Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

ции определенные и ограниченные на D

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 3.6.2024

1 Двойной интеграл

Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией Г, являющейся замкнутой непрерывной кривой. z = l(P) = f(x,y), P= (x,y)  D – произвольные ф-ции определенные и ограниченные на D. Диаметром области D наз. наибольшее расстояние между граничными точками. Область  D разбивается на n частых областей D1…Dn конечным числом произв. кривых. Если S – площадь D, то Si – площадь каждой частной области. Наибольший из диаметров областей обозн . В каждой частной области Di возьмем произв. точку Pi (i , Di)  Di, наз. промежуточной. Если диаметр разбиения D    0 , то число n областей Di  . Вычислим зн-ие ф-ции в промежуточных точках и составим сумму:I = f(i, Di)Si (1), наз. интегральной суммой ф-ции. Ф-ция f(x,y) наз. интегрируемой в области D если существует конечный предел интегральной суммы.

Двойным интегралом ф-ии f(x,y) по области D наз. предел интегральной суммы при   0. Обозн:

или

2 Условие существования

двойного интеграла

Необходимое, но недостаточное:

Ф-ция f(x,y) интегрируема на замкнутой области D, ограничена на D.

1 достаточный признак существования: если ф-ция f(x,y) непрерывна на замкнутой, огр. области D, то она интегрируема на D.

2 достаточный признак существования: если ф-ция f(x,y) ограничена в замкнутой области D с какой-то границей и непрерывна в ней за исключением отдельных точек и гладки=х прямых в конечном числе где она может иметь разрыв, то она интегрируема на D.

3 Основные св-ва 2ного интеграла

1. Двойной интеграл по области D = площади этой области.

2. Если область G содержится в Д, а ф-ция ограничена и интегрируема в Д, то она интегрируема и в G.

3. Аддитивное св-во. Если область Д при помощи кривой г разбивают на 2 области Д1 и Д2, не имеющих общих внутренних точек, то:

4. константы выносятся за знак интеграла, а сумму в ф-ции можно представить в виде суммы интегралов:

5. Если ф-ции f и g интегрируемы в Д, то их произведение также интегрируемо в Д. Если g(x,y) 0 то и f/g   интегрируема в Д.

6. Если f(x,y) и g(x,y) интегрируемы в Д и всюду в этой области f(x,y) <= g(x,y), то:

В частности: g(x,y) >=0 то и

7. Оценка абсолютной величины интеграла: если f(x,y) интегрируема в Д, то и |f(x,y)| интегрир. в Д причем

обратное утверждение неверно, итз интегрируемости |f| не следует интегрируемость f.

8. Теорема о среднем значении.

Если ф-ция f(x,y) интегр. в Д., то в этой области найдется такая точка (, ) Д, что:

(2), где S – площадь фигуры Д. Значение f(, )  опред по ф-ле (2) наз. средним значением ф-ции f по области Д.

4 Сведение

2ного интеграла к повторному

Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)<= у2(х) на всем отрезке.

D={x,y}: a<=x<=b; y1(x)<=y<=y2(x)

Отрезок [a,b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.

Если  фция f(x,y) задана на Д и при каждом х [a,b] непрерывна на у , на отрезке, [y1(x),y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл : , наз повторным интегралом от ф-ции f(x,y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.

5 Замена переменных в двойном интеграле.

Общий случай криволинейных координат

Пусть существует ф-ция f(x,y) интегр на области Д, можно прямолинейные координаты x, y с помощью формул преобразования перейти к криволинейным: x = x(u,v), y=y(u,v), где эти ф-ции непрерывные вместе с частными производными первого порядка, устанавливают взаимно однозначное и в обе стороны непрерывное соответствие между точками плоской области Д и области Д’ и определитель преобразования, наз. Якобианом не обращается в 0:если это выполняется можно пользоваться ф-лой:

6 Двойной интеграл

в полярных координатах

Переход к полярным координатам частный случай замены переменных.

Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, ) где r = |ОA| расстояние от О до А полярный радиус. = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0<=r<=+, 0<= <=2 .

Зависимость между прямоугольными и полярными координатами: x = rcos , y = rsin .

Якобиан преобразования будет равен:

И формула при переходе примет вид:

7 Вычисление

площади плоской области

с помощью 2ного интеграла

Если Д правильная в направлении оу a<=x<=b, y1(x)<=y<=y2(x), то

Если Д огр линиями в полярных координатах, то

 

8 Вычисление объема

с помощью 2ного интеграла

Рассматривая в пространстве тело Р, огр  снизу плоскостью оху, сверху z = f(x,y), кот проектируется в Д, сбоку границей области Д, называемое криволинейным цилиндром. Объем этого тела вычисляют по формуле:

если f(x,y)<=0 в Д тор тело находится под плоскостью оху. Его объем равен объему цилиндрического тела. огр сверху ф-цией:

z = |f(x,y)|>=0.

тогда

если в Д ф-ция меняет знак, то область разбивается на 2. Область Д1, f(x,y)>=0; Д2, f(x,y)<=0, тогда:

9 Вычисление

площади поверхности

с помощью двойного интеграла.

Пусть дана кривая поверхность Р, заданная ур-ями z = f(x,y) и имеющая границу Г, проецирующуюся на плоскость оху в область Д. Если в этой области ф-ция f(x,y) непрерывна и имеет  непрерывные частные производные: тогда площадь поверхности Р вычисляется:

для ф-ций вида x = (y,z) или y = (x,z) там будут тока букыв в частных производных менятца ну и dxdy.

10 Вычисление массы,

координат центра масс,

моментов инерции плоской

материальной пластины с

помощью 2ного интеграла.

Масса плоской пластины вычисляется по ф-ле:

, где (х, у) – поверхностная плотность.

Координаты центра масс выч по ф-ле:

если пластина однородная, т. е. (х, у) – const, то ф-лы упрощаются:

Статические моменты плоскостей фигуры Д относит осей оу и ох

Момент инерции плоской пластины относительно осей ох, оу, начала координат:

J0=Jx+Jy

если пластина однородная, то ро вышвыривается на фиг и считается равной 1.

11 Тройные интегралы

Пусть на некоторой ограниченной замкнутой области V трехмерного пространства задана ограниченная ф-ция f (x,y,z). Разобьем область V на n произвольных частичных областей, не имеющих общих внутренних точек, с объемами V1… Vn В каждой частичной области возбмем произв. точку М с кооорд Mi(i,i,i) составим сумму: f(i,i,i)Vi, кот наз интегральной суммой для ф-ции f(x,y,z). Обозначим за максимальный диаметр частичной области. Если интегральная сумма при   0 имеет конечный предел, то сей предел и называется тройным интегралом от ф-ции f(x,y,z) по области V И обозначается:

12 Замена переменных

в тройном интеграле.

Если ограниченная замкнутая область пространства V = f(x,y,z)  взаимно однозначно отображается на область V’ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан

то справедлива формула:

При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcos,  y=rsin, z=z (0<=r<=+, 0<= <= 2, -<=z<=+)

Якобиан преобразования:

И поэтому в цилиндрических координатах переход осуществляется так:

При переходе к сферическим координатам: r?  , связанными с z,y,z формулами x=rsincos,  

y=r sinsin, z=rcos.

(0<=r<=+, 0<= <= 2,

0<= <=2)

Якобиан преобразования:

Т. е. |J|=r2sin.

Итак, в сферических координатах сие будет:

13 Приложения

тройных интегралов

Объем тела

Масса тела: , где (М) = (x,y,z) - плотность.

Моменты инерции тела относительно осей координат:

Момент инерции относительно начала координат:

Координаты центра масс:

 m – масса.

Интегралы, стоящие в числителях выражают статические моменты тела: Myz, Mxz, Mxy относит коорд плоскостей oyz, oxz, oxy. Если тело однородное: (М) = const, то из формул она убирается и оне упрощаются как в 2ных интегралах.

14 Определение криволинейных

интегралов 1 и 2 рода

Криволинейный интеграл по длине дуги (1 рода)

Пусть ф-ция f(x,y) определена и непрерывна в точках дуги АВ гладкой кривой К. Произвольно разобъем дугу на n элементарных дуг точками t0..tn пусть lk длина k частной дуги. Возьмем на каждой элементарной дуге произвольную точку N(k,k) и умножив сию точку на соотв. длину дуги составим три интегральную суммы:

1 = f(k,k)lk 

2 = Р(k,k)хk

3 = Q(k,k)yk,

где хk = xk-xk-1, yk = yk-yk-1 

Криволинейным интегралом 1 рода по длине дуги  будет называться предел интегральной суммы 1  при условии, что max(lk) 0

Если предел интегральной суммы 2 или 3 при   0, то этот предел наз. криволинейным интегралом 2 рода, функции P(x,y) или Q(x,y) по кривой l = AB и обозначается:

или

 сумму: + принято называть общим криволинейным интегралом 2 рода и обозначать символом:

в этом случае ф-ции f(x,y), P(x,y), Q(x,y) – называются интегрируемыми вдоль кривой l = AB. Сама кривая l наз контуром или путем интегрирования А – начальной, В – конечной точками интегрирования, dl – дифференциал длины дуги, поэтому криволинейный интеграл 1 рода наз. криволинейным интегралом по дуге кривой, а второго рода – по функции..

Из определения криволинейных интегралов следует, что интегралы 1 рода не зависят от того в каком направлении от А и В или от В и А пробегается кривая l. Криволинейный интеграл 1 рода по АВ:

, для криволинейных интегралов 2 рода изменение направления пробегания кривой ведет к изменению знака:

В случае, когда l – замкнутая кривая т. е. т. В совпадает с т. А, то из двух возможных направлений обхода замкнутого контура l называют положительным то направление, при котором область лежащая внутри контура остается слева по отношению к ??? совершающей обход, т. е. направление движения против часовой стрелки. Противоположное направление обхода наз – отрицательным. Криволинейный интеграл АВ по замкнутому контуру l пробегаемому в положит направлении будем обозначать символом:

Для пространственной кривой аналогично вводятся 1 интеграл 1 рода:

и три интеграла 2 рода:

сумму трех последних интегралов наз. общим криволинейным интегралом 2 рода.

15 условия

существования и вычисления

криволинейных интегралов.

Кривая L наз. гладкой, если ф-ции (t), (t) из определяющих её параметрических уравнений:

(1)

имеет на отрезке [a,b] непрерывные производные: ’(t), ’(t).Точки кривой L наз особыми  точками, если они соответствуют значению параметра t  [a,b] для которых (’(t))2+(’(t))2 = 0 т. е. обе производные обращаются в 0. Те точки для которых сие условие не выполняется наз. обычными.

Если кривая L=AB задана ф-лами (1), является гладкой и нет имеет обычных точек, а ф-ции f(x,y),  P(x,y), Q(x,y) непрерывны вдоль этой кривой, то криволинейные интегралы всех видов существуют (можно даже их формулы нарисовать для наглядности) и могут быть вычислены по следующим формулам сводящим эти интегралы к обычным:

Отсюда  вытекает :

В частности, если кривая АВ задана уравнением y = y(x), a<=x<=b , где у(х) непрерывно дифференцируемая ф-ция, то принимая х за параметр t получим:

ну и сумма там тоже упростится.

ну и наоборот тоже так будит, если х = х(у)

Если АВ задана в криволинейных координатах <= <= где ф-ция r() непрерывно дифференцируема на отрезке [, ] то имеет место частный случай, где в качестве параметра выступает полярный угол . x = r()cos(),  

y= r()sin().

и у второго рода так же.

Прямая L наз кусочно-гладкой, если она непрерывна и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых представляет собой гладкую кривую. В этом случает криволинейные интегралы по этой кривое определяются как сумма криволинейных интегралов по гладким кривым составляющим сию кусочно-гладкую кривую. все выше сказанное справедливо и для пространственной кривой.

16 Свойства

криволинейных интегралов

Св-ва криволинейных интегралов 1 рода:

  1.Константа выносится за знак интеграла, а интеграл суммы можно представить в виде  суммы интегралов:

 2. Если дуга АВ состоит из двух дуг Ас и Св не имеющих общих внутренних точек и если для ф-ции f(x,y) сущ криволинейный интеграл по АВ, то для для сей ф-ции сущ криволинейные интегралы по АС и по ВС причем:

  3.

 4.Ф-ла среднего значения

если ф-ция f(x,y) непрерывна вдоль кривой АВ, то на этой кривой найдется точка М, такая, что:

, где l – длина кривой

Криволинейный интеграл 2 рода обладает всеми свойствами интегралов 1 рода, и ещё при изменении направления прохождения кривой он меняет знак. .И все сказанное выше справедливо и для пространственной кривой

17 Формула Грина

Сия очень полезная в сельском хозяйстве формула устанавливает связь между криволинейными и двойными интегралами.

Пусть имеется некоторая правильная замкнутая область Д, ограниченная контуром L и пущая ф-ции P(x,y) и Q(x,y) непрерывны вместе со  своими частными производными: в данной области. тогда имеет место ф-ла:

И вот вся эта фигулина и есть формула Грина.

Контур L определяющий область д может быть задан показательными уравнениями х = х1(у), х=х2(у) с<=y<=d x1(y)<=x2(y) или

y = y1(x), y=y2(x) a<=x<=b y1(x)<=y2(x).

Рассмотрим область Д ограниченную неравенствами: a<=x<=b и y1(x)<=y2(x). и преобразуем двойной интеграл  к криволинейным для чего сведем его к повторному и ф-ле Невтона-Лыебница выполним интегрирование по у и получим:

каждый из 2 определенных интегралов в правой части последнего равенства = криволинейному интегралу 2 рода взятому по соответствующей кривой а именно:

Итак двойной интеграл:

Формула Грина остается справедливой для всякой замкнутой области Д, которую можно разбить проведением дополнительных линий на конечной число правильных замкнутых областей.

18 Некоторые приложения криволинейных интегралов 1 рода.

1.Интеграл - длине дуги АВ

2.Механический смысл интеграла 1 рода.

Если f(x,y) = (x,y) – линейная плотность материальной дуги, то ее масса:

для пространственной там буква зю добавляется.

3.Координаты центра масс материальной дуги:

4. Момент инерции дуги лежащей в плоскости оху относительно начала координат и осей вращения ох, оу:

5. Геометрический смысл интеграла 1 рода

Пусть ф-ция z = f(x,y) – имеет размерность длины f(x,y)>=0 во всех точках материальной дуги лежащей в плоскости оху тогда:

, где S – площадь цилиндрической поверхности, кот состоит из перпендикуляров плоскости оху, восст в точках М(x,y) кривой АВ.

19 Некоторые приложения криволинейных интегралов 2 рода.

Вычисление площади плоской области Д с границей L

2.Работа силы. Пусть материальная т очка под действием силы перемещается вдоль непрерывной плоской кривой ВС, направясь от В к С, работа этой силы:

при пространственной кривой там исчо третья функция появитца для буквы зю.

№20

1 Условия независимости криволинейного интеграла 2 рода от пути интегрирования.

Плоская область наз односвязной если не имеет дыр. т. е. однородная.

Пусть ф-ция P(x,y) и Q(x,y)вместе со своими частными производными непрерывны в некоторой замкнутой, односвязной области тогда следующие 4 условия эквиваленты, т. е. выполнение какого либо из них влечет остальные 3.

1. Для замкнутой кусочногладкой кривой L в значение криволинейного интеграла:

2. Для все т. А и т. В области значение интеграла

не зависит от выбора пути интегрирования, целиком лежащего в .

3. Выражение Pdx+Qdy представляет собой полный дифференциал некоторых функций определенных в существует ф-ция E=(х,у) опред в такая, что dE = Pdx+Pdy

4. В области  

Отседова следовает, что условие 3 является необходимым и достаточным условием при котором интегралы 2 рода не зависят от выбора пути интегрирования.

1 Интегрирование в полных дифференциалах

Пущай ф-ция P(x,y) и Q(x,y)  - непрерывны в замкнутой области и выражение P(x,y) + Q(x,y) есть полный дифееренциал некоторой ф-ции F(x,y) в , что равносильно условию: , тогда dF=Pdx+Qdy.

Для интегралов независящих от пути интегрирования часто применяют обозначение:

или

А(x0,y0)   , В = (х,у)   

поэтому

F(x,y)=

где (х0,у0) – фиксированная точка  ,  (x,y) – произвольная точка   , с – const. и дает возможность определить все ф-ции, имеющие в подинтегральном выражении свои полные дифференциалы. Тк. интеграл не зависит от пути интегрирования, за путь инт. удобно взять ломаную звень которой параллельны осям координат. тогда формула преобразуется к виду.

2 Признаки сравнения

1 Сведение 2-ного интеграла к повторному

Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)<= у2(х) на всем отрезке.

D={x,y}: a<=x<=b; y1(x)<=y<=y2(x)

Отрезок [a,b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.

Если  фция f(x,y) задана на Д и при каждом х [a,b] непрерывна на у , на отрезке, [y1(x),y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл : , наз повторным интегралом от ф-ции f(x,y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.

2 Признаки Даламбера и Коши

№23

1 2 ной интеграл

в полярных координатах

Переход к полярным координатам частный случай замены переменных.

Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, ) где r = |ОA| расстояние от О до А полярный радиус. = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0<=r<=+, 0<= <=2 .

Зависимость между прямоугольными и полярными координатами: x = rcos , y = rsin .

Якобиан преобразования будет равен:

И формула при переходе примет вид:

1 Замена переменных

в тройном интеграле

Если ограниченная замкнутая область пространства V = f(x,y,z)  взаимно однозначно отображается на область V’ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан

то справедлива формула:

При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcos,  y=rsin, z=z (0<=r<=+, 0<= <= 2, -<=z<=+)

Якобиан преобразования:

И поэтому в цилитндрических координатах переход осуществляется так:

При переходе к сферическим координатам: r?  , связанными с z,y,z формулами x=rsincos,  

y=r sinsin, z=rcos.

(0<=r<=+, 0<= <= 2,

0<= <=2)

Якобиан преобразования:

Т. е. |J|=r2sin.

Итак, в сферических координатах сие будет:




1. ТЕМА- АУСКУЛЬТАЦИЯ СЕРДЦА И СОСУДОВ СЕРДЕЧНОСОСУДИСТАЯ СИСТЕМА- Осмотр прекордиальной области и пов
2. Курсовой проект по дисциплине Производственные предприятия транспортных сооружений АБЗ Рас
3. Введение3
4. Этнопедагогические условия использования игр и состязаний традиционного физического воспитания
5. тематические методы решения физических задачrdquo; Разработчик- ассистент А
6. Статья 1 Внести в Уголовный кодекс Российской Федерации Собрание законодательства Российской Федерации
7. Економіка будівництва А В Т О Р Е Ф Е Р А Т дисертації на здобуття наукового ступеня кандидата е
8. Курсовая работа Физиология слуха
9. Реферат- Характеристика экологических факторов Кунгурского района Пермского края
10. Базаров и Павел Кирсанов в романе Отцы и дети
11. Православная церковь и печатное дело на белорусских землях в 1917-1941 гг
12. Логічні елементи1
13. Технология получения пив
14. Сила тока при пуске с реостатом почти совпадает с заданным значением
15. ФИЗИКА для студентов всех специальностей вуза Утверждено на заседании ученого совета
16. Реферат- Роль физической культуры
17. Льянос Ориноко
18. Полномочия и задачи органов местного самоуправления в сфере управления жилищно-коммунальным хозяйством
19. По знаку эмоции делятся на положительные отрицательные и амбивалентные
20. Вопросы на тему Windows, Excel Word с тестами, иллюстрациями и пояснениями