Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Подготовкой к решению составных задач будет умение вычленять систему связей иначе говоря разбивать сост

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

Этапы работы над задачей.

Подготовкой к решению составных задач будет умение вычленять систему связей, иначе говоря, разбивать составную задачу на ряд простых, последовательное решение которых и будет решением составной задачи.

При работе над каждым отдельным видом задач требуется своя специальная подготовительная работа.

На ступени обучения решению задач дети учатся устанавливать связи между данными и искомым и на этой основе выбирать арифметические действия, то есть они учатся переходить от конкретной ситуации, выраженной в задаче к выбору соответствующего арифметического действия. В результате такой работы учащиеся знакомятся со способом решения задач рассматриваемого вида.

В методике работы на этой ступени выделяются следующие этапы:

I этап – ознакомление с содержанием задачи;

II этап – поиск решения задачи (вспомогательная модель, разбор, плпн решения);

III этап – выполнение решения задачи;

IV этап – проверка решения задачи.

Часто после решения задачи выполняются определенные виды работы с решенной задачей. (5 этап)

Выделенные этапы органически связанны между собой, и работа на каждом этапе ведется на этой ступени преимущественно под руководством учителя.

I этап Ознакомление с содержанием задачи. 

Цель:

  1.  научить понимать ситуацию в целом;
  2.  установить смысл каждого слова, словосочетания, предложения;
  3.  приучиться читать задачу;
  4.  выделить структурные элементы;
  5.  установить взаимосвязь между искомым и данными;

Ознакомится с содержанием задачи – значит прочитать ее, представить жизненную ситуацию, отраженную в задаче. Читают задачу, как правило, дети. Учитель читает задачу лишь в тех случаях, когда у детей нет текста задачи или когда они еще не умеют читать. Очень важно научить детей правильно читать задачу: делать ударение на числовых данных и на словах, которые определяют выбор действий, таких как «было», «убрали», «осталось», «стало поровну» и т.п., выделять интонацией вопрос задачи. Если в тексте задачи встретятся непонятные слова, их надо пояснить или показать рисунки предметов, о которых говорится в задаче. Задачу дети читают один – два, а иногда и большее число раз, но постепенно их надо приучать к запоминанию задачи с одного чтения, так как в этом случае они будут читать задачу более сосредоточенно.

Читая задачу, дети должны представлять ту жизненную ситуацию, которая отражена в задаче. С этой целью полезно после чтения предлагать им представить себе то, о чем говорится в задаче, и рассказать, как они представили.

II этап Поиск решения задачи. 

Цель:

  1.  научить ученика задавать самому себе систему вопросов (от вопроса к условию, от условия к вопросу и др.), после ответа на которые он сможет найти решение;
  2.  составить план решения;

После ознакомления с содержанием задачи нужно приступить к поиску ее решения: ученики должны выделить величины, входящие в задачу, данные и искомые числа, установить связи между данными и искомыми и на этой основе выбрать соответствующие арифметические действия.

При введении задач нового вида поиском решения руководит учитель, а затем учащиеся выполняют это самостоятельно.

В том и другом случае используются специальные приемы, которые помогают детям вычленить величины, данные и искомые числа, установить связи между ними. К таким приемам относятся:

а) составление вспомогательной модели, повторение задачи

б) разбор задачи (анализ или синтез)

в) составление плана решения задачи

Рассмотри каждый из этих приемов.

а)Составление вспомогательной модели задачи – это использование средств наглядности для вычленения величин, входящих в задачу, данных и искомых чисел, а также для установления связей между ними. Вспомогательная модель может быть в форме:

1)предметной иллюстрации (сами предметы или их образы)

2) краткой записи задачи (опорные слова, числа, наим.величин)

3) таблицы

4) схематической (опорные схемы, чертежи)

Предметная иллюстрация помогает создать яркое представление той жизненной ситуации, которая описывается в задаче. Ею пользуются только при ознакомлении с решением задач нового вида и преимущественно в 1 классе. Для иллюстрации задачи используются либо предметы, либо рисунки предметов, о которых идет речь в задаче: с их помощью иллюстрируется конкретное содержание задачи.

Наряду с предметной иллюстрацией, начиная с 1 класса, используется и краткая запись задачи.

В краткой записи фиксируются в удобообразной форме величины, числа – данные и искомые, а также некоторые слова, показывающие, о чем говорится в задаче: «было», «положили», «стало» и т.п. и слова, означающие отношения: «больше», «меньше», «одинаково» и т.п.

Модель задачи можно выполнять в таблице, а так же в форме чертежа. При табличной форме требуется выделение и название величины. Расположение числовых данных помогает установлению связей, между величинами: на одной строке записываются соответствующие значения различных величин, а значения одной величины записываются одно под другим. Искомое число обозначается вопросительным знаком. Многие задачи можно изобразить чертежом. Иллюстрирование в виде чертежа целесообразно использовать при решении задач, в которых даны отношения значений величин («больше», «меньше», «столько же»). Одно из чисел данных в задаче (число детей, число метров в материи) изображают отрезком, задав определенный масштаб (без употребления этого слова) и используя данные в задаче соотношения этого числа и других чисел, изображают эти числа (в 2 раза больше, на 4 кг меньше) соответствующим отрезком.

Задачи, связанные с движением, долями, дробями также можно иллюстрировать с помощью чертежа.

Используя вспомогательную модель, ученики могут повторить задачу. При повторении лучше, чтобы дети объясняли, что показывает каждое число и что требуется узнать в задаче.

При ознакомлении с задачей нового вида, как правило, используется какая- либо одна модель, но в отдельных случаях полезно выполнить предметную и схематичную иллюстрацию.

В процессе выполнения иллюстрации некоторые дети находят решение задачи, то есть они уже знают, какие действия надо выполнить, чтобы решить задачу. Однако часть детей может установить связи между данными и искомыми выбрать соответствующее арифметическое действие только с помощью учителя.

б)В этом случае учитель проводит специальную беседу, которая называется разбором задачи.

Рассуждение можно строить двумя способами: идти от вопроса задачи к числовым данным (анализ) или же от числовых данных идти к вопросу (синтез).

Чаще следует использовать первый способ рассуждения (анализ), так как при этом ученик должен иметь в виду не одно выделенное действие, а все решение в целом. При использовании второго способа (Синтез) разбора учитель прямо подводит их к выбору каждого действия. Кроме того, такое рассуждение может привести к выбору «лишних действий».

Разбор составной задачи заканчивается составлением плана решения – это объяснение того, что узнаем, выполнив то или иное действие, и указание по порядку арифметических действий.

III этап Решение задачи. 

Цель:  

  1.  записать решение так, чтобы оно было понятно читающему;

Решение задачи – это выполнение арифметических действий, выбранных при составлении плана решения. При этом обязательны пояснения, что находим, выполняя каждое действие. Надо учить детей правильно и кратко давать пояснения к выполняемым действиям.

Решение задачи может выполняться устно и письменно.

В начальных классах могут быть использованы такие основные формы записи решения:

  1.  Запись решения по действиям с пояснениями
  2.  Запись решения задачи по плану решения
  3.  Запись решения задачи по вопросам
  4.  Составление по задаче выражения и нахождение его значения;

IV этап: Проверка решения задач. 

Цель:

  1.  убедиться в правильности найденного решения.

Проверить решение задачи – значит установить, что оно правильно или ошибочно.

В начальных классах используются следующие четыре способа проверки:

  1.  Прикидка ответа – то есть до решения задачи устанавливается больше или меньше какого- то из данных чисел должно быть искомое число. Помогает выбору действия.
  2.  Составление и решение обратной задачи. В этом случае детям предлагается составить задачу, обратную по отношению к данной: то есть преобразовать данную задачу так, чтобы искомое данной задачи стало данным числом, а одно из данных чисел стало искомым. Если при решении обратной задачи в результате получится число, которое было известно в данной задаче, то можно считать, что данная задача решена правильно.
  3.  Решение задачи другим способом. Если задачу можно решать различными способами, то получение одинаковых результатов подтверждает, что задача решена правильно.
  4.  Установление соответствия между числами, полученными в результате решения задачи, и данными числами. При проверке решения задачи этим способом выполняют арифметические действия над числами, которые получаются в ответе на вопрос задачи, если при этом получатся числа, данные в условии задачи, то можно считать, что задача решена правильно.

V. Работа с решенной задачей.

Цель:

  1.  организовать деятельность ученика так, чтобы он осознал свое продвижение от незнания к знанию;

Анализ уроков показывает, что опытный учитель уделяет внимание работе над решенной задачей. Это способствует формированию умения решать задачи. Предлагаются следующие виды работ:

  1.  Введение в условие задачи новых данных;
  2.  Изменение вопроса без изменения условия;
  3.  Изменение условия без изменения вопроса;
  4.  Изменение условия и вопроса;
  5.  Сравнение содержания и решения данной задачи с содержанием и решением другой задачи;
  6.  Исследование решения (Сколько способов решения имеет задача? При каких условиях она не имела бы решения? Возможны ли другие методы решения?).
  7.  Обоснование правильности решения (проверка решения задачи составлением обратной задачи).

Некоторые из перечисленных видов работ предусматривают умение детей составлять задачи, другими словами формулировать некоторый новый текст.

Составлять задачи можно двух видов: связанные с решенной и не связанные с решенной.

К задачам, не связанным с решенной, относятся задачи, составленные по выражению или по краткой записи.

К задачам, связанным с решенной задачей, относятся задачи обратные данной, аналогичные задачи, преобразованные задачи.

Мы будем подробнее рассматривать задачи, связанные с решенной, т.к. преобразование задач – есть частный случай обучения составлению задач.

Упражнения по преобразованию задач является чрезвычайно эффективными для обобщения способа их решения.

Методисты включают в работу по преобразованию задач следующие виды упражнений:

  1.  Изменение поставленного к условию задачи вопроса.
  2.  Изменение условия задачи без изменения поставленного вопроса.
  3.  Изменение условия и вопроса задачи.
  4.  Преобразование данных задач в задачи родственных им видов, т.е в «задачи, в которых величины связаны одинаковой зависимостью. Так, родственными будут задачи на нахождение четвертого пропорциональ ного, на пропорциональное деление и на нахождение неизвест ных по двум разностям, так как в них величины связаны про порциональной зависимостью. Можно одну задачу преобразовать в другую родственного вида путем выполнения арифметических действий над числовыми значениями величин. В результате такого преобразования и сравнения способов решения задач родственных видов приведем детей к обобщению спосо бов решения этих задач». [3, с. 175]
  5.  Составление аналогичных задач, т.е. составление задач, имеющих одинаковую математическую структуру, не изменяя связь между данными и искомым. Аналогичные задачи надо составлять после решения данной готовой задачи, предлагая при этом, когда возможно, изменять не только сюжет и числа, но и величины.
  6.  Составление обратных задач, т.е. составление задач, в которых «при тех же условиях одно из данных первой задачи служит искомым во второй и искомое первой входит в число данных второй». [21, с. 12] При составлении обратных задач связи между числовыми данными не должны изменяться.

Остановимся на первых трёх видах упражнений, и будем говорить о преобразовании задач, подразумевая именно изменение поставленного к условию задачи вопроса, изменение условия задачи без изменения поставленного вопроса, изменение условия и вопроса задачи, т.к. именно этим видам работ уделено наименьшее количество внимания в методических пособиях.

Изменение поставленного вопроса.

После решения некоторых задач полезно предложить детям изменить вопрос задачи. Например, пусть ученики решили задачу: Два поезда вышли одновременно навстречу друг другу из Москвы и Киева. Московский поезд проходил 68км в час, а киевский 75км в час. Через сколько часов поезда встретятся, если расстояние от Москвы до Киева 858км?» После решения задачи можно предложить изменить вопрос так, чