют ее действия на твердое тело?
- Почему момент пары сил является свободным вектором?
- Чему равен момент пары сил, эквивалентной двум парам сил, расположенным в пересекающихся плоскостях?
- Чему равен момент пары сил, эквивалентной системе пары сил, расположенных в пространстве и в одной плоскости?
- Каковы условия равновесия системы пар сил, расположенных в пространстве и в одной плоскости?
- Чем можно уравновесить заданную пару сил?
- Как направлены реакции опор балки, нагруженной парой сил и лежащей на двух опорах, из которых одна шарнирно-неподвижная, а другая на катках?
- Какой третьей парой сил можно уравновесить две пары сил, лежащие в пересекающихся плоскостях?
- Сформулируйте теоремы об эквивалентности пар.
- Что называется результирующей парой?
- Запишите формулу для определения результирующей системы пар.
- Назовите условия равновесия плоской системы пар.
- Приведите векторную запись условия равновесия произвольной системы пар.
- При каких условиях плоская система сил приводится к равнодействующей?
- Чему равен главный вектор плоской системы сил, которая может быть приведена к равнодействующей?
- В каком случае главный момент плоской системы сил не зависит от выбора центра приведения?
- Что такое момент силы относительно точки?
- Будет ли изменяться момент силы относительно точки, если, не меняя направления, переносить силу вдоль линии ее действия?
- На тело действуют две силы F1 = 40 Н и F2 = 50 Н, как показано на рисунке (а = 0,5 м, b = 0,8 м, = 30°). Какая из сил создает больший момент относительно точки О?
- Что такое главный вектор и главный момент плоской системы сил?
- Как аналитически найти главный вектор и главный момент данной плоской системы сил?
- В чем сходство и в чем различие между главным вектором плоской системы сил и ее равнодействующей?
- Сформулируйте теорему Вариньона.
- Приведите векторную запись теоремы Вариньона.
- Сформулируйте теорему Вариньона для произвольной плоской системы сил.
- Чему равен главный вектор системы сил?
- Чему равен главный момент системы сил при приведении ее к точке?
- Тело движется равномерно и прямолинейно (равновесие). Чему равны главный вектор и главный момент системы?
- Тело вращается вокруг неподвижной оси. Чему равны главный вектор и главный момент действующей на него системы сил?
- Зависят ли главный вектор и главный момент заданной системы сил от выбора центра приведения?
- Каковы возможные случаи приведения сил, расположенных произвольно на плоскости?
- К какому простейшему виду можно привести систему сил, если известно, что главный момент этих сил относительно различных точек на плоскости:
а) имеет различную числовую величину;
б) имеет постоянное значение, не равное нулю;
в) равен нулю.
- Как определяется модуль и направление главного вектора системы параллельных сил на плоскости?
- При каком условии сила, равная главному вектору плоской системы сил, является равнодействующей этой системы?
- Каковы условия и уравнения равновесия плоской системы параллельных сил на плоскости?
- Какое твердое тело называют рычагом?
- Какое условие выполняется, когда рычаг находится в покое?
- Чему равен главный вектор и главный момент произвольной плоской системы сил?
- Сформулируйте три формы уравнений равновесия произвольной плоской системы сил.
- Какие задачи статики называют статически определимыми и какие статически неопределимыми?
- Какую из форм уравнения равновесия целесообразно использовать при определении реакций в заделке?
- Какую из форм уравнения равновесия целесообразно использовать при определении реакций в опорах двухопорной балки и почему?
- В чем сущность решения задач на равновесие сочлененной системы тел?
- Невесомый груз нагружен силой F, как показано на рисунке. Определите (воспользовавшись, если нужно, только калькулятором), под каким углом к брусу направлена реакция шарнира А.
Ответ: а) 45°; б) 145°.
- Чтобы определить момент силы необходимо знать:
1) силу и плечо силы;
2) плечо силы;
3) направление силы;
4) пару сил;
5) расстояние и силу.
- В многоугольнике сил, какой вектор изображает равнодействующую силу
1) ;
2) ;
3) ;
4) ;
5) .
- В многоугольнике сил, какой вектор изображает равнодействующую силу
1) ;
2) ;
3) ;
4) ;
5) .
- При каком значении угла между силой и осью проекция силы равна нулю?
1) =0;
2) =90°;
3) =180°.
- Если проекция силы на ось = 8 кН , = 3 кН, то действующая сила равна:
1) = кН;
2) =кН;
3) =кН;
4) =кН;
5) = кН.
- Если проекция силы на ось =8 кН , = 6 кН, то действующая сила равна:
1) =10 кН;
2) кН;
3) кН;
4) =11 кН;
5) =12 кН.
- При каком значении угла , проекция силы P на ось y равна нулю
1) ;
2) ;
3) ;
4) ;
5) .
- При каком значении угла , проекция силы P на ось y равна нулю?
1) ;
2) ;
3);
4);
5) .
- Определить проекцию равнодействующей силы на ось y, если известны проекции каждого из слагаемых векторов:
1) =40 H;
2) =60 H;
3) =-100 H;
4) =-120 H.
- Определить модуль равнодействующей системы сходящихся сил, если проекции слагаемых векторов равны:
1) =50 H;
2) =-30 H;
3) =60 H;
4) =70 H;
5) =-70 H;
6) =40 H;
7) =80 H;
8) =-90 H.
- В каком из указанных случаев плоская система сходящихся сил уравновешена?
1) ; .
2) ; .
3) ; .
4) ; .
- Что определяет эффект действия пары сил?
1) произведение силы на плечо;
2) момент пары и направление поворота.
- Чем можно уравновесить пару сил?
1) одной силой;
2) парой сил.
- Зависит ли эффект действия пары сил на тела от его положения в плоскости?
1) да;
2) нет.
- Какие из приведенных ниже пар эквивалентны?
1) а) сила пары 100 кН, плечо 0,5 м; б) сила пары 20 кН, плечо 2,5 м; в) сила пары 1000 кН, плечо 0,05 м. Направление всех трех пар одинаково.
2) а) М1=-300 Нм; б) М2=300 Нм.
- Момент пары сил равен 100 Нм, плечо пары 0,2 м. Определить значении сил пары? Как изменится значение сил пары, если плечо увеличить в два раза при сохранении численного значения момента?
- Будет ли тело находиться в равновесии, если на него действуют три пары сил, приложенных в одной плоскости, и моменты этих пар имеют следующие значения: М1=-600 Нм; М2=320 Нм и М3=280 Нм.
1) тело будет находиться в равновесии;
2) тело не будет находиться в равновесии.
- Зависит ли значение и направление момента силы относительно точки от взаимного расположения этой точки и линии действия силы?
1) не зависит;
2) зависит.
- Когда момент силы относительно оси равен нулю?
1) когда силы параллельно оси;
2) когда линия действия силы пересекает ось;
3) Когда сила и ось расположены в одной плоскости.
- Зависит ли момент присоединенной пары сил от расстояния точки приведения до линии действия силы?
1) зависит;
2) не зависит.
- Зависит ли значение и направление главного вектора от положения центра приведения?
1) не зависит;
2) зависит.
- Зависит ли значение и знак главного вектора от положения центра приведения?
1) не зависит;
2) зависит.
- Можно ли определить алгебраическую сумму моментов сил относительно некоторой точки О, если задана только равнодействующая этих сил и ее плечо а относительно этой точки?
1) нельзя;
2) можно.
- Чем отличается главный вектор от равнодействующей плоской системы произвольно расположенных сил?
1) величиной;
2) направлением;
3) величиной и направлением;
4) точкой приложения;
5) ничем.
- Главный вектор системы сил определяется по формуле:
1)
2)
3)
4)
5)
Лекция 1. Кинематика точки и твердого тела.
В данной лекции рассматриваются следующие вопросы:
1. Кинематика точки. Введение в кинематику.
2. Способы задания движения точки.
3. Вектор скорости точки.
4. Вектор ускорения точки.
5. Определение скорости и ускорения точки при координатном способе задания движения точки.
6. Определение скорости и ускорения точки при естественном способе задания движения точки. Касательное и нормальное ускорение точки.
7. Некоторые частные случаи движения точки.
Изучение данных вопросов необходимо в дальнейшем для динамики движения материальной точки, динамики относительного движения точки, динамики вращательного движения точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».
Кинематика точки. Введение в кинематику.
Кинематикой называется раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (массы) и действующих на них сил.
Под движением мы понимаем в механике изменение, с течением времени положения данного тела в пространстве по отношению к другим телам.
Для определения положения движущегося тела (или точки) в разные моменты времени с телом, по отношению к которому изучается движение, жестко связывают какую-нибудь систему координат, образующую вместе с этим телом систему отсчета.
Изображать систему отсчета будем в виде трех координатных осей (не показывая тело, с которым они связаны).
Движение тел совершается в пространстве с течением времени. Пространство в механике мы рассматриваем, как трехмерное евклидово пространство.
Время является скалярной, непрерывно изменяющейся величиной. В задачах кинематики время принимают за независимое переменное (аргумент). Все другие переменные величины (расстояния, скорости и т. д.) рассматриваются как изменяющиеся с течением времени, т, е. как функции времени .
Для решения задач кинематики надо, чтобы изучаемое движение было как-то задано (описано).
Кинематически задать движение или закон движения тела (точки) - значит задать положение этого тела (точки) относительно данной системы отсчета в любой момент времени.
Основная задача кинематики точки и твердого тела состоит в том, чтобы, зная закон движения точки (тела), установить методы определения всех кинематических величин, характеризующих данное движение.
Способы задания движения точки
Для задания движения точки можно применять один из следующих трех способов:
1) векторный, 2) координатный, 3) естественный.
1. Векторный способ задания движения точки.
Пусть точка М движется по отношению к некоторой системе отсчета Oxyz. Положение этой точки в любой момент времени можно определить, задав ее радиус-вектор , проведенный из начала координат О в точку М (рис. 1).
Рис.1
При движении точки М вектор будет с течением времени изменяться и по модулю, и по направлению. Следовательно, является переменным вектором (вектором-функцией), зависящим от аргумента :
.
Равенство определяет закон движения точки в векторной форме, так как оно позволяет в любой момент времени построить соответствующий вектор и найти положение движущейся точки.
Геометрическое место концов вектора , т.е. годограф этого вектора, определяет траекторию движущейся точки.
2. Координатный способ задания движения точки.
Положение точки можно непосредственно определять ее декартовыми координатами х, у, z (рис.1), которые при движении точки будут с течением времени изменяться. Чтобы знать закон движения точки, т.е. ее положение в пространстве в любой момент времени, надо знать значения координат точки для каждого момента времени, т. е. знать зависимости
, , .
Уравнения представляют собой уравнения движения точки в прямоугольных декартовых координатах. Они определяют закон движения точки при координатном способе задания движения.
Чтобы получить уравнение траектории надо из уравнений движения исключить параметр .
Нетрудно установить зависимость между векторным и координатным способами задания движения.
Разложим вектор на составляющие по осям координат:
где - проекции вектора на оси; единичные векторы направленные по осям, орты осей.
Так как начало вектора находится в начале координат, то проекции вектора будут равны координатам точки M. Поэтому
Пример 1. Движение точки задано уравнениями
Рис.2
Чтобы исключить время, параметр t, найдём из первого уравнения из второго Затем возведём в квадрат и сложим. Так как получим Это уравнение эллипса с полуосями 2 см и 3 см (рис.2).
Начальное положение точки M0 (при t=0) определяется координатами
Через 1 сек. точка будет в положении M1 с координатами
Примечание.
Движение точки может быть задано с помощью и других координат. Например, цилиндрических или сферических. Среди них будут не только линейные размеры, но и углы. При необходимости, с заданием движения цилиндрическими и сферическими координатами можно познакомиться по учебникам.
3. Естественный способ задания движения точки.
Рис.3
Естественным способом задания движения удобно пользоваться в тех случаях, когда траектория движущейся точки известна заранее. Пусть кривая АВ является траекторией точки М при ее движении относительно системы отсчета Oxyz (рис.3) Выберем на этой траектории какую-нибудь неподвижную точку О', которую примем за начало отсчета, и установим на траектории положительное и отрицательное направления отсчета (как на координатной оси).
Тогда положение точки М на траектории будет однозначно определяться криволинейной координатой s, которая равна расстоянию от точки О'до точки М, измеренному вдоль дуги траектории и взятому с соответствующим знаком. При движении точка М перемещается в положения M1,М2,... . следовательно, расстояние s будет с течением времени изменяться.
Чтобы знать положение точки М на траектории в любой момент времени, надо знать зависимость
.
Уравнение выражает закон движения точки М вдоль траектории.
Пример 2. Точка движется по прямой линии, по закону (рис. 4).
Рис.4
В начале движения, при Положение точки M0 называется начальным положением. При
Конечно, за 1 сек. точка прошла расстояние M0M1=2 см. Так что s это не путь пройденный точкой, а расстояние от начала отсчёта до точки.
Вектор скорости точки
Одной из основных кинематических характеристик движения точки является векторная величина, называемая скоростью точки.
Известно, что при движении точки по прямой линии с постоянной скоростью, равномерно, скорость её определяется делением пройденного расстояния s на время: . При неравномерном движении эта формула не годится. Введем сначала понятие о средней скорости точки за какой-нибудь промежуток времени. Пусть движущаяся точка находится
Рис. 5
в момент времени t в положении М, определяемом радиусом-вектором , а в момент приходит в положение M1 определяемое вектором (рис.5). Тогда перемещение точки за промежуток времени определяется вектором который будем называть вектором перемещения точки. Из треугольника ОММ1 видно, что ; следовательно, .
Отношение вектора перемещения точки к соответствующему промежутку времени дает векторную величину, называемую средней по модулю и направлению скоростью точки за промежуток времени :
.
Скоростью точки в данный момент времени называется векторная величина , к которой стремится средняя скорость при стремлении промежутка времени к нулю:
, .
Итак, вектор скорости точки в данный момент времени равен первой производной от радиуса-вектора точки по времени.
Так как предельным направлением секущей ММ1 является касательная, то вектор скорости точки в данный момент времени направлен по касательной к траектории точки в сторону движения.
Определение скорости точки при координатном способе задания движения
Вектор скорости точки , учитывая, что , , , найдем:
, , .
Таким образом, проекции скорости точки на координатные оси равны первым производным от соответствующих координат точки по времени.
Зная проекции скорости, найдем ее модуль и направление (т.е. углы , , , которые вектор образует с координатными осями) по формулам
;
, , .
Итак, численная величина скорости точки в данный момент времени равна первой производной от расстояния (криволинейной координаты) s точки по времени.
Направлен вектор скорости по касательной к траектории, которая нам наперед известна.
Определение скорости точки при естественном способе задания движения
Величину скорости можно определить как предел ( длина хорды ):
где длина дуги . Первый предел равен единице, второй предел производная
Следовательно, скорость точки есть первая производная по времени от закона движения:
Направлен вектор скорости, как было установлено ранее, по касательной к траектории. Если величина скорости в данный момент будет больше нуля, то вектор скорости направляется в положительном направлении
Вектор ускорения точки
Ускорением точки называется векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки.
Пусть в некоторый момент времени движущаяся точка находится в положении М и имеет скорость , а в момент приходит в положение и имеет скорость (рис. 6).
Рис.6
Тогда за промежуток времени скорость точки получает приращение . Для построения вектора отложим от точки М вектор, равный , и построим параллелограмм, в котором диагональю будет , a одной из сторон . Тогда, очевидно, вторая сторона и будет изображать вектор . Заметим, что вектор всегда направлен в сторону вогнутости траектории.
Отношение приращения вектора скорости к соответствующему промежутку времени определяет вектор среднего ускорения точки за этот промежуток времени:
.
Вектор среднего ускорения имеет то же направление, что и вектор , т. е. направлен в сторону вогнутости траектории.
Ускорением точки в данный момент времени t называется векторная величина , к которой стремится среднее ускорение при стремлении промежутка времени к нулю: Вектор ускорения точки в данный момент времени равен первой производной от вектора скорости или второй производной от радиуса-вектора точки по времени.
Найдем, как располагается вектор по отношению к траектории точки. При прямолинейном движении вектор направлен вдоль прямой, по которой движется точка. Если траекторией точки является плоская кривая, то вектор ускорения , так же как и вектор , лежит в плоскости этой кривой и направлен в сторону ее вогнутости. Если траектория не является плоской кривой, то вектор направлен в сторону вогнутости траектории и лежит в плоскости, проходящей через касательную к траектории в точке М и прямую, параллельную касательной в соседней точке M1 (рис. 4). В пределе, когда точка М стремится к М, эта плоскость занимает положение так называемой соприкасающейся плоскости, т.е. плоскости, в которой происходит бесконечно малый поворот касательной к траектории при элементарном перемещении движущейся точки. Следовательно, в общем случае вектор ускорения лежит в соприкасающейся плоскости и направлен в сторону вогнутости кривой.
Определение ускорения при координатном способе задания движения
Вектор ускорения точки в проекции на оси получаем:
, ,
или
, , ,
т.е. проекция ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от соответствующих координат точки по времени. Модуль и направление ускорения найдутся из формул
;
, , ,
где , , - углы, образуемые вектором ускорения с координатными осями.
Пример 3. Движение точки задано уравнениями .
Из первого уравнения . Подставив во второе, получим уравнение траектории:
Это уравнение параболы. В начале движения, при , точка находилась на самом верху, в положении M0 ().
А, например, при t =0,5 c она будет в положении M с координатами
Проекции скорости на оси
При
И модуль скорости
Составляющие скорости по осям и вектор её показаны в масштабе на рис. 7.
Рис.7
Проекции ускорения . Так как проекция вектора ускорения на ось x равна нулю, а на ось y отрицательна, то вектор ускорения направлен вертикально вниз, и величина его постоянна, не зависит от времени.
Определение ускорения при естественном способе задания движения. Касательное и нормальное ускорение точки
При естественном способе задания движения вектор определяют по его проекциям на оси , имеющие начало в точке М и движущиеся вместе с нею (рис.8). Эти оси, называемые осями естественного трехгранника (или скоростными (естественными) осями), направлены следующим образом: ось - вдоль касательной к траектории в сторону положительного отсчета расстояния s; ось - по нормали, лежащей в соприкасающейся плоскости и направленной в сторону вогнутости траектории; ось - перпендикулярно к первым двум так, чтобы она образовала с ними правую тройку. Нормаль , лежащая в соприкасающейся плоскости (в плоскости самой кривой, если кривая плоская), называется главной нормалью, а перпендикулярная к ней нормаль - бинормалью.
Рис.8
Было показано, что ускорение точки лежит в соприкасающейся плоскости, т.е. в плоскости ; следовательно, проекция вектора на бинормаль равна нулю ().
Вычислим проекции , на две другие оси. Пусть в момент времени t точка находится в положении М и имеет скорость , a в момент приходит в положение М1 и имеет скорость .
Тогда по определению
.
Перейдем в этом равенстве от векторов к их проекциям на оси и , проведенные в точке М (рис.8). Тогда на основании теоремы о проекции суммы (или разности) векторов на ось получим:
, .
Учитывая, что проекция вектора на параллельные оси одинаковы, проведем через точку М1 оси параллельные и обозначим угол между направлением вектора и касательной через . Этот угол между касательными к кривой в точках М и М1называется углом смежности.
Напомним, что предел отношения угла смежности к длине дуги определяет кривизну k кривой в точке М. Кривизна же является величиной, обратной радиусу кривизны в точке М. Таким образом,
.
Обращаясь теперь к чертежу (рис.9), находим, что проекции векторов и на оси будут равны:
,
где и - численные величины скорости точки в моменты и .
Следовательно,
.
Заметим что при точка М1 неограниченно приближается к М и одновременно
.
Тогда, учитывая, что в пределе , получим для выражение
.
Правую часть выражения преобразуем так, чтобы в нее вошли отношения, пределы которых нам известны. Для этого умножим числитель и знаменатель дроби, стоящей под знаком предела, на . Тогда будем иметь
,
так как пределы каждого из стоящих в скобке сомножителей при равны:
Окончательно получаем:
.
Итак, мы доказали, что проекция ускорения точки на касательную равна первой производной от численной величины скорости или второй производной от расстояния (криволинейной координаты) s no времени, а проекция ускорения на главную нормаль равна квадрату скорости деленному на радиус кривизны траектории в данной точке кривой; проекция ускорения на бинормаль равна нулю (). Эти результаты выражают собою одну из важных теорем кинематики точки.
Рис.9
Отложим вдоль касательной и главной нормали векторы и , численно равные и (рис. 9). Эти векторы изображают касательную и нормальную составляющие ускорения точки. При этом составляющая будет всегда направлена в сторону вогнутости кривой (величина a всегда положительна), а составляющая может быть направлена или в положительном, или в отрицательном направлении оси в зависимости от знака проекции (см. рис.9, а и б).
Вектор ускорения точки изображается диагональю параллелограмма, построенного на составляющих и . Так как эти составляющие взаимно перпендикулярны, то по модулю:
.
Некоторые частные случаи движения точки.
Пользуясь полученными результатами, рассмотрим некоторые частные случаи движения точки.
1) Прямолинейное движение. Если траекторией точки является прямая линия, то . Тогда и все ускорение точки равно одному только касательному ускорению:
.
Так как в данном случае скорость изменяется только численно, то отсюда заключаем, что касательное ускорение характеризует изменение скорости по численной величине.
2) Равномерное криволинейное движение. Равномерным называется такое криволинейное движение точки, в котором численная величина скорости все время остается постоянной: .
Тогда и все ускорение точки равно одному только нормальному:
.
Вектор ускорения направлен при этом все время по нормали к траектории точки.
Так как в данном случае ускорение появляется только за счет изменения направления скорости, то отсюда заключаем, что нормальное ускорение характеризует изменение скорости по направлению. Найдем закон равномерного криволинейного движения.
Из формулы имеем .
Пусть в начальный момент () точка находится от начала отсчета на расстоянии . Тогда, беря от левой и правой части равенства определенные интегралы в соответствующих пределах, получим
или ,
так как . Окончательно находим закон равномерного криволинейного движения в виде
.
Если , то s даст путь, пройденный точкой за время t. Следовательно, при равномерном движении путь, пройденный точкой, расчет пропорционального времени, а скорость движения равна отношению пути ко времени
.
3) Равномерное прямолинейное движение. В этом случае , а значит и . Заметим, что единственным движением, в котором ускорение точки все время равно нулю, является равномерное прямолинейное движение.
4) Равнопеременное криволинейное движение. Равнопеременным называется такое криволинейное движение точки, при котором касательное ускорение остается все время величиною постоянной: . Найдем закон этого движения, считая, что при : , а , где - начальная скорость точки. Согласно формуле имеем .
Так как , то, беря от обеих частей последнего равенства интегралы в соответствующих пределах, получим:
.
Формулу представим в виде
или .
Вторично интегрируя, найдем закон равнопеременного криволинейного движения точки в виде
.
Если при криволинейном движении точки модуль скорости возрастает, то движение называется ускоренным, а если убывает - замедленным.
Пример 4. Точка движется по окружности радиуса по закону . При . Значит, движение началось из M0 (рис.10).
Рис.10
Судя по этим результатам, точка сначала двигалась в положительном направлении, а затем пошла обратно. В крайнем положении скорость точки станет равной нулю.
Рис. 8.9.
|
Так как то положив , найдём время когда точка окажется в этом крайнем положении: Значит определяет это положение точки.
Найдём скорость и ускорение точки при Скорость . Направлен вектор скорости в положительном направлении ().
Касательное ускорение . Вектор направлен в отрицательном направлении. Нормальное ускорение (радиус кривизны дуги окружности равен её радиусу ). Полное ускорение
Так как вектор скорости и вектор касательного ускорения направлены в противоположные стороны, точка в этот момент движется замедленно.
Вопросы для самопроверки
- Что изучает кинематика?
- В чем различие между телом отсчета и системой отсчета?
- Перечислите основные способы задания движения точки.
- Движение точки задано в полярной системе координат. Как найти уравнение ее траектории?
- Что должно быть известно при естественном способе задания движения точки?
- Какие кинематические способы задания движения точки существуют и в чем состоит каждый из этих способов?
- Запишите в общем виде закон движения в естественной и координатной форме?
- Что называют траекторией движения?
- Как определяется скорость движения при естественном способе задания движения?
- Запишите формулы для определения касательного, нормального и полного уравнений?
- Что характеризует касательное уравнение и как оно направлено по отношению к вектору скорости?
- Что характеризует касательное уравнение и как направлено нормальное ускорение?
- При каких условиях значение дуговой координаты точки в некоторый момент времени равно пути, пройденному точкой за промежуток от начального до данного момента времени?
- Чем является траектория точки при векторном способе задания движения точки?
- Как по уравнениям движения точки в координатной форме определить ее траекторию?
- Сформулируйте теорему о проекции производной вектора на неподвижные координатные оси.
- Приведите определения соприкасающейся, спрямляющей и нормальной плоскостей.
- Как выбираются направления единичных векторов касательной, нормали и бинормали?
- Запишите формулу для определения модуля вектора кривизны плоской кривой.
- Что называется перемещением точки за фиксированный промежуток времени?
- Как направлена средняя скорость точки за некоторый промежуток времени?
- Запишите формулы, определяющие модуль и направление скорости точки при координатном способе задания ее движения.
- Как выражается скорость точки через криволинейную координату при естественном способе задания движения?
- Дайте определение среднего ускорения точки за некоторое время.
- Как выражаются модуль и направляющие косинусы вектора ускорения точки через проекции ускорения на прямоугольные координатные оси?
- Запишите формулы для нормального и касательного ускорений при естественном способе задания движения.
- Чему равен вектор скорости точки в данный момент времени и какое направление он имеет?
- Как связан орт касательной к кривой с радиусом-вектором движущейся точки?
- Чему равна проекция скорости точки на касательную к ее траектории и модуль ее скорости?
- Как определяются проекции скорости точки на неподвижные оси декартовых координат?
- Что представляет собой годограф скорости и каковы его параметрические уравнения?
- Какой вид имеет годограф скорости прямолинейного неравномерного движения и равномерного движения по кривой, не лежащей в одной плоскости?
- Чему равен вектор ускорения точки и как он направлен по отношению к годографу скорости?
- Как направлены естественные координатные оси в каждой точке кривой?
- Каковы модуль и направление вектора кривизны кривой в данной точке?
- В какой плоскости расположено ускорение точки и чему равны его проекции на естественные координатные оси?
- Что характеризует собой касательное и нормальное ускорения точки?
- При каком движении точки равно нулю касательное ускорение и при каком - нормальное ускорение?
- Как классифицируются движения точки по ускорениям?
- В какие моменты времени нормальное ускорение в криволинейном движении может обратиться в нуль?
- В какие моменты времени касательное ускорение в неравномерном движении может обратиться в нуль?
- Чем отличается график пути от графика движения точки?
- Как по графику движения определить алгебраическое значение скорости точки в любой момент времени?
- Как по графику скорости прямолинейного движения точки определить алгебраическое значение ускорения точки в любой момент времени?
- Запишите формулу ускорения при прямолинейном движении?
- Запишите формулу ускорения (полного) при криволинейном движении.
- По заданному уравнению движения точки определите вид движения и без расчетов, используя законы движения точки, ответьте, чему равны начальная скорость и ускорение?
- По заданному уравнению движения точки постройте графики скорости и касательного ускорения?
- Какими кинематическими параметрами характеризуется поступательное движение и почему?
- Запишите уравнение равномерного поступательного движения твердого тела?
- Запишите уравнение равнопеременного поступательного движения твердого тела?
- Запишите уравнение равнопеременного и равномерного вращательного движения твердого тела?
- Задано уравнение движения тела . Как определяют скорость и ускорение?
- Для заданного закона (уравнения) движения определите угловое ускорение в момент времени t=5 с?
- Какое движение точки называется гармоническим колебательным движением и какие величины характеризуют это движение?
- Как направлено ускорение гармонического колебательного движения? В какие промежутки времени это движение происходит ускоренно и в какие замедленно?
- Основная задача кинематики:
1) установить закон механического движения;
2) определить поступательное движение;
3) определить вращательное движение;
4) определить плоскопараллельное движение;
5) определить сложное движение.
- Можно ли определить траекторию движения точки, если известно, как изменяются во времени координаты точки в прямоугольной системе координат (например ; )?
1) можно;
2) нельзя.
- Можно ли только по заданной траектории точки определить пройденный ее путь?
1) можно;
2) нельзя.
- Определите модуль и направление полной скорости точки, если заданы проекции скорости на оси координат: м/с, м/с.
- Точка движется по прямой с постоянным ускорением, направленным противоположно скорости. Определить, как движется точка?
1) равномерно;
2) равномерно-ускоренно;
3) равномерно-замедленно.
- Какая составляющая ускорения точки характеризует изменение значения скорости?
1) нормальное ускорение;
2) касательное ускорение.
В данной лекции рассматриваются следующие вопросы:
1. Динамика точки.
2. Основные понятия и определения.
3. Законы динамики.
4. Задачи динамики для свободной и несвободной материальной точки.
5. Дифференциальные уравнения движения точи.
6. План решения второй задачи движения.
7. Движение точки, брошенной под углом к горизонту в однородном поле тяжести.
8. Относительное движение материальной точки.
9. Влияние вращения Земли на равновесие и движение тел.
10. Общие теоремы динамики точки.
11. Количество движения.
12. Импульс силы.
13. Теорема об изменении количества движения точки.
Изучение данных вопросов необходимо для динамики движения центра масс механической системы, динамики вращательного движения твердого тела, кинетического момента механической системы, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».
Динамика точки. Основные понятия и определения.
В разделе кинематики исследовалось движение тел без учета причин, обеспечивающих это движение. Рассматривалось движение, заданное каким-либо способом и определялись траектории, скорости и ускорения точек этого тела.
В разделе динамики решается более сложная и важная задача. Определяется движение тела под действием сил приложенных к нему, с учетом внешних и внутренних условий, влияющих на это движение, включая самих материальных тел.
Динамикой называется раздел механики, в котором изучаются законы движения материальных тел под действием сил.
Понятие о силе, как о величине, характеризующей меру механического взаимодействия материальных тел, было введено в статике. Но при этом в статике мы, по существу, считали все силы постоянными. Между тем, на движущееся тело наряду с постоянными силами (постоянной, например, можно считать силу тяжести) действуют обычно силы переменные, модули и направления которых при движении тела изменяются.
Как показывает опыт, переменные силы могут определенным образом зависеть от времени, от положения тела и от его скорости.В частности, от времени зависит сила тяги электровоза при постепенном выключении или включении реостата; от положения тела зависит сила упругости пружины; от скорости движения зависят силы сопротивления среды (воды, воздуха).
К понятию об инертности тел мы приходим, сравнивая результаты действия одной и той же силы на разные материальные тела. Опыт показывает, что если одну и ту же силу приложить к двум разным, свободным от других воздействий покоящимся телам, то в общем случае по истечении одного и того же промежутка времени эти тела пройдут разные расстояния и будут иметь разные скорости.
Инертность и представляет собой свойство материальных тел быстрее или медленнее изменять скорость своего движения под действием приложенных сил. Если, например, при действии одинаковых сил изменение скорости первого тела происходит медленнее, чем второго, то говорят, что первое тело является более инертным, и наоборот.
Количественной мерой инертности данного тела является физическая величина, называемая массой тела. В механике масса трассматривается как величина скалярная, положительная и постоянная для каждого данного тела.
В общем случае движение тела зависит не только от его суммарной массы и приложенных сил; характер движения может еще зависеть от формы тела, точнее от взаимного расположения образующих его частиц (т. е. от распределения масс).
Чтобы при первоначальном изучении динамики иметь возможность отвлечься от учета влияния формы тел (распределения масс), вводится понятие о материальной точке.
Материальной точкой называют материальное тело (тело, имеющее массу), размерами которого при изучении его движения можно пренебречь.
Практически данное тело можно рассматривать как материальную точку в тех случаях, когда расстояния, проходимые точками тела при его движении, очень велики по сравнению с размерами самого тела. Кроме того, как будет показано в динамике системы поступательнодвижущееся тело можно всегда рассматривать как материальную точку с массой, равной массе всего тела.
Наконец, материальными точками можно считать частицы, на которые мы будем мысленно разбивать любое тело при определении тех или иных его динамических характеристик.
Точку будем называть изолированной, если на точку не оказывается никакого влияния, никакого действия со стороны других тел и среды, в которой точка движется. Конечно, трудно привести пример подобного состояния. Но представить такое можно.
Время в классической механике не связано с пространством и движением материальных объектов. Во всех системах отсчета движущихся друг относительно друга оно протекает одинаково.
Законы динамики
В основе динамики лежат законы, установленные путем обобщения результатов целого ряда опытов и наблюдений над движением тел и проверенные обширной общественно-исторической практикой человечества. Систематически эти законы были впервые изложены И. Ньютоном.
Первый закон (закон инерции), открытый Галилеем, гласит: изолированная от внешних воздействий материальная точка сохраняет свое состояние покоя или равномерного прямолинейного движения до тех пор, пока приложенные силы не заставят ее изменить это состояние. Движение, совершаемое точкой при отсутствии сил, называется движением по инерции.
Закон инерции отражает одно из основных свойств материи - пребывать неизменно в движении и устанавливает для материальных тел эквивалентность состояний покоя и движения по инерции. Из него следует, что если F=0, то точка покоится или движется с постоянной по модулю и направлению скоростью ( =const); ускорение точки при этом равно нулю: = 0); если же движение точки не является равномерным и прямолинейным, то на точку действует сила.
Система отсчета, по отношению к которой выполняется закон инерции, называется инерциальной системой отсчета (иногда ее условно называют неподвижной). По данным опыта для нашей Солнечной системы инерциальной является система отсчета, начало которой находится в центре Солнца, а оси направлены на так называемые неподвижные звезды. При решении большинства технических задач инерциальной, с достаточной для практики точностью, можно считать систему отсчета, жестко связанную с Землей.
Второй закон (основной закон динамики) гласит: произведение массы точки на ускорение, которое она получает под действием данной силы, равно по модулю этой силе, а направление ускорения совпадает с направлением силы.
Математически этот закон выражается векторным равенством .
При этом между модулями ускорения и силы имеет место зависимость ma = F.
Второй закон динамики, как и первый, имеет место только по отношению к инерциальной системе отсчета. Из этого закона непосредственно видно, что мерой инертности материальной точки является ее масса, так как две разные точки при действии одной и той же силы получают одинаковые ускорения только тогда, когда будут равны их массы; если же массы будут разные, то точка, масса которой больше (т. е. более инертная), получит меньшее ускорение, и наоборот.
Если на точку действует одновременно несколько сил, то они, как известно, будут эквивалентны одной силе, т.е. равнодействующей ,равной геометрической сумме этих сил. Уравнение, выражающее основной закон динамики, принимает в этом случае вид
или .
Третий закон (закон равенства действия и противодействия) устанавливает характер механического взаимодействия между материальными телами. Для двух материальных точек он гласит: две материальные точки действуют друг на друга с силами, равными по модулю и направленными вдоль прямой, соединяющей эти точки, в противоположные стороны.
Заметим, что силы взаимодействия между свободными материальными точками (или телами), как приложенные к разным объектам, не образуют уравновешенной системы.
Проведём небольшой эксперимент. Попробуем перемещать тяжёлое тело по некоторой криволинейной траектории. Сразу обнаружим, что тело сопротивляется изменению направления движения, изменению скорости. Возникает сила со стороны тела, противодействующая силе , той, которую мы прикладываем к нему.
Эту силу, с которой материальная точка сопротивляется изменению своего движения, будем называть силой инерции этой точки - . По третьему закону она равна и противоположна действующей на точку силе , . Но на основании второй аксиомы . Поэтому .
Итак, сила инерции материальной точки по величине равна произведению её массы на ускорение
.
И направлена эта сила инерции в сторону противоположную вектору ускорения.
Например, при движении точки по кривой линии ускорение . Поэтому сила инерции
.
То есть её можно находить как сумму двух сил: нормальной силы инерции и касательной силы инерции.
Рис.1
Причём
Необходимо заметить, что сила инерции материальной точки, как сила противодействия, приложена не к точке, а к тому телу, которое изменяет её движение. Это очень важно помнить.
Третий закон динамики, как устанавливающий характер взаимодействия материальных частиц, играет большую роль в динамике системы.
Четвертый закон (закон независимого действия сил). При одновременном действии на материальную точку нескольких сил ускорение точки относительно инерционной системы отсчета от действия каждой отдельной силы не зависит от наличия других, приложенных к точке, сил и полное ускорение равно векторной сумме ускорений от действия отдельных сил.
;
Для свободной материальной точки задачами динамики являются следующие: 1) зная закон движения точки, определить действующую на нее силу (первая задача динамики); 2) зная действующие на точку силы, определить закон движения точки (вторая или основная задача динамики).
Решаются обе эти задачи с помощью уравнений, выражающих основной закон динамики, так как эти уравнения связывают ускорение т.е. величину, характеризующую движение точки, и действующие на нее силы.
В технике часто приходится сталкиваться с изучением несвободного движения точки, т.е. со случаями, когда точка, благодаря наложенным на нее связям, вынуждена двигаться по заданной неподвижной поверхности или кривой.
Несвободной материальной точкой называется точка, свобода движения которой ограничена.
Тела, ограничивающие свободу движения точки, называются связями.
Пусть связь представляет собой поверхность какого-либо тела, по которой движется точка. Тогда координаты точки должны удовлетворять уравнению этой поверхности, которое называется уравнением связи.
Если точка вынуждена двигаться по некоторой линии, то уравнениями связи являются уравнения этой лини.
,
Таким образом, движение несвободной материальной точки зависит не только от приложенных к ней активных сил и начальных условий, но так же от имеющихся связей. При этом значения начальных параметров должны удовлетворять уравнениям связей.
Связи бывают двухсторонние или удерживающие и односторонние или неудерживающие.
Связь называется двухсторонней если, накладываемые ею на координаты точки ограничения выражаются в форме равенств, определяющих кривые или поверхности в пространстве на которых должна находится точка.
Пример. Материальная точка подвешена на стержне длины .
Уравнение связи имеет вид:
Связь называется односторонней если, накладываемые ею на координаты точки ограничения выражаются в форме неравенств. Односторонняя связь препятствует перемещению точки лишь в одном направлении и допускает ее перемещение в других направлениях.
Пример. Материальная точка подвешена на нити длины .
Уравнение связи имеет вид:
В случаях несвободного движения точки, как и в статике, будем при решении задач исходить из аксиомы связей (принцип освобождаемости от связей), согласно которой всякую несвободную материальную точку можно рассматривать как свободную, отбросив связь и заменив ее действие реакцией этой связи . Тогда основной закон динамики для несвободного движения точки примет вид:
,
где -действующие на точку активные силы.
Пусть на точку действует несколько сил. Составим для неё основное уравнение динамики: Перенесём все члены в одну сторону уравнения и запишем так: или .
Это уравнение напоминает условие равновесия сходящихся сил. Поэтому можно сделать вывод, что, если к движущейся материальной точке приложить её силу инерции, то точка будет находиться в равновесии. (Вспомним, что на самом деле сила инерции не приложена к материальной точке и точка не находится в равновесии.) Отсюда следует метод решения таких задач, который называется методом кинетостатики:
Если к силам, действующим на точку, добавить ее силу инерции, то задачу можно решать методами статики, составлением уравнений равновесия.
Первая задача динамики для несвободного движения будет обычно сводиться к тому, чтобы, зная движение точки и действующие на нее активные силы, определить реакцию связи.
Пример 1. При движении автомобиля с постоянным ускорением , маятник (материальная точка подвешенная на нити) отклоняется от вертикали на угол (рис.2). Определим с каким ускорением движется автомобиль и натяжение нити.
Рис.2
Рассмотрим «динамическое равновесие» точки. Его так называют потому, что на самом деле точка не находится в равновесии, она движется с ускорением.
На точку действуют силы: вес и натяжение нити , реакция нити. Приложим к точке ее силу инерции , направленную в сторону противоположную ускорению точки и автомобиля, и составим уравнение равновесия:
Рис. 13.1.
|
Из второго уравнения следует
Из первого и .
Пример 2. Лифт весом Р (рис.3) начинает подниматься с ускорением . Определить натяжение троса.
Рис. 3
Рассматривая лифт как свободный, заменяем действие связи (троса) реакцией Т и, составляя уравнение в проекции на вертикаль, получаем:
.
Отсюда находим: .
Если лифт начнёт опускаться с таким же ускорением, то натяжение троса будет равно:
.
Дифференциальные уравнения движения точки
С помощью дифференциальных уравнений движения решается вторая задача динамики. Правила составления таких уравнений зависят от того, каким способом хотим определить движение точки.
1) Определение движения точки координатным способом.
Рассмотрим свободную материальную точку, движущуюся под действием сил ,,.., . Проведем неподвижные координатные осиOxyz (рис.4). Проектируя обе части равенства на эти оси и учитывая, что и т.д., получим дифференциальные уравнения криволинейного движения точки в проекциях на оси прямоугольной декартовой системы координат:
, , .
Рис.4
Так как действующие на точку силы могут зависеть от времени, от положения точки и от ее скорости, то правые части уравнений могут содержать время t, координаты точки х, у, z и проекции ее скорости . При этом в правую часть каждого из уравнений могут входить все эти переменные.
Чтобы с помощью этих уравнений решить основную задачу динамики, надо, кроме действующих сил, знать еще начальные условия, т.е. положение и скорость точки в начальный момент. В координатных осях Oxyz начальные условия задаются в виде: при
.
Зная действующие силы, после интегрирования уравнений найдем координаты х, y, z движущейся точки, как функции времени t, т.е. найдем закон движения точки.
Пример 3. Изучим движение тела, брошенного с начальной скоростью под углом к горизонту, рассматривая его как материальную точку массы т. При этом сопротивлением воздуха пренебрежём, а поле тяжести будем считать однородным (Р=const), полагая, что дальность полёта и высота траектории малы по сравнению с радиусом Земли.
Поместим начало координат О в начальном положении точки. Направим ось вертикально вверх; горизонтальную ось Ox расположим в плоскости, проходящей через Оy и вектор , а ось Oz проведём перпендикулярно первым двум осям (рис.5). Тогда угол между вектором и осью Ox будет равен .
Рис.5
Изобразим движущуюся точку М где-нибудь на траектории. На точку действует одна только сила тяжести , проекции которой на оси координат равны: , , .
Подставляя эти величины в дифференциальные уравнения и замечая, что и т.д. мы после сокращения на m получим:
, , .
Умножая обе части этих уравнений на dt и интегрируя, находим:
, ,
Начальные условия в нашей задаче имеют вид:
при t=0:
,
,
, .
Удовлетворяя начальным условиям, будем иметь:
, , .
Подставляя эти значения С1, С2 и С3 в найденное выше решение и заменяя , , на придём к уравнениям:
.
Интегрируя эти уравнения, получим:
.
Подстановка начальных данных даёт С4=С5=С6=0, и мы окончательно находим уравнения движения точки М в виде:
(1)
Из последнего уравнения следует, что движение происходит в плоскости Оxy.
Имея уравнение движения точки, можно методами кинематики определить все характеристики данного движения.
1. Траектория точки. Исключая из первых двух уравнений (1) время t, получим уравнение траектории точки:
(2)
Это - уравнение параболы с осью, параллельной оси Оy. Таким образом, брошенная под углом к горизонту тяжёлая точка движется в безвоздушном пространстве по параболе (Галилей).
2. Горизонтальная дальность. Определим горизонтальную дальность, т.е. измеренное вдоль оси Оx расстояние ОС=Х. Полагая в равенстве (2) y=0, найдём точки пересечения траектории с осью Ох. Из уравнения:
получаем
Первое решение дает точку О, второе точку С. Следовательно, Х=Х2 и окончательно
. (3)
Из формулы (3) видно, что такая же горизонтальная дальность X будет получена при угле , для которого , т.е. если угол . Следовательно, при данной начальной скорости в одну и ту же точку С можно попасть двумя траекториями: настильной () и навесной ().
При заданной начальной скорости наибольшая горизонтальная дальность в безвоздушном пространстве получается, когда , т.е. при угле .
3. Высота траектории. Если положить в уравнении (2)
, то найдется высота траектории Н:
. (4)
4. Время полета. Из первого уравнения системы (1) следует, что полное время полета Т определяется равенством . Заменяя здесь Х его значением, получим
.
При угле наибольшей дальности все найденные величины равны:
Полученные результаты практически вполне приложимы для ориентировочного определения характеристик полета снарядов (ракет), имеющих дальности порядка 200…600 км, так как при этих дальностях (и при ) снаряд основную часть своего пути проходит в стратосфере, где сопротивлением воздуха можно пренебречь. При меньших дальностях на результат будет сильно влиять сопротивление воздуха, а при дальностях свыше 600 км силу тяжести уже нельзя считать постоянной.
Пример 4. Из пушки, установленной на высоте h, произвели выстрел под углом к горизонту (рис. 6). Ядро вылетело из ствола орудия со скоростью u. Определим уравнения движения ядра.
Рис.6
Чтобы правильно составить дифференциальные уравнения движения, надо решать подобные задачи по определённой схеме.
а) Назначить систему координат (количество осей, их направление и начало координат). Удачно выбранные оси упрощают решение.
б) Показать точку в промежуточном положении. При этом надо проследить за тем, чтобы координаты такого положения обязательно были положительными (рис.6).
в) Показать силы, действующие на точку в этом промежуточном положении (силы инерции не показывать!).
В этом примере это только сила , вес ядра. Сопротивление воздуха учитывать не будем.
г) Составить дифференциальные уравнения по формулам: . Отсюда получим два уравнения: и .
д) Решить дифференциальные уравнения.
Полученные здесь уравнения линейные уравнения второго порядка, в правой части постоянные. Решение этих уравнений элементарно.
и
Осталось найти постоянные интегрирования. Подставляем начальные условия (при t = 0 x = 0, y = h, , ) в эти четыре уравнения: , , 0 = С2, h = D2.
Подставляем в уравнения значения постоянных и записываем уравнения движения точки в окончательном виде
Имея эти уравнения, как известно из раздела кинематики, можно определить и траекторию движения ядра, и скорость, и ускорение, и положение ядра в любой момент времени.
Как видно из этого примера, схема решения задач довольно проста. Сложности могут возникнуть только при решении дифференциальных уравнений, которые могут оказаться непростыми.
2) Определение движения точки естественным способом.
Координатным способом обычно определяют движение точки, не ограниченные какими-либо условиями, связями. Если на движение точки наложены ограничения, на скорость или координаты, то определить такое движение координатным способом совсем не просто. Удобнее использовать естественный способ задания движения.
Определим, например, движение точки по заданной неподвижной линии, по заданной траектории (рис. 7).
Рис.7
На точку М кроме заданных активных сил , действует реакция линии. Показываем составляющие реакции по естественным осям
Составим основное уравнение динамики и спроектируем его на естественные оси
Так как то получим дифференциальные уравнения движения, такие
(5)
Здесь сила - сила трения. Если линия, по которой движется точка, гладкая, то Т = 0 и тогда второе уравнение будет содержать только одну неизвестную координату s:
.
Решив это уравнение, получим закон движения точки , а значит, при необходимости, и скорость и ускорение. Первое и третье уравнения (5) позволят найти реакции и .
Рис. 13.5.
|
Пример 5. Лыжник спускается по цилиндрической поверхности радиуса r. Определим его движение, пренебрегая сопротивлениями движению (рис. 8).
Рис.8
Схема решения задачи та же, что и при координатном способе (пример 4). Отличие лишь в выборе осей. Здесь оси N и Т движутся вместе с лыжником. Так как траектория плоская линия, то ось В, направленную по бинормали, показывать не нужно (проекции на ось Вдействующих на лыжника сил будут равны нулю).
Дифференциальные уравнения по (5) получим такие
(6)
Первое уравнение получилось нелинейным: . Так как , то его можно переписать так: . Такое уравнение можно один раз проинтегрировать. Запишем Тогда в дифференциальном уравнении переменные разделятся: . Интегрирование дает решение Так как при t = 0: и , то С1= 0 и а
К сожалению, в элементарных функциях второй интеграл найти невозможно. Но и полученное решение позволяет сделать некоторые выводы. Можно найти скорость лыжника в любом положении как функцию угла . Так в нижнем положении, при , . А из второго уравнения (6) при можно определить давление: . То есть давление на лыжника в нижнем положении равно его трехкратному весу.
Пример 6: Точка, имеющая массу m, движется из состояния покоя по окружности радиуса R с постоянным касательным ускорением . Определить действующую на точку силу в момент, когда она пройдет по траектории расстояние .
Рис.9
Решение: Применяя дифференциальные уравнения движения точки в проекциях на естественные оси, имеем:
; ; ;
Так как , то ,
; ;
; следовательно ;
; следовательно
Относительное движение материальной точки
В предыдущем параграфе показано было как определяется движение точки относительно неподвижной системы отсчета, абсолютное движение. Нередко приходится исследовать движение материальной точки относительно системы, которая сама движется и довольно сложным образом.
Точка М (рис.10) под действием некоторых сил совершает сложное движение. Абсолютное определяется координатами x, y, z, относительное координатами x1, y1, z1.
Рис.10
Составим основное уравнение динамики для точки , где абсолютное ускорение . Поэтому уравнение будет таким или .
Рис. 13.6.
|
Но - переносная сила инерции, - кориолисова сила инерции. Поэтому основное уравнение динамики для относительного движения запишем так
. (7)
Спроектировав это векторное равенство на подвижные оси x1, y1, z1, имея в виду, что проекции вектора ускорения на оси есть вторые производные от соответствующих координат по времени, получим дифференциальные уравнения относительного движения
(8)
Сравнивая эти уравнения с дифференциальными уравнениями абсолютного движения, замечаем, что относительное движение материальной точки определяется такими же методами, что и абсолютное, надо лишь кроме обычных сил учесть переносную силу инерции и кориолисову силу инерции.
Если переносное движение поступательное, равномерное и прямолинейное, т.е. подвижная система инерциальная, то ускорение и . Значит и дифференциальное уравнение (8) будет точно совпадать с дифференциальным уравнением абсолютного движения. Следовательно, движение точки во всех инерциальных системах описывается аналогичными законами (отличаются только постоянными интегрирования, зависящими от начальных условий).
Поэтому невозможно установить, наблюдая за движением точки, движется система поступательно, равномерно и прямолинейно или находится в покое. Этот вывод впервые был сделан Г.Галилеем и называется его именем принцип относительности Галилея.
Пример 7. Вагон движется с постоянным ускорением . Определим траекторию движения предмета М, упавшего с полки высотой h, которую увидит наблюдатель, пассажир, сидящий в вагоне (рис.11).
Рис. 13.7.
|
Рис.11
Порядок решения задачи тот же, что и при определении абсолютного движения. Только оси надо провести по вагону и учесть кроме веса предмета переносную силу инерции (кориолисова сила инерции переносное движение поступательное).
Дифференциальные уравнения относительного движения получаются такими
Решение этих уравнений
Используя начальные условия (при t = 0: x1 = 0, y1 = h, , т.к. ), найдем постоянные интегрирования: , . Поэтому уравнения движения: Траекторию движения получим, исключив параметр t: Это уравнение прямой (рис. 11). Предмет М упадет на пол вагона на расстоянии от края полки (при ).
Если вагон будет двигаться равномерно (W = 0), то s = 0. Наблюдатель увидит траекторию вертикальную прямую, такую же, как и при неподвижном вагоне.
Пример 8. Внутри трубки, вращающейся с постоянной угловой скоростью вокруг вертикальной оси, находится шарик М, привязанный нитью длиной а к оси вращения (рис. 12). Определим движение шарика в трубке после того, как нить оборвется. Сопротивление воздуха учитывать не будем.
Рис. 13.8.
|
Рис.12
Траектория движения шарика в трубке прямая. Поэтому для определения этого движения достаточно одной координаты х1. Начало координат, точка О, - на оси вращения. В промежуточном положении на шарик действуют силы: вес , две составляющие реакции трубки . Добавляем переносную силу инерции кориолисову силу инерции и составляем дифференциальное уравнение движения: Или, после подстановки значения силы инерции и преобразований:
Решение такого дифференциального уравнения, как известно, имеет вид: и . Так как при t = 0 x1 = 0, то С1 +С2 = а, С1 С2 = 0. Значит и уравнение движения станет таким
Относительная скорость . А т.к. , то
Можно теперь определить относительную скорость шарика в любом положении. Так шарик вылетит из трубки длиной l со скоростью
Влияние вращения Земли на равновесие и движение тел.
При решении большинства технических задач мы считаем систему отсчета, связанную с Землей, неподвижной (инерциальной). Тем самым мы не учитываем суточное вращение Земли и ее движение по орбите вокруг Солнца. Таким образом, считая систему отсчета, связанную с Землей, инерциальной, мы по существу пренебрегаем ее суточным вращением вместе с Землей по отношению к звездам. Это вращение происходит со скоростью: 1 оборот за 23 часа 56 минут 4 секунды, т. е. с угловой скоростью
.
Исследуем, как сказывается такое довольно медленное вращение на равновесии и движении тел.
1. Относительный покой на поверхности Земли. Сила тяжести. Рассмотрим материальную точку, лежащую на неподвижной относительно Земли гладкой «горизонтальной» плоскости (рис.13). Условие ее равновесия по отношению к Земле состоит в том, что , где - сила притяжения Земли, - реакция плоскости, -переносная сила инерции. Так как , то сила имеет только нормальную составляющую, направленную перпендикулярно к оси вращения Земли. Сложим силы и введем обозначение
.
Рис.13
Тогда на точку М будут действовать две силы и , уравновешивающие друг друга. Сила и представляет собою ту силу, которую мы называем силой тяжести.
Направление силы будет направлением вертикали в данном пункте поверхности, а плоскость, перпендикулярная к и будет горизонтальной плоскостью. По модулю (r - расстояние точки М от земной оси) и величина малая по сравнению с , так как величина очень мала. Направление силы мало отличается от направления .
При взвешивании тел мы определяем силу , т.к. именно с такой силой тело давит на тело весов. То есть, вводя в уравнения равновесия силу тяжести , мы вводим в них и силу , т.е. фактически учитываем влияние вращения Земли.
Поэтому при составлении уравнений равновесия тел по отношению к Земле никаких поправок на вращение Земли вводить не надо. В этом смысле равновесие по отношению к Земле можно считать абсолютным.
а) Движение по земной поверхности. При движении точки по меридиану в северном полушарии с севера на юг кориолисово ускорение направлено на восток, а сила - на запад. При движении с юга на север сила будет, очевидно, направлена на восток. В обоих случаях, как мы видим, эта сила будет отклонять точку вправо от направления ее движения. Если точка движется по параллели на восток, то ускорение будет направлено вдоль радиуса МС параллели (рис.14), а сила в противоположную сторону. Вертикальная составляющая этой силы (вдоль ОМ) будет несколько изменять вес тела, а горизонтальная составляющая будет направлена к югу и будет отклонять точку тоже вправо от направления движения. Аналогичный результат получим при движении по параллели на запад.
Рис.14
Отсюда заключаем, что в северном полушарии тело, движущееся вдоль земной поверхности по любому направлению будет вследствие вращения Земли отклоняться вправо от направления движения. В южном полушарии отклонение будет происходить влево.
Этим обстоятельством объясняется то, что реки, текущие в северном полушарии, подмывают правый берег (закон Бэра). В этом же причина отклонений ветров постоянного направления (пассаты) и морских течений.
Значение общих теорем состоит в том, что они устанавливают наглядные зависимости между основными динамическими характеристиками движения материальных тел и открывают тем самым новые возможности исследования движений механических систем, широко применяемые в инженерной практике. Кроме того, общие теоремы позволяют изучать отдельные, практически важные стороны данного явления, не изучая явление в целом. Наконец, применение общих теорем избавляет от необходимости проделывать для каждой задачи те операции интегрирования, которые раз и навсегда производятся при выводе этих теорем; тем самым упрощается процесс решения. Сейчас мы рассмотрим, как выглядят эти теоремы для одной материальной точки.
Количество движения точки
Основными динамическими характеристиками движения точки являются количество движения и кинетическая энергия.
Количеством движения точки называется векторная величина m равная произведению массы точки на вектор ее скорости.Направлен вектор т так же, как и скорость точки, т. е. по касательной к ее траектории.
Кинетической энергией (или живой силой) точки называется скалярная величина , равная половине произведения массы точки на квадрат ее скорости.
Необходимость введения двух динамических характеристик объясняется тем, что одной характеристикой нельзя охватить все особенности движения точки.
Например, зная количество движения автомобиля (т.е. величину ) а не величины и в отдельности) и действующую на него при торможении силу, можно определить, через сколько секунд автомобиль остановится, но по этим данным нельзя найти пройденный за время торможения путь. Наоборот, зная начальную кинетическую энергию автомобиля и тормозящую силу, можно определить тормозной путь, но по этим данным нельзя найти время торможения.
Импульс силы
Для характеристики действия, оказываемого на тело силой за некоторый промежуток времени, вводится понятие об импульсе силы. Введем сначала понятие об элементарном импульсе, т. е. об импульсе за бесконечно малый промежуток времени dt. Элементарным импульсом силы называйся векторная величина , равная произведению вектора силы на элементарный промежуток времени
.
Направлен элементарный импульс по линии действия силы.
Импульс любой силы за конечный промежуток времени t1 вычисляется как интегральная сумма соответствующих элементарных импульсов:
.
Следовательно, импульс силы за любой промежуток времени, равен определенному интегралу от элементарного импульса, взятому в пределах от 0 до .
В частном случае, если сила и по модулю, и по направлению постоянна (=const), будем иметь . Причем, в этом случае и модуль . В общем случае модуль импульса может быть вычислен через его проекции.
Проекции импульса силы на прямоугольные декартовы оси координат равны:
.
Единицей измерения импульса в СИ является
Теорема об изменении количества движения точки
Так как масса точки постоянна, а ее ускорение то уравнение, выражающее основной закон динамики, можно представить в виде
.
Уравнение выражает одновременно теорему об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна геометрической сумме действующих на точку сил.
Проинтегрируем это уравнение. Пусть точка массы m, движущаяся под действием силы (рис.15), имеет в момент t=0 скорость , а в момент t1-скорость .
Рис.15
Умножим тогда обе части равенства на и возьмем от них определенные интегралы. При этом справа, где интегрирование идет по времени, пределами интегралов будут 0 и t1, а слева, где интегрируется скорость, пределами интеграла будут соответствующие значения скорости и . Так как интеграл от равен , то в результате получим:
.
Стоящие справа интегралы представляют собою импульсы действующих сил. Поэтому окончательно будем иметь:
.
Уравнение выражает теорему об изменении количества движения точки в конечном виде: изменение количества движения точки за некоторый промежуток времени равно геометрической сумме импульсов всех действующих на точку сил за тот же промежуток времени (рис. 15).
При решении задач вместо векторного уравнения часто пользуются уравнениями в проекциях.
В случае прямолинейного движения, происходящего вдоль оси Ох теорема выражается первым из этих уравнений.
Вопросы для самопроверки
- Сформулируйте основные законы механики.
- Какое уравнение называется основным уравнением динамики?
- Какова мера инертности твердых тел при поступательном движении?
- Зависит ли вес тела от местонахождения тела на Земле?
- Какую систему отсчета называют инерциальной?
- К какому телу приложена сила инерции материальной точки и каковы ее модуль и направление?
- Объясните разницу между понятиями «инертность» и «сила инерции»?
- К каким телам приложена сила инерции, как направлена и по какой формуле может быть рассчитана?
- В чем заключается принцип кинетостатики?
- Каковы модули и направления касательной и нормальной сил инерции материальной точки?
- Что называют массой тела? Назовите единицу измерения массы в системе СИ?
- Что является мерой инертности тела?
- Запишите основной закон динамики в векторной и дифференциальной форме?
- На материальную точку действует постоянная сила. Как движется точка?
- Какое ускорение получит точка, если на нее действует сила, равная удвоенной силе тяжести?
- После столкновения двух материальных точек с массами m1=6 кг и m2=24 кг первая точка получила ускорение 1,6 м/с. Чему равно ускорение, полученное второй точкой?
- При каком движении материальной точки равна нулю ее касательная сила инерции и при каком нормальная?
- По каким формулам вычисляются модули вращательной и центробежной сил инерции точки, принадлежащей твердому телу, вращающемуся вокруг неподвижной оси?
- Как формулируется основной закон динамики точки?
- Приведите формулировку закона независимости действия сил.
- Запишите дифференциальные уравнения движения материальной точки в векторной и координатной форме.
- Сформулируйте сущность первой и второй основных задач динамики точки.
- Приведите условия, из которых определяются постоянные интегрирования дифференциальных уравнений движения материальной точки.
- Какие уравнения динамики называются естественными уравнениями движения материальной точки?
- Каковы две основные задачи динамики точки, которые решаются с помощью дифференциальных движений материальной точки?
- Дифференциальные уравнения движения свободной материальной точки.
- Как определяются постоянные при интегрировании дифференциальных уравнений движения материальной точки?
- Определение значений произвольных постоянных, появляющихся при интегрировании дифференциальных уравнений движения материальной точки.
- Каковы законы свободного падения тела?
- По каким законам происходят горизонтальное и вертикальное перемещения тела, брошенного под углом к горизонту в пустоте? Какова траектория его движения и при каком угле тело имеет наибольшую дальность полета?
- Как вычислить импульс переменной силы за конечный промежуток времени?
- Что называется количеством движения материальной точки?
- Как выразить элементарную работу силы через элементарный путь точки приложения силы и как через приращение дуговой координаты этой точки?
- На каких перемещениях работа силы тяжести: а) положительна, б) отрицательна, в) равна нулю?
- Как вычислить мощность силы, приложенной к материальной точке, вращающейся вокруг неподвижной оси с угловой скоростью ?
- Сформулируйте теорему об изменении количества движения материальной точки.
- При каких условиях количество движения материальной точки не изменяется? При каких условиях не изменяется его проекция на некоторую ось?
- Приведите формулировку теоремы об изменении кинетической энергии материальной точки в дифференциальной и конечной форме.
- Что называется моментом количества движения материальной точки относительно: а) центра, б) оси?
- Как формулируется теорема об изменении момента количества движения точки относительно центра и относительно оси?
- При каких условиях момент количества движения точки относительно оси остается неизменным?
- Как определяются моменты количества движения материальной точки относительно центра и относительно оси? Какова зависимость между ними?
- При каком расположении вектора количества движения материальной точки его момент относительно оси равен нулю?
- Почему траектория материальной точки, движущейся под действием центральной силы, лежит в одной плоскости?
- Какое движение точки называется прямолинейным? Запишите дифференциальное уравнение прямолинейного движения материальной точки.
- Запишите дифференциальные уравнения плоского движения материальной точки.
- Какое движение материальной точки описывают дифференциальные уравнения Лагранжа первого рода?
- В каких случаях материальную точку называют несвободной и каковы дифференциальные уравнения движения этой точки?
- Дайте определения стационарных и нестационарных, голономных и неголономных связей.
- Какие связи называют двусторонними? Односторонними?
- В чем сущность принципа освобождаемости от связей?
- Какой вид имеют дифференциальные уравнения движения несвободной материальной точки в форме Лагранжа? Что называют множителем Лагранжа?
- Приведите формулировку динамической теоремы Кориолиса.
- В чем сущность принципа относительности Галилея-Ньютона?
- Назовите движения, при которых кориолисова сила инерции равна нулю.
- Какой модуль и какое направление имеют переносная и кориолисова силы инерции?
- В чем заключается различие между дифференциальными уравнениями относительного и абсолютного движений материальной точки?
- Как определяются переносная и кориолисова силы инерции в различных случаях переносного движения?
- В чем состоит сущность принципа относительности классической механики?
- Какие системы отсчета называются инерциальными?
- Каково условие относительного покоя материальной точки?
- В каких точках земной поверхности сила тяжести имеет наибольшее и наименьшее значения?
- Чем объясняется отклонение падающих тел к востоку?
- В каком направлении отклоняется тело, брошенное вертикально вверх?
- В шахту опускается бадья с ускорением а=4 м/с2. Сила тяжести бадьи G=2 кН. Определите силу натяжения каната, поддерживающего бадью?
- Две материальные точки движутся по прямой с постоянными скоростями 10 и 100 м/с. Можно ли утверждать, что к этим точкам приложены эквивалентные системы сил?
1) нельзя;
2) можно.
- К двум материальным точкам массой 5 и 15 кг приложены одинаковые силы. Сравните численные значения ускорения этих точек?
1) ускорения одинаковы;
2) ускорение точки массой 15 кг в три раза меньше, чем ускорение точки массой 5 кг.
- Можно ли задачи динамики решать с помощью уравнений равновесия?
1) можно;
2) нельзя.