Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

а. Для того чтобы измерить неэлектрическую величину с помощью электроизмерительных приборов ее надо преобр

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024

ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ  ПРИБОРЫ

Измерение – это нахождение опытным путем с оцененной точностью значения заранее выбранной физической величины путем сравнения ее с эталонной величиной. Электрические измерения осуществляются с помощью электроизмерительных приборов (ЭИП).

Объектами электрических измерений могут быть как электрические и магнитные величины, так и неэлектрические величины (такие, например, как давление, скорость, температура). Для того чтобы измерить неэлектрическую величину с помощью электроизмерительных приборов, ее надо преобразовать в зависящую от нее электрическую величину. Устройства для измерения неэлектрических величин должны содержать преобразователь, соединительные провода и электроизмерительный прибор, шкала которого проградуирована в единицах измеряемой величины.

В качестве одного из наиболее простых примеров можно привести измерение температуры с помощью термопары. Величина электродвижущей силы (эдс) термопары зависит от разности температур между горячим и холодным спаями, т.е. термопара является в данном случае преобразователем. С помощью проводов к ней подключается милливольтметр, измеряющий эдс термопары (термоЭДС). В этом случае шкалу милливольтметра можно проградуировать в единицах температуры.

Классификация электроизмерительных приборов

ЭИП можно классифицировать по различным признакам:

По характеру снимаемых показаний измеряемой величины.

Показывающие ЭИП. Это приборы, предварительно отградуированные и позволяющие производить по шкале отсчет численного значения измеряемой величины. С помощью таких приборов можно сразу получить значение измеряемой величины.

Регистрирующие ЭИП. Эти приборы допускают считывание и регистрацию или только регистрацию показаний. К таким приборам относятся самопишущие приборы, дающие запись показаний в виде диаграммы, печатающие приборы, выводящие показания в цифровой форме, а также осциллографы. Для получения значений измеряемой величины такие приборы требуют специальной градуировки.

По способу преобразования измеряемой величины и способу считывания показаний.

Аналоговые ЭИП. В этих приборах показания являются непрерывными функциями изменений измеряемых величин.

Примером аналогового прибора может служить стрелочный амперметр (рис. 1).

Рис. 1.

При увеличении тока стрелка амперметра смещается плавно. Тем не менее плавность изменения показаний не означает, что величина тока может быть измерена с любой точностью (см. ниже).

Цифровые приборы. В таких приборах непрерывно изменяющийся измеряемый параметр преобразуется в дискретный параметр (число), которое отображается на его отсчетном устройстве – панели цифровой индикации (рис. 2).

Рис. 2.

При плавном изменении тока показания прибора изменяются скачками.

Приборы сравнения. Это приборы, предназначенные для непосредственного сравнения измеряемой величины с величиной, значение которой известно. К таким приборам относятся, например, мосты, потенциометры, компенсаторы напряжения и тока.

Простейшим примером схемы сравнения может служить компенсатор напряжения. Принцип работы компенсатора напряжения показан на рис. 3.

ЭДС источников равны, когда показания гальванометра равно нулю. Основное достоинство такого способа измерения состоит в том, что в этом случае не происходит отбора тока от источника. Этот способ удобен для измерения ЭДС источников с большим внутренним сопротивлением.

Рис. 3.

Особенно хорошо видны преимущества методов сравнения при измерении сопротивлений. Можно определить сопротивление, воспользовавшись амперметром и вольтметром (R = U/I). Такой способ (способ амперметра и вольтметра) является наиболее простым, но наименее точным из-за присущей ему систематической ошибки.

Два варианта включения измерительных приборов показаны на рис. 4. На рис. 4,а приведена схема «правильная по напряжению», но амперметр показывает сумму токов, текущих через вольтметр и нагрузку. На рис. 4,б – схема «правильная по току», но вольтметр показывает сумму падений напряжения на амперметре и нагрузке.

Рис. 4.

Широкое применение для измерения сопротивлений получили мосты, питаемые постоянным током, так как их уравновешивание несложно и подбор подходящего гальванометра не составляет особого труда.

Примером такой схемы сравнения может служить четырехплечевой мост постоянного тока, применяемый для измерения сопротивлений (рис. 5).

В одно из плеч моста включен неизвестный резистор RX. При измерении сопротивления таким методом, неизвестное сопротивление сравнивается с известными сопротивлениями моста, а включенный в одну из диагоналей моста гальванометр Г служит индикатором отсутствия тока.

Рис. 5.

Точность измерения в данном случае определяется точностью значений известных сопротивлений и чувствительностью гальванометра.

Мосты переменного тока применяются, в основном, для измерения индуктивностей и емкостей.

Более подробно – см. «Мостовой метод измерения».

Определение погрешности измерения на электроизмерительных приборах. Класс точности прибора

Следует помнить, что никакое измерение, т.е. сравнение с эталонной величиной, не может быть выполнено абсолютно точно. Результат измерения всегда содержит некоторую ошибку. Кроме того, надо учесть, что измерение проводится не путем сравнения с самим эталоном, а с помощью измерительного прибора (который при поверке был сравнен с эталоном). Очевидно, что, измеряя с помощью этого измерительного прибора, мы не можем сделать ошибки меньшей, чем та, которая определяется погрешностью измерительного устройства.

Разность между показаниями прибора и действительным значением измеряемой величины называется абсолютной погрешностью А.

А = АИЗМАДЕЙСТ .

(1)

Отношение абсолютной погрешности к действительному значению измеряемой величины, выраженное в процентах, называется относительной погрешностью:

.

(2)

Приведенные определения относительной и абсолютной погрешности не дают возможности узнать их величину, так как действительное значение измеряемой величины нам неизвестно. Определить величины погрешностей при электрических измерениях становится возможным, если известен класс точности прибора (КЛ Т). Он дает предельную абсолютную погрешность, выраженную в процентах от номинального показания прибора (максимального при данном пределе измерения) АНОМ:

КЛ Т = .

(3)

Класс точности указан на шкале прибора (рис. 6).

Зная класс точности прибора, можно легко определить абсолютную погрешность измерения А:

А = .

(4)

Например, для катушки сопротивления в 1000 Ом класса точности 0,05 абсолютная погрешность:

А =  = 0,5 (Ом).

Относительную погрешность также можно вычислить через класс точности прибора. По определению относительная погрешность:

.

(5)

Учитывая, что действительное значение измеряемой величины АДЕЙСТ и показания прибора АИЗМ примерно равны (АДЕЙСТ  АИЗМ), и, используя формулу (4), получаем:

.

(6)

Видно, что относительная погрешность измерений будет тем меньше, чем ближе снимаемые показания к номинальному значению для данного прибора, т.е. к концу шкалы. Следовательно, при работе с многопредельными ЭИП нужно так выбирать предел измерения прибора, чтобы показания считывались со второй половины шкалы. Следует помнить, что номинальное значение многопредельного ЭИП определяется положением, в котором стоит переключатель пределов при данном измерении.

При работе с многопредельными приборами нужно внимательно рассчитывать цену одного деления шкалы ЦД. Под делением следует понимать не разность между штрихами, а разность между ними в соответствии с оцифровкой шкалы. Цена деления равномерной шкалы равна отношению номинального значения показания прибора (предела измерения) к общему числу делений N на шкале прибора: ЦД = . Численное значение измеряемой величины АИЗМ равно цене деления ЦД, умноженной на измеренное число делений NИЗМ по шкале:

АИЗМ = ЦД·NИЗМ.

(7)

Рассмотрим примеры определения погрешностей для многопредельных ЭИП.

Пример 1.

Переключатель пределов

измерения

Шкала прибора

Класс точности КЛ Т (0,5)

Рис. 6.

На рис. 6 изображен многопредельный вольтметр. Вычислить абсолютную и относительную погрешности определения напряжения. Класс точности вольтметра 0,5.

Номинальное значение напряжения 300 В (определяется положением переключателя пределов напряжения).

Цена деления данного предела измерения ЦД == 2 В/дел.

Измеренное значение напряжения UИЗМ = 2 В/дел.·75 дел. = 150 В.

Абсолютная погрешность измерения U =  = 1,5 (В).

Относительная погрешность измерения 0 =  = 1,0%.

Пример 2 

Рис. 7.

На рис. 7 изображен тот же многопредельный вольтметр при другом положении переключателя пределов измерений. Вычислить абсолютную и относительную погрешности определения напряжения.

Номинальное значение напряжения 150 В.

Цена деления данного предела измерения ЦД = 150 В / 150 дел. =
1 В/дел.

Измеренное значение напряжения UИЗМ = 1 В/дел.×150 дел. =
150 В.

Абсолютная погрешность измерения U =  = 0,75 (В).

Относительная погрешность измерения g0 =  = 0,5%.

Таким образом, выбор наиболее подходящего предела измерения приводит к уменьшению как абсолютной, так и относительной погрешности.

Масштабные измерительные преобразователи (МИП)

При необходимости измерения токов и напряжений, превышающих верхний предел измерения используемого прибора, используются МИПы.

Для приборов постоянного тока в качестве МИП используются шунты и добавочные сопротивления. Для приборов переменного тока – добавочные резисторы (для напряжений до 30 кВ и частот от 10 Гц до 20 кГц) и измерительные трансформаторы тока и напряжения.

Расчет шунта к амперметру

При измерении тока амперметр включается последовательно с нагрузкой. Если амперметром требуется измерить ток, превышающий верхний предел измерения, то параллельно амперметру включается шунт с сопротивлением RШ (рис. 8). Шунт представляет собой толстую константановую или манганиновую пластину. Применение этих сплавов для изготовления шунтов связано с тем, что их сопротивление слабо зависит от температуры.

Рис. 8.

На рис. 8 показана схема подключения шунта RШ к амперметру. RА – внутреннее сопротивление амперметра, которое мало по сравнению с сопротивлением нагрузки RН для того, чтобы включение амперметра последовательно с нагрузкой не приводило к существенным изменениям тока в цепи нагрузки. I – ток через сопротивление нагрузки RН; IШ – ток через шунт с сопротивлением RШ; IА – ток через амперметр с сопротивлением RА.

По первому правилу Кирхгофа алгебраическая сумма токов в узле равна нулю:

I = IА + IШ

и, следовательно,

IШ = IIА.

Падение напряжения между точками а и b:

Uаb = IА·RА = IШ·RШ.

Таким образом, для того, чтобы с помощью данного амперметра измерить ток I, сопротивление шунта должно быть

RШ = ,

(8)

где I/IA = nкоэффициент шунтирования, показывающий, во сколько раз расширяется предел измерения амперметра при подключении шунта.

Фактический ток в цепи определяется произведением показаний прибора и множителя n.

Рис. 9.

Реальный шунт (рис. 9) должен иметь четыре контакта: к двум из них подключается прибор, а к двум другим – соединительные провода электрической цепи.

Пример 3.

Рассчитать шунт к миллиамперметру на 10 mА с внутренним сопротивлением 500 Ом, если надо измерить ток 10 А.

Воспользуемся формулой (8):

 

Расчет добавочного сопротивления к вольтметру

Для измерения напряжения вольтметр включается параллельно с нагрузкой. Если вольтметром требуется измерить напряжение, превышающее верхний предел измерения, то последовательно вольтметру включают добавочное сопротивление RД.

Рис. 10.

На рис. 10 показана схема подключения добавочного сопротивления RД к вольтметру. RV – внутреннее сопротивление вольтметра. Оно должно быть большим по сравнению с сопротивлением нагрузки RН для того, чтобы включение вольтметра параллельно нагрузке не приводило к существенным изменениям напряжения на нагрузке. UИЗМ – измеряемое напряжение; UНОМ – предел измерения вольтметра.

Ток, текущий через вольтметр:

,

следовательно, добавочное сопротивление должно быть

.

(9)

Пример 4 

Рассчитать добавочное сопротивление к вольтметру на 100 В для измерения напряжения 300 В. Внутреннее сопротивление вольтметра RV = 3000 Ом.

.

Добавочные сопротивления могут служить и для преобразования рода измеряемой величины (напряжения в ток и наоборот). Рассмотрим, как измерить напряжение с помощью амперметра. Для этого последовательно с амперметром включается большое сопротивление RД (рис. 11).

Рис. 11.

Неизвестное напряжение UX = IА·(RД + RА), где RА – внутреннее сопротивление амперметра. Если величины внутреннего и добавочного сопротивлений известны, то, измеряя ток с помощью амперметра, легко вычислить искомое напряжение.

Ваттметр

Для измерения мощности в цепи постоянного тока не требуется специального прибора. Мощность в цепи постоянного тока может быть определена, если известны показания вольтметра и амперметра, т.е. напряжение и ток, и вычислена простым перемножением этих величин:

P = U·I.

В цепи переменного тока мощность зависит не только от величин напряжения и тока, но и от сдвига фаз между ними (подробнее см. раздел «Мощность переменного тока»):

P = U·I·cosφ.

Поэтому для измерения мощности в цепях переменного тока необходим специальный прибор – ваттметр.

Ваттметр электродинамической системы имеет две катушки (сопротивление катушек малó): неподвижную («токовую») К1, включаемую последовательно нагрузке, и подвижную («вольтовую») К2, включаемую параллельно нагрузке. В цепь подвижной катушки включается добавочное сопротивление RД. Сопротивление RД должно быть большим по величине для того, чтобы ток через цепь, содержащую это сопротивление, был незначительным по сравнению с током нагрузки. То есть сопротивление «вольтовой» цепи должно быть большим, как у всякого вольтметра.

Рис. 12.

Схема включения ваттметра (рис. 12): К1 – неподвижная («токовая») катушка («цепь тока»); К2 – подвижная («вольтовая») катушка («цепь напряжения»); RH – сопротивление нагрузки; RД – добавочное сопротивление в цепи подвижной катушки.

Как видно из схемы, через неподвижную катушку проходит тот же ток, что и через сопротивление нагрузки (I1(t)), а через подвижную протекает ток, пропорциональный напряжению на нагрузке. Таким образом, мгновенное значение тока неподвижной катушки равно току нагрузки, а ток подвижной катушки пропорционален напряжению на нагрузке и должен совпадать с ним по фазе. Чтобы ток совпадал по фазе с напряжением, добавочное сопротивление RД должно быть безиндуктивным, т.е. чисто активным сопротивлением. Величина этого сопротивления должна быть много больше индуктивного сопротивления катушки К2. В таком случае можно считать все сопротивление цепи напряжения активным и ток I2(t) в подвижной катушке будет равен

,

(10)

где U0 – амплитуда напряжения на нагрузке, – частота переменного тока, – сдвиг фаз между током и напряжением на нагрузке. Как уже было отмечено выше, сдвиг фаз между током в подвижной и неподвижной катушках будет равен сдвигу фаз между током и напряжением на нагрузочном сопротивлении только в том случае, когда сопротивление «вольтовой» цепи ваттметра можно считать активным.

Согласно закону Ампера, сила, действующая на элемент тока со стороны другого элемента тока, пропорциональна величине каждого из элементов тока. Следовательно, мгновенный вращающий момент M(t), действующий на подвижную катушку, пропорционален произведению токов в подвижной и неподвижной катушках:

M(t) = с·I1(tI2(t),

(11)

где с – константа пропорциональности.

Подставляя в формулу (11) выражение для тока в подвижной катушке (10), получаем:

.

(12)

Усредняя M(t) за период Т, находим:

.

(13)

Таким образом, вращающий момент, действующий на подвижную катушку, и, следовательно, угол ее поворота, пропорционален средней мощности в цепи переменного тока.

Реальный ваттметр имеет 4 клеммы, на принципиальной схеме они обозначены буквами A, B, C и D. При включении ваттметра в цепь переменного тока, на вращающий момент не влияет одновременное изменение направления тока в обеих катушках, но если поменять направление тока только в одной катушке, то направление вращающего момента изменится на 180°. Для предотвращения неправильного включения ваттметра клеммы, соответствующие относительным «началам» каждой катушки, отмечены звездочкой (). Эти клеммы называют генераторными. Стрéлка ваттметра отклоняется в нужную сторону, если обе эти клеммы присоединены к одному полюсу источника. Обычно эти клеммы уже соединены вместе проводом (A и B). Клеммы A и D подсоединяют к источнику напряжения, а нагрузку включают между клеммами C и D.

Многопредельные ваттметры имеют раздельные переключатели напряжения и тока для «вольтовой» и «токовой» обмоток. Изменение пределов измерения по току осуществляется путем последовательного или параллельного включения двух половин неподвижной катушки, а по напряжению – включением добавочных сопротивлений в цепь подвижной катушки. Для таких приборов предел измерения по мощности в ваттах равен произведению пределов измерения по току в амперах и по напряжению в вольтах. В общем случае предельная нагрузка ваттметра и конечное значение шкалы у ваттметра не совпадают в отличие от большинства других приборов. При чисто реактивной нагрузке сдвиг фаз между током и напряжением = 90°. В этом случае ваттметр легко вывести из строя, так как при любой силе тока, протекающего через ваттметр, его показание будет всегда равно нулю (cоs = 0). Обычные ваттметры рассчитаны на измерения, при которых соs > 0,8. Исключение составляют ваттметры, специально предназначенные для малых значений соs (малокосинусные ваттметры).

Рис. 13.

На рис. 13 изображена верхняя панель многопредельного ваттметра класса точности 1,5. При данном положении переключателей предельное (номинальное) значение измеряемой мощности будет PНОМ = 300 В · 2 А = 600 Вт. Варьируя положение переключателей, предел измерения данного ваттметра можно изменять от 75 Вт до 1800 Вт.

При работе с многопредельными ваттметрами нужно внимательно рассчитывать цену одного деления шкалы ЦД. Цена деления шкалы равна отношению номинального значения мощности (предел измерения ваттметра) к общему числу делений N на шкале прибора: ЦД = PНОМ/N. Для прибора, изображенного на рис. 13, цена деления ЦД = 600 Вт/150 дел. = 4 Вт/дел.

Численное значение измеряемой мощности PИЗМ равно цене деления, умноженной на число делений по шкале (в данном случае ваттметр показывает 100 делений): PИЗМ = 4 Вт/дел. 100 дел. = 400 Вт.

Так же, как и для других электроизмерительных приборов, величина как абсолютной, так и относительной погрешности, зависит от выбранного предела измерений.

При положении переключателей, изображенном на рис. 13, абсолютная погрешность P измеренной мощности будет, согласно формуле (4):

9 (Вт),

а относительная погрешность 0 измерения мощности, согласно (6):

.

Если проводить измерения при другом положении переключателей (рис. 14), то ту же самую величину мощности (400 Вт) можно измерить тем же ваттметром с меньшей погрешностью.

Рис. 14.

Предел измерения ваттметра (номинальное значение мощности) в данном случае будет: PНОМ = 150 В 3 А = 450 Вт,

цена деления: ЦД = 450 Вт / 150 дел. = 3 Вт/дел.,

абсолютная погрешность: P = (КЛ.Т.·PНОМ)/100 = (1,5·450)/100 = 6,75 (Вт),

относительная погрешность:

.

Таким образом, выбор наиболее подходящего предела измерения приводит к уменьшению как абсолютной, так и относительной погрешности.

Читайте также раздел «Приложения».




1. Апологии Сократа Платон 427347 г
2. Тема задач Дом
3. Утверждаю Приборостроительный Зам
4. . ІСТОРІЯ ПІДПРИЄМСТВА4 2.
5. стало периодом радикальных преобразований российского общества
6. .2013 Адресе Россия Дата У
7. Согласовано Утверждаю Председатель Президент АНО Лига фитнеса ИООСО Федерация.html
8. Интерпретация поэтического текста КМ Симонов
9. Фет АА
10. Понятие интеллекта
11. Учет и утилизация отходов
12. Доклад ldquo;Легкая атлетикаrdquo;
13. Задание 1. Найти сумму ряда с заданной точностью.html
14. повреждение тканей организма при котором обязательным элементом является нарушение целости наружных покр
15. Дипломная работа- Исследование твердых электролитов
16. Антикризисное управление Понятие кризис
17. а Билет 1 Чем должны отличаться светильники аварийного освещения от светильников рабочего освещения
18. Отон
19. А. Преподаватель- профессор Михеева И.html
20. Монастыри