Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Содержание
1.1 Описание и конструкторско-технологический анализ детали
1.2 Анализ требований к геометрическим параметрам поверхностей детали
1.3 Тип производства и программа выпуска
5.1 Выбор оборудования
5.2 Выбор станочных приспособлений
.3 Выбор режущих инструментов
5.4 Выбор вспомогательных инструментов
5.5 Выбор контрольно-измерительных средств
.6 Назначение режимов резания
5.7 Техническое нормирование операций
Библиографический список
1. Исходные данные и их анализ
1.1 Описание и конструкторско-технологический анализ детали
Плунжер является фиксатором рычага и подпружинивает упор шептала через плечо.
Плунжер входит в состав затыльника, который, в свою очередь, предназначен для размещения механизма подачи, электропуска, выключателя и спускового механизма. В пазу затыльника размещается шептало, которое прокачивается на оси. Зацеп шептала удерживает остов затвора в крайнем заднем положении, а выступ шептала взаимодействует с плечом упора шептала.
В другом пазу затыльника на оси размещается упор шептала, который своим плечом препятствует опусканию шептала. Упор шептала через плечо подпружинен плунжером. Третье плечо упора шептала, взаимодействуя с остовом затвора при откате, выводит упор шептала из зацепления с шепталом для обеспечения забега остова затвора за шептало.
Плунжер является телом вращения, которое с левого торца имеет выступ в виде плоской поверхности с фасками. Цилиндрическая часть детали представлена двумя диаметрами. На наружной поверхности большего диаметра паз выполненный в форме квадрата со скруглёнными углами. Деталь имеет центральное отверстие с правого торца; отверстие глухое ступенчатое с цилиндрической поверхностью без резьбы. На наружных поверхностях резьба также отсутствует.
В качестве материала детали выбираем сталь 30 ХРА, которая является оптимальным вариантом с физико-механическими свойствами и стоимостью, соответствующими применению и назначению детали, а также техническим требованиям, предъявляемым к ней.
Сталь 30 ХРА является хромистой высококачественной с массовыми долями элементов: углерода 0.27 .33%, кремния 0.17 .37%, марганца 0.5 .8%, хрома 1 .3%. Бор вводится по расчёту (без учёта угара) в количестве не более 0.005%;при этом остаточная массовая доля его в стали должна быть не менее 0.001%.
Основным легирующим элементом является хром, который повышает твёрдость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость. Бор повышает износостойкость стали.
Также в стали допускается наличие вольфрама до 0.2%, молибдена до 0.15%, титана до 0.03% и ванадия до 0.05%.
Массовая доля фосфора, серы, остаточных меди и никеля в стали не должна превышать норм (по ГОСТ 4543 71 для высококачественных сталей): P .025%; S .025%; Cu /30%; Ni .30%.
Твёрдость по Бринеллю горячекатаного проката после термообработки диаметром свыше 5 мм должна быть не более 241 (HB); диаметр отпечатка не менее 3.9 мм.
Механические свойства при нормальной температуре:
Для достижения необходимой твёрдости (43.5…51.5 HRCэ) и заданных механических свойств назначаем термообработку закалка + низкий отпуск. Температура первой закалки 9000С, температура второй закалки 8600С; среда охлаждения масло (т.е. скорость охлаждения не высокая, т.к. легированная сталь обладает большей прокаливаемостью, чем углеродистая).
Температура отпуска 2000С; среда охлаждения воздух.
При проведении неполной закалки (сталь доэвтектоидная) при нагреве в структуре мартенсита сохраняется некоторое количество оставшегося после закалки феррита, снижающего твёрдость закалённой стали. Назначая закалку при температурах нагрева выше точки Ас3(полная закалка), получаем сталь со структурой однородного аустенита, который при последующем охлаждении превращается в мартенсит. Сталь благодаря этому становится твёрдой, кроме того, повышается прочность.
