У вас вопросы?
У нас ответы:) SamZan.net

а. На жевательной поверхности ее толщина достигает 15 17 мм на боковых поверхностях она значительно тоньше и

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

Эмаль (enamelum). Эта ткань, покрывающая коронку зуба, является самой твердой в организме (250—800 ед. Виккер-са). На жевательной поверхности ее толщина достигает 1,5— 1,7 мм, на боковых поверхностях она значительно тоньше и сходит на нет к шейке, в месте соединения с цементом.


Структура эмали. Основным структурным образованием эмали являются эмалевые призмы диаметром 4—б мкм. Длина призмы соответствует толщине слоя эмали и даже превышает ее благодаря извилистому направлению. Эмалевые призмы, концентрируясь в пучки, образуют S-образные изгибы. Вследствие этого на шлифах эмали выявляется оптическая неоднородность (темные или светлые полосы): в одном участке призмы срезаны в продольном направлении, в другом — в поперечном (полосы Гунтера—Шрегера) (рис. 3.16). Кроме того, на шлифах


Эмалевая призма имеет поперечную исчерченность, которая отражает суточный ритм осложнений минеральных солей. Сама призма в поперечном сечении, в большинстве случаев, имеет аркадообразную форму или форму чешуи, но может быть полигональной, округлой или гексагональной.
Ранее считали, что вокруг каждой призмы имеется оболочка, содержащая большое количество органического вещества. С помощью более современных методик, в частности электронной микроскопии, установлено, что межпризменное вещество эмали состоит из таких же кристаллов, как и сама призма, но отличается их ориентацией. Органическое вещество эмали обнаруживается в виде тончайших фибриллярных структур. Существует мнение, что органические волокна определяют ориентацию кристаллов призмы эмали.


В эмали зуба, кроме указанных образований, встречаются ламеллы, пучки и веретена (рис. 3.18). Ламеллы (пластинки) проникают в эмаль на значительную глубину, эмалевые пучки — на меньшую. Эмалевые веретена — отростки одонтобластов — проникают в эмаль через дентино-эмалевое соединение.


Основной структурной единицей призмы считаются кристаллы апатитоподобного происхождения, которые плотно прилежат друг к другу, но располагаются под углом. Считают, что размеры кристаллов с возрастом увеличиваются. Структура кристалла обусловлена величиной элементарной ячейки. Кристаллы гидроксиапатита и фторапатита имеют свои параметры.


Химический состав. Г. Н. Пахомов (1982), исследовавший структуру кристаллов, считает, что эмаль зубов состоит из апатитов многих типов, однако основным является гидрокси-апатит — Са10(РО4)6(ОН)2. Неорганическое вещество в эмали представлено (%): гидроксиапатитом — 75,04; карбонатапа-титом — 12,06; хлорапатитом — 4,39; фторапатитом — 0,63; карбонатом кальция — 1,33; карбонатом магния — 1,62. В составе химических неорганических соединений кальций составляет 37 %, а фосфор — 17 %.


Состояние эмали зуба во многом определяется соотношением Са/Р как элементов, составляющих основу эмали зуба. Это соотношение непостоянно и может изменяться под воздействием ряда факторов. Здоровая эмаль молодых людей имеет более низкий коэффициент Са/Р, чем эмаль зубов взрослых; этот показатель уменьшается также при деминерализации эмали. Более того, возможны существенные различия соотношения Са/Р в пределах одного зуба, что послужило основанием для утверждения о неоднородности структуры эмали зуба и, следовательно, о неодинаковой подверженности различных участков поражению кариесом.


Для апатитов, каковыми являются кристаллы эмали зуба, молярное соотношение Са/Р составляет 1,67. Однако, как это установлено в настоящее время, соотношение этих компонентов может изменяться как в сторону уменьшения (1,33), так и в сторону увеличения (2,0). При соотношении Са/Р 1,67 разрушение кристаллов происходит при выходе 2 ионов Са2+, при соотношении 2,0 гидроксиапатит способен противостоять разрушению до замещения 4 Са2+, тогда как при соотношении Са/Р 1,33 его структура разрушается. По существующим представлениям, коэффициент Са/Р можно использовать для оценки состояния эмали зуба.


В результате многочисленных исследований, проведенных как в нашей стране, так и за рубежом, установлено, что микроэлементы в эмали располагаются неравномерно. В наружном слое отмечается большое содержание фтора, свинца, цинка, железа при меньшем содержании в этом слое натрия, магния, карбонатов. Равномерно по слоям распределяются стронций, медь, алюминий, калий.


Каждый кристалл эмали имеет гидратный слой связанных ионов (ОН"), образующихся на поверхности раздела кристалл — раствор. Считают, что благодаря гидратному слою осуществляется ионный обмен, который может протекать по гетероионному механизму обмена, когда ион кристалла замещается другим ионом среды, и по изоионному — когда ион кристалла замещается таким же ионом раствора. В настоящее время установлено, что кроме связанной воды (гидратная оболочка кристаллов) в эмали имеется свободная вода, располагающаяся в микропространствах. Общий объем воды в эмали составляет 3,8 %. Первое упоминание о жидкости, находящейся в твердых тканях зуба, относится к 1928 г. В дальнейшем стали дифференцировать зубную жидкость, которая содержится в дентине, от эмалевой жидкости, заполняющей микропространства, объем которых составляет 0,1—0,2 % от объема эмали. В исследованиях на удаленных зубах человека с использованием специальной методики подогрева показано, что через 2—3 ч после начала опыта на поверхности эмали образуются капельки «эмалевой жидкости». Движение жидкости обусловлено капиллярным механизмом, а по жидкости диффундируют молекулы и ионы. Эмалевая жидкость играет биологическую роль не только в период развития эмали, но и в сформированном зубе, обеспечивая ионный обмен.


Органическое вещество эмали представлено белками, липидами и углеводами. В белках эмали определены следующие фракции: растворимая в кислотах и ЭДТА — 0,17 %, нерастворимая — 0,18 %, пептиды и свободные аминокислоты — 0,15 %. По аминокислотному составу эти белки, общее количество которых составляет 0,5 %, имеют признаки кератинов. Наряду с белком в эмали обнаружены липиды (0,6 %), цитраты (0,1 %), полисахариды (1,65 мг углеводов на 100 г; эмали).


Таким образом, в составе эмали присутствуют: неорганические вещества — 95 %, органические — 1,2 % и вода — 3,8 %. В соответствии с данными других авторов, содержание органических веществ достигает 3 %.


Функции эмали зуба. Эмаль — это бессосудистая и самая твердая ткань организма. Кроме того, эмаль остается относительно неизменной в течение всей жизни человека.


Указанные свойства объясняются функцией, которую она выполняет — защищает дентин и пульпу от внешних механических, химических и температурных раздражителей.


Только благодаря этому зубы выполняют свое назначение — откусывают и измельчают пищу. Структурные особенности эмали приобретены в процессе филогенеза.


Явление проницаемости эмали зуба осуществляется благодаря смыванию зуба (эмали) снаружи ротовой жидкостью, а со стороны пульпы — тканевой и наличию пространств в эмали, заполненных жидкостью. Возможность проникновения в эмаль воды и некоторых ионов известна с конца прошлого и начала нашего столетия. Так, С. F. Bedecker (1996) утверждал, что зубная лимфа может проходить через эмаль, нейтрализуя молочную кислоту и постепенно увеличивая плотность за счет содержащихся в ней минеральных солей. В настоящее время проницаемость эмали изучена довольно подробно, что позволило пересмотреть ряд ранее существовавших представлений. Если ранее считали, что вещества в эмаль поступают по пути пульпа — дентин — эмаль, то в настоящее время не только установлена возможность поступления веществ в эмаль из слюны, но и доказано, что этот путь является основным (рис. 3.19). Эмаль проницаема в обоих направлениях: от поверхности эмали к дентину и пульпе и от пульпы к дентину и поверхности эмали. На этом основании эмаль зуба считают полупроницаемой мембраной. L. S. Fosdicr с соавт. (1959) указывают, что проницаемость — главный фактор созревания эмали зубов после прорезывания. По их мнению, в зубе проявляются обычные законы диффузии. При этом вода (эмалевая жидкость) проходит со стороны малой молекулярной концентрации в сторону высокой, а молекулы и диссоциированные ионы — со стороны высокой концентрации в сторону низкой. Иначе говоря, ионы кальция перемещаются из слюны, которая пересыщена ими, в эмалевую жидкость, где их концентрация низкая.


В настоящее время имеются бесспорные доказательства проникновения в эмаль и дентин зуба из слюны многих неорганических и органических веществ. Показано, что при нанесении на поверхность интактной эмали раствора радиоактивного кальция (45Са) он уже через 20 мин обнаруживался в поверхностном слое. При более длительном контакте раствора с зубом 45Са проникал на всю глубину эмали до эмалево-дентинного соединения. Аналогичными исследованиями установлено включение радиоактивного фосфора в дентин и эмаль интактного зуба животного после внутривенного введения или аппликации раствора Na2HP32O4 на поверхность зуба.


Выявленные закономерности проникновения кальция и фосфора в эмаль зуба из слюны послужили теоретической предпосылкой для разработки метода реминерализации эмали, применяемого в настоящее время с целью профилактики и лечения на ранней стадии кариеса.


В настоящее время установлено, что в эмаль зуба из слюны проникают многие неорганические ионы, причем некоторые из них обладают высокой степенью проникновения. Так, при нанесении раствора радиоактивного йодида калия (К1311) на поверхность интактных клыков кошки он через 2 ч был обнаружен в щитовидной железе.


Длительное время считалось, что органические вещества не проникают в эмаль зуба. Однако при помощи радиоактивных изотопов было установлено внедрение в эмаль, и даже дентин, аминокислот, витаминов, токсинов через 2 ч после нанесения их на неповрежденную поверхность зубов собаки.


В настоящее время изучены некоторые закономерности этого важного для эмали явления. Установлено, что уровень ее проницаемости может изменяться под воздействием ряда факторов. Так, этот показатель снижается с возрастом. Электрофорез, ультразвуковые волны, низкое значение рН усиливают проницаемость эмали. Она увеличивается также под воздействием фермента гиалуронидазы, количество которой в полости рта увеличивается при наличии микроорганизмов, зубного налета. Еще более выраженное изменение проницаемости эмали наблюдается, если к зубному налету имеет доступ сахароза. В значительной мере степень поступления ионов в эмаль зависит от их характеристик (рис. 3.20). Одновалентные ионы обладают большей проникающей способностью, чем двухвалентные. Важное значение имеют заряд иона, рН среды, активность ферментов и др.
Особого внимания заслуживает изучение распространения в эмали ионов фтора. При аппликации раствора фторида натрия ионы фтора быстро поступают на небольшую глубину (несколько десятков микрометров) и, как считают некоторые авторы, включаются в кристаллическую решетку эмали. Следует отметить, что после обработки поверхности эмали раствором фторида натрия ее проницаемость резко снижается. Этот фактор имеет важное значение для клинической практики, так как определяет последовательность обработки зуба в процессе реминерализующей терапии.


Механизм и пути проницаемости эмали. Эти вопросы до настоящего времени не нашли окончательного разрешения, хотя многие аспекты изучены достаточно подробно. В первую очередь следует указать на наличие в эмали системы мельчайших пространств, в которые могут проникать небольшие молекулы.


Большинство исследователей считают, что основным условием поступления в эмаль зуба различных ионов и анионов является разность осмотических давлений межклеточной жидкости пульпы и ротовой жидкости на поверхности зуба. Так как слюна значительно богаче фосфатами, ионами кальция и другими ионами, чем интерстициальные жидкости (эмалевая жидкость), ионы перемещаются из слюны в эмаль зуба. Процесс этот сложный и может изменяться под воздействием многих факторов: концентрации веществ, ферментативной активности, рН, размера молекулы и др.


Глубина проникновения веществ зависит также от многих факторов. Так, ионы кальция, фосфатов, фтора активно адсорбируются в поверхностных слоях эмали (при условии их кратковременного контакта) в силу сродства проникающих ионов к веществам, из которых состоит эмалиевый слой. Вызывает некоторое затруднение объяснение факта проникновения на всю глубину эмали органических веществ (аминокислот — глицина, лизина и др.) при нанесении их на поверхность эмали. Установлено, что они поступают в глубокие слои по образованиям, также содержащим большое количество органического вещества (ламеллы, веретена и др.). В эксперименте обнаружено проникновение органических веществ в эмаль только из слюны. Со стороны дентина аминокислоты и витамины в эмаль не проникают.


При изучении процесса адсорбции эмалью неорганических и органических веществ неизбежно встает вопрос о роли слюны — среды, в которой постоянно находится зуб, так как вещество в эмаль может поступить только в ионизированной форме, т. е. после растворения в жидкой среде.


Созревание эмали зуба. Такое выражение широко распространено в зарубежной литературе и меньше — в нашей. Под созреванием подразумевается увеличение содержания кальция, фосфора, фтора и других компонентов и совершенствование структуры эмали зуба. Поводом для изучения этого вопроса послужили многочисленные наблюдения изменения зубов и, особенно, эмали после их прорезывания. Так, например, установлено, что у пожилых людей зубы более устойчивы к действию деминерализующих растворов. Это можно объяснить тем, что минеральный состав и структура эмали и дентина с возрастом меняются. Ранее считалось, что изменение химического состава зависит от поступления веществ через пульпу. Однако, по последним данным, изменение минерального состава эмали обусловлено поступлением в нее различных веществ из слюны.


В настоящее время установлено, что в эмали после прорезывания зуба происходит накопление кальция и фосфора, наиболее активно — в первый год после прорезывания зуба, когда кальций и фосфор адсорбируются во всех слоях различных зон эмали. В дальнейшем накопление фосфора, а после 3-летнего возраста — кальция, резко замедляется. По мере созревания эмали и увеличения содержания минеральных компонентов растворимость поверхностного слоя эмали, по показателям выхода в биоптат кальция и фосфора, снижается. Установлена обратная зависимость между содержанием кальция и фосфора в эмали и степенью поражения кариесом. Поверхность зуба, где эмаль содержит больше кальция и фосфора, значительно реже поражается кариесом, чем поверхность зуба, эмаль которого содержит меньшее количество этих веществ.


В созревании эмали важная роль принадлежит фтору, количество которого после прорезывания зуба постепенно увеличивается. Добавочное введение фтора снижает растворимость эмали и повышает ее твердость. Из других микроэлементов, влияющих на созревание эмали, следует указать на ванадий, молибден, стронций.


Механизм созревания эмали изучен недостаточно. Считают, что при этом происходят изменения в кристаллической решетке, уменьшается объем микропространств в эмали, что приводит к увеличению ее плотности. Данные о созревании эмали имеют важное значение в профилактике кариеса, так как по ним можно определить оптимальные сроки проведения обработки реминерализующими препаратами. При недостатке фтора в питьевой воде именно в период созревания эмали необходимо дополнительное введение фтора как внутрь, так и местно, что может быть осуществлено полосканием фторсодержащими растворами, чисткой зубов фторсодержащими пастами и другими способами.


Дентин (dentinum). Дентин, составляющий основную массу зуба, менее обызвествлен, чем эмаль. В нем содержатся 70—72 % неорганических и 28—30 % органических веществ и вода. Основу неорганического вещества составляют фосфат кальция (гидроксиапатит), карбонат кальция и, в небольшом количестве, фторид кальция. В его состав входят также многие макро- и микроэлементы.


Органическое вещество дентина состоит из белков, липидов и полисахаридов. Аминокислотный состав белков типичен для коллагенов: большое количество глицина, пролина, оксипролина и отсутствие серосодержащих аминокислот.


Основное вещество дентина пронизано множеством дентинных трубочек (рис. 3.21), количество которых колеблется от 30 000 до 75 000 на 1 мм2 дентина. В дентинных трубочках (канальцах) циркулирует дентинная жидкость, которая доставляет органические и неорганические вещества, участвующие в обновлении дентина.


В дентине происходят выраженные обменные процессы, что обусловлено его составом и структурой. В первую очередь это относится к белку дентина. Известно, что молекула коллагена способна к обновлению аминокислотного состава. Наличие дентинных канальцев и циркулирующей в них дентинной жидкости создает необходимые условия для обмена органических и неорганических веществ. Клиническим подтверждением этому является изменение структуры и состава дентина при воздействии различных факторов на твердые ткани зуба: хронической механической травмы, химических веществ, возрастных изменений и др.


Гистологическими исследованиями установлено, что внутренние отделы околопульпарного дентина (предентина) коронки зуба имеют нервные окончания — чувствительные, а возможно, и эфферентные. Большинство авторов считают, что нервные волокна не проникают в обызвествленный дентин на всю его толщину. Электронно-микроскопическими исследованиями также не установлено наличия нервных волокон в обызвествленном дентине, что значительно затрудняет трактовку бесспорного клинического факта — чувствительности дентина (передача боли при препарировании твердых тканей и воздействии на них химических и температурных раздражителей).


М. Bronstrom (1966) выдвинул теорию гидродинамического механизма возникновения боли при воздействии раздражителей. Автор исходил из того, что дентин представляет собой ткань, пронизанную многочисленными трубочками, заполненными дентинной жидкостью. Любое воздействие на дентин вызывает перемещение этой жидкости в рецепторный аппарат пульпы зуба. Экспериментальными исследованиями установлено, что при высушивании поверхности дентина, а также при перегревании тканей зуба в процессе препарирования происходит перемещение ядра одонтобласта в отросток, что может свидетельствовать о выраженных физико-химических изменениях в нем.


Цемент (cementum). Прослойка ткани, покрывающая корень зуба, состоит на 68 % из неорганических и на 32 % из органических веществ. По химическому составу и структуре цемент напоминает грубоволокнистую кость. Основное вещество цемента, пропитанное солями кальция, пронизано коллагеновыми волокнами, которые соединяются с такими же волокнами костной ткани альвеолы. Различают бесклеточный цемент, располагающийся по всей поверхности корня, и клеточный, который покрывает верхушку корня, а в многокорневых — и область бифуркации. В отличие от кости, цемент не имеет кровеносных сосудов.




1. а Главной задачей П
2. А що любов Це почуття даремного страждання За тим кому байдужий ти
3. Финансы их сущность и функции
4. Первый спутник
5. Реферат- Физический смысл сингулярности и скрытых параметров
6. Минералогия и кристаллография в России
7. Контрольная работа для студентов ИДПО по дисциплине Речевая коммуникация в профессиональной деятельност
8. Використання музично-дидактичних ігор в процесі музичного виховання дітей дошкільного віку.html
9. Введение.6
10. Россия в начале 20 века
11. Звіт з лабораторної роботи 3 З дисципліни Комп~ютерна схемотехнікаrdquo; Перевірив-
12. Образ учителя словесности в русской литературе XX века
13. темами разработки; способом временного накапливания транспортируемого материала; технологической сх
14. проводит идентификацию продукции представленной для сертификации в соответствии с правилами системы серт
15. Высокий Вкус Мы работаем для тех кто ценит качество ООО Высокий Вкус Мы работаем для тех кто цени
16. Сущность финансов и их функции
17. Дипломная работа студента 953 группы дневного отделения юридического факультета Никитина Антона Вячес
18. Государственное пенсионное страхование в России зародилось в начале двадцатого века что было горазд
19. Физическая культура и специальности 022300 Физическая культура и спорт ИЗДАТЕЛЬСТВО Москва 2004
20. Размещение производительных сил Теоретическая база размещения производительных сил