Целью отпуска является уменьшение напряжений в стали, повышение вязкости. В данном случае назначение низкого отпуска обосновывается тем, что во время отпуска мартенсит закалки превращается в мартенсит отпуска, при этом внутренние напряжения частично снимаются и остаточный аустенит превращается в мартенсит отпуска. В результате сталь сохраняет высокую твёрдость и даже возможно повышение твёрдости (в пределах, указанных в технических требованиях) за счёт распада остаточного аустенита; устраняется закалочная хрупкость.
1.2 Анализ требований к геометрическим параметрам поверхностей детали
На рис.1 дан эскиз детали с нумерацией поверхностей. Для анализа детали по механически обрабатываемым поверхностям составляем таблицу, в которую сводим данные с каждой поверхности и методы механической обработки, с помощью которых возможно обеспечение этих требований.
Рис.1. Эскиз деталей поверхности.
Результаты анализа приведены в таблице 1.
Результаты анализа технических требований, предъявляемых к детали, приведены в таблице 2.
Таблица 1.
Анализ требований по точности и шероховатости поверхностей детали.
№ |
Наименование поверхности |
Основной размер, мм |
квалитет |
Отклонение, мм |
Ra |
Механическая обработка поверхности |
1 |
Торец левый |
L=10.5 |
h12 |
-0.18 |
10 |
Фрезерование черновое |
2 |
Выемка |
L=9.8 |
H11 |
+0.11 |
Фрезерование черновое |
|
3 |
Выемка, правая граница |
L=24 |
H11 |
+0.13 |
Фрезерование черновое |
|
4 |
Ступень цилиндрическая |
d=8 |
d11 |
-0.05 -0.15 |
.5 |
Наружное обтачивание черновое, шлифование круглое получистовое |
5 |
Поверхность цилиндрическая |
L=2 d=8.05 |
h9 |
-0.03 |
.5 |
Наружное обтачивание черновое, шлифование круглое получистовое, чистовое |
6 |
Торец левый |
L=13 |
h14 |
-0.43 |
Фрезерование черновое |
|
7 |
Отверстие глухое |
d=2.6 |
H11 |
+0.06 |
.5 |
Сверление, растачивание черновое, получистовое и чистовое |
8 |
Отверстие (с правого торца) |
d=5.8 |
H9 |
+0.25 |
.5 |
Сверление, зенкерование черновое, развёртывание получистовое |
9 |
Торцы (габаритный размер по длине) |
L=49.2 |
h11 |
-0.17 |
Подрезка торцов черновая, получистовая и чистовая |
|
10 |
Отверстие (левая граница) |
d=2.6 L=22.7 |
H11 |
+0.14 |
.5 |
Сверление, развёртывание получистовое |
11 |
Отверстие (перпендикулярное оси заготовки) |
d=2.05 |
H12 |
+0.12 |
Сверление |
|
12 |
Ступень цилиндрическая |
d=8 |
f9 |
-0.013 -0.049 |
.5 |
Шлифование круглое получистовое, чистовое |
Таблица 2.
Анализ технических требований по точности положения поверхностей детали.
№ |
Наименование и номер поверхности |
Параметр |
База |
Допуск, мм |
Метод достижения |
1 |
Отверстие глухое 7 |
Несоосность |
8,12 |
0,05 |
Сверление, развертывание получистовое |
1.3 Тип производства и программа выпуска
Тип производства необходимо учитывать при проектировании технологического процесса изготовления детали.
Тип производства устанавливаем по таблице 4 (с.28)[1]; объём выпуска деталей в год соответствует мелкосерийному производству. Для данного типа производства коэффициент закрепления операций кзо, рассчитываемый по формуле кзо = Оуч/Р (Оуч число различных операций на участке; Р число рабочих мест участка), находится в пределах:20<кзо<40.
2. Выбор заготовки
Рациональным выбором способа изготовления заготовки достигается снижение трудоёмкости механической обработки, что обеспечивает рост производства на тех же производственных площадях без существенного увеличения количества оборудования и технологической оснастки. Наряду с этим рациональный выбор способов изготовления заготовок применительно к различным производственным условиям определяет степень механизации и автоматизации производства.
Для детали «Плунжер» с относительно небольшими перепадами диаметров в качестве исходной заготовки выбираем стальной прокат круглого сечения диаметром dзаг=14 (мм) по ГОСТ 2590-88 (табл.4, с.548 [9]. Из него гибкой левого торца будет образована заготовка, максимально приближённая по конфигурации к готовой детали.
Массу заготовки определим по формуле:
Мзаг=Мцил+Мгибк
Мцил=ρVцил= ρπR2H=7.81·10-3·3.14·72·42=50.47(г)
Мгибк=ρV=ρabh= 7.81·10-3·9·14·27=26.57(г)
Мзаг= 50.47+26.57=77.04(г)
Коэффициент использования материала равен:
Ки.м.=34/77.04=0.441, или 44.1%
Хотя коэффициент использования материала заготовки небольшой, но по экономическим показателям выгоднее принять прокат.
Механические свойства проката при нормальной температуре, определяемые на продольных термически обработанных образцах должны соответствовать значениям:
3. Разработка маршрута технологического процесса изготовления детали
Основой для проектирования технологического процесса механической обработки являются сведения о детали, методах достижения требований по точности и шероховатости поверхностей, типе производства.
Первой назначаем токарную операцию (01) операция по созданию технологической базы центрового отверстия, также производится подрезание торца, обтачивается цилиндрическая поверхность, скругляются острые рёбра и деталь отрезают в заданный размер. Оборудование станок токарновинторезный 1А616.
02 токарная операция: подрезание торца в определённый размер, обтачивают диаметр (меньший), центрование отверстия, скругление острых рёбер. Оборудование станок токарно винторезный 1А616.
03- шлифовальная операция: шлифование цилиндрической поверхности. Оборудование: станок круглошлифовальный 3А130.
04;05 фрезерные операции: фрезерование плоской поверхности с одной и другой сторон соответственно. Оборудование станки вертикально фрезерные 6Р10.
06;07 фрезерные операции: фрезерование плоских поверхностей в заданные размеры. Оборудование станки вертикально фрезерные 6Р10.
08;09;10;11 фрезерные операции: фрезерование фаски, скоса в размер, фаски с другой стороны и скоса в определённые размеры соответственно. Оборудование станки вертикально фрезерные 6Р10.
12 фрезерная операция: фрезерование выемки. Оборудование станок вертикально фрезерный 6Р10.
13 сверлильная операция: зенкерование площадки, сверление и развёртывание отверстия, скругление острых рёбер в отверстии. Оборудование станок вертикально сверлильный 2Н118-4.
14 токарная операция: обтачивается наружная цилиндрическая поверхность; сверление, зенкерование и развёртывание отверстия; сверление и развёртывание соосного с предыдущим отверстия, скругление острых рёбер. Оборудование станок токарно винторезный с ЧПУ 16К20Ф3.
15 контрольная операция; проверка размеров, радиусов скруглений. Средства контроля и измерения, выбранные для всех контрольных операций, будут описаны ниже.
16 термическая: подробное описание см.п.
17 шлифовальная операция: шлифование наружной цилиндрической поверхности (обоих ступеней). Оборудование станок круглошлифовальный с ЧПУ 16К20Ф3.
18 токарная операция: отрезают прибыль под ложный центр. Оборудование станок токарно-винторезный 1А616.
19 токарная операция: обтачивают недоход шлифовального круга; развёртывание отверстия (меньшего диаметра). Оборудование станок токарно-винторезный 1А616.
20 контрольная операция: проверка шероховатости и твёрдости (после ТС).
21 очистка пескоструйная.
22 покрытие.
23 контрольная операция: проверка наличия отметки за покрытие.
Назначенные вышеперечисленные операции в заданной последовательности обеспечивают достижение необходимых классов точности размеров и чистоты поверхности детали, а также необходимой конфигурации детали.
4. Расчёт припусков на механическую обработку
Наиболее точный метод расчётно аналитический.
Рассчитаем с помощью данного метода припуски на обработку на операциях 03 и 04.
Метод даёт наиболее точные оптимальные значения припусков, что позволяет сэкономить металл, уменьшить трудоёмкость изготовления детали и соответственно улучшить технико экономические показатели технологического процесса, и применяется независимо от типа производства.
Операция 03.Расчёт припусков на обработку цилиндрической поверхности в диаметр 12-0,05 Rа2,5 (все ссылки на источник [3]).
Для обеспечения 3-го класса точности и 6-го класса чистоты назначаем шлифование плоское получистовое (таблица 4 с.90).
Двусторонний припуск рассчитаем по формуле:
(К=1.2)
,
где δзаг=0.8мм допуск на диаметральный размер;
;
где l=0.5 L (L общая длина заготовки);
ρ0=10(мкм/мм) (примечание 3 к табл. 30);
ρкр=10·0.5·52=260(мкм);
Вычисляем припуск:
;
;
Диаметр заготовки:
dзаг=12+1,2=13,2 (мм).
По сортаменту выбираем:
.
Операция 04.Расчёт одностороннего припуска на обработку плоской поверхности в размер l=6.5-0.2(мм).
Односторонний припуск рассчитаем по формуле:
(К=1.2)
∆а→ρнеп=200(мкм) неперпендикулярность торца заготовки относительно её оси;
Погрешность заготовки εв=0 (εб=0; εз=0; εп=0).
.
Необходимая длина:
l=6.5+0.3=6.8(мм).
.
Для остальных механически обрабатываемых поверхностей промежуточные припуски и размеры определяем табличным методом [9]. По припускам устанавливаем размер заготовки.
По таблице 7 с.587 [9] назначаем припуски на обработку отверстий:
Сверление: 2.5мм; допуск по Н11(+0.06)мм;
Сверление: 5.6 мм;
Развёртывание: 5.8 Н9;
Допуск по Н9(+0.03)мм;
Сверление: 2мм; допуск по Н12(+0.1)мм.
Припуски на шлифование в центрах (на диаметральные размеры) назначаем по таблице 19 с.603 [9]:
Из таблицы 4 с. 584: назначаем диаметр заготовки (деталь изготавливается из круглого сортового проката):
при номинальном диаметре детали 12(мм) выбираем диаметр заготовки 14(мм).
По полученным размерам вычисляем массу заготовки и коэффициент использования материала. Расчёт приведён выше (в п.2).
5. Проектирование станочных операций
.1 Выбор оборудования
В соответствии с содержанием назначенных операций, и увязывая их с технологическими возможностями станков, а также ориентируясь по классам точности металлорежущих станков, выбираем следующие модели оборудования:
перечисленные выше станки являются универсальными, обеспечивают обработку заготовки в заданные размеры по необходимым классам точности, с их применением возможно снижение себестоимости механической обработки заготовки за счёт невысокого уровня ремонтосложностей, соответствующих затрат и норм амортизационных отчислений по сравнению с их аналогами;
Операция 14-станок токарно-винторезный с ЧПУ 16К20Ф3, выполняется многосложная обработка: обтачивается наружная цилиндрическая поверхность, производится сверление, зенкерование, развёртывание отверстий, а также сверление и развёртывание соосного с ним отверстия, скругление острых рёбер.
Операция 17-станок круглошлифовальный с ЧПУ 16К20Ф3; шлифование наружной цилиндрической поверхности обеих ступеней с заданной точностью.
Применение станков с ЧПУ, предназначенных для соответствующей обработки заготовок в условиях мелкосерийного производства, позволяет уменьшить время цикла обработки заготовки, повысить производительность оборудования, экономический эффект, а также число высвобождаемых рабочих, что повлияет на себестоимость изготовления детали (в сторону её снижения).
Таким образом, выбор перечисленных выше моделей позволит повысить эффективность технологического процесса как с технологической, так и с экономической точки зрения.
.2 Выбор станочных приспособлений
В производстве широко применяется разнообразная технологическая оснастка, в которую входят приспособления.
Станочные приспособления применяются для установки и закрепления на станках обрабатываемых заготовок.
Руководствуясь требованиями, предъявляемыми к приспособлениям, назначаем соответственно операциям:
(06 с креплением в неподвижном люнете;
с креплением в неподвижном люнете с примением одиночного зажима;
- с креплением в неподвижном люнете с упором в торец с применяем одиночного зажима);
По эксплуатационной характеристике станочные присобления подразделяются на универсальные, специализированные (сменные устройства) и специальные.
Из выбранных приспособлений к универсальным относятся: патроны трёхкулачковые, кондукторы, центры упорные, тиски; к специализированным специальные губки для тисков; к специальным универсально-сборные приспособления (УСП).
Назначенные станочные приспособления соответствуют предъявляемым к ним требованиям: точное базирование и надёжное закрепление заготовок на станках, свободный подход инструментов ко всем обрабатываемым поверхностям, лёгкость переналадки или замены приспособления.
Использование данных приспособлений обеспечит:
Т.о., выбор данных станочных приспособлений и технологически, и экономически обоснованно.
.3 Выбор режущих инструментов
Режущие инструменты должны отвечать требованиям:
В соответствии с перечисленными требованиями и содержанием операций назначаем режущие инструменты:
Перечисленные режущие инструменты были выбраны по следующим причинам:
Т.о., выбранные режущие инструменты соответствуют необходимым нормам технологичности, надёжности и экономичности.
.4 Выбор вспомогательных инструментов
Вспомогательные инструменты это приспособления для установки и закрепления режущего инструмента, осуществляющие связь между инструментом и станком.
Требования, предъявляемые к вспомогательным инструментам:
Инструменты к токарным станкам: резцедержатели с цилиндрическим хвостовиком и цилиндрическим отверстием, державки, а также резцедержатели с базирующей призмой с открытой перпендикулярным пазом к станкам с ЧПУ.
Вспомогательные инструменты к сверлильным станкам: инструменты с цилиндрическими хвостовиками закрепляются в патронах (например, трёхкулачковых).
В серийном производстве при необходимости быстрой смены инструмента без остановки станка, при последовательной обработке отверстия сверлом, зенкером и развёрткой (в частности операция 14) используют быстросменные патроны. Их составными частями являются кольцо, которое поднимается вверх для смены инструмента, шарика, расходящиеся при этом под действием центробежных сил, и втулка, с которой инструмент свободно выходит из патрона. После установки очередного инструмента кольцо опускается и своими скосами принудительно заводит шарики в углубление, имеющееся во втулке. Шарики удерживают инструмент от выпадения и одновременно передают ему крутящий момент от шпинделя.
Вспомогательные инструменты к круглошлифовальным станкам: крепление шлифовальных кругов на шпинделе винтом или гайкой, крепление шлифовальных кругов на шпинделе фланцами (прижимную поверхность фланцев выполняют с поднутрением 0,1 ,3 мм; между фланцами и инструментом устанавливают прокладки).
Вспомогательные инструменты к фрезерным станкам: фрезы закрепляются непосредственно в шпинделе станка, или с помощью оправок с продольной шпонкой и коническим хвостовиком с лапкой (для торцовых фрез).
Выбранные вспомогательные инструменты обеспечивают точность обработки заготовки, что позволяет снижать трудоёмкость изготовления детали, а следовательно, и себестоимость детали.
.5 Выбор контрольно-измерительных средств
Для отладки и контроля стабильности и точности технологических процессов механической обработки проводиться измерение. Показателями процесса контроля являются точность и достоверность измерений, трудоёмкость контроля и его стоимость, полнота, периодичность, продолжительность.
Ориентируясь на тип производства, вид заготовки, программу выпуска, параметры и показатели подлежащие контролю, производим выбор средств измерения:
В частности, для рассматриваемой (фрезерной) операции 04 применяют калибр для контроля точности линейного размера обработанной поверхности.
5.6 Назначение режимов резания
Полный расчет режимов резания проведем для операции 04. На вертикально-фрезерном станке 6P10 производится торцевое фрезерование плоской поверхности шириной 13мм и длиной 23мм; припуск на обработку р=0.3 мм. Обрабатываемый материал сталь 30ХРА с НВ241, σ=1570 МПа; заготовка прокат. Параметр шероховатости RZ=40 мкм.
Геометрические элементы фрезы: φ=65°; γ=+5; α=8°; α1=10°; φ1=5°;
2.1) устанавливаем глубину резания. Припуск снимаем за 1 рабочий ход, следовательно: t=h=0.3(мм);
.2) назначаем подачу на зуб фрезы (карта 108 с.209).
для стали, твердого сплава Т5К10, мощности станка Ng=3(кВт) при фрезеровании по схеме, «смещенного» фрезерного SZ=0.24..0.28(мм/зуб). Принимаем SZ=0.26(мм/зуб). При «смешенном» фрезеровании создаются наиболее благоприятные условия врезания зубьев фрезы в обрабатываемую заготовку, что позволяет увеличить Sz по сравнению с Sz при симметричном фрезеровании примерно в 2 раза.
Поправочный коэффициент на подачу (с. 213) =1.
Т.о. Sz=0,26 (мм/зуб).
.3) назначаем период стойкости фрезы (таблица 2 с.203, 204).
Для торцевой фрезы (D=40 мм) период стойкости Т=120 (мин).
Допустимый износ зубьев фрезы по задней поверхности h3=1.2 (мм).
.4) Определяем скорость главного движения резания, допускаемую режущими свойствами фрезы (карта 110 с.212, 213): табличное значение
Uтабл=145 (м/мин).
Учитываем поправочные коэффициенты на скорость: КMU =1.89. В зависимости от состояния поверхности: (без корки) Кnu =1.
Тогда Un =Uтабл ·КMU=145·1.89=274(м/мин)≈ 4.57(м/с).
2.5) Частота вращения шпинделя, соответствующая найденной скорости главного движения резания:
n=1000·Un/π·D=(1000·274)/(3.14·40)=2182(мин-1).
По данным станка устанавливаем действительную частоту вращения шпинделя: ng=2100(мин-1).
.6)Действительная скорость главного движения резания:
Ug=π·Z·n·g/1000=3.14·40·2100/1000=264 (м/мин)≈4.4(м/с).
2.7) Определяем скорость движения подачи:
US=SM=SZ·ng=0.26·2100=546(мм/мин).
Корректируем эту величину по данным станка и устанавливаем действительную скорость подачи US=550(мм/мин).
.8) Определяем мощность, затрачиваемую на резание (карта 111с. 214, 215): Nтабл=1.6(кВт) для US=SM=550(мм/мин).
Учитывая поправочные коэффициенты: КφN=1.02 b KφN=0.74, находим:
Nрез=Nтабл· КφN·KφN=1.21(кВт).
2.9) Проверяем, достаточна ли мощность привода станка.
Необходимо выполнение условия: Nрез Nшп. Мощность на шпинделе станка Nшп =Ngη. У станка 6Р10 Ng = 3 (кВт), а η =0,8; Nшп = 3·0,8=2,4 (кВт). Следовательно, обработка возможна (1.21<2.4).
) Основное время То=L/Vs.
При «смещенном» фрезеровании врезание фрезы у= 0,3Д, у=0,3·40=12(мм). Перебег ∆=7(мм). Тогда L=23+12+7=42(мм); То=42/550=0,076(мин).
.7 Техническое нормирование операции
Цель установление технически обоснованных норм времени, которые являются важными исходными данными для экономических и организационных расчетов при проектирование участка механического цеха.
Штучное время операции:
Тшт= То+Тв+Торг+Ттех+Тотд,
где То норма основного время операции;
Тв - норма вспомогательного время операции;
Торг время организационного обслуживания рабочего места;
Тотд - время на отдых и личные потребности;
По карте 24 с. 40 [6] определяем неполное штучное время: tн.шт = 1.6 (мин) и корректируем его с поправочных коэффициентов:
- в зависимости от предела прочности стали σв>850(Н/мм2) Кσт=1,25;
- в зависимости от мощности электродвигателя станка Ng= 3(кВт) КNт=2;
Тогда штучное время операции: Тшт= 1,6·1,25·2=4(мин).
Подготовительно заключительное время: Тп= 0,5(мин).
Штучное калькуляционное время: Тш-к= Тшт+ Тп/ng (ng=10)
Тш-к=4+0.05=4.05(мин).
Библиографический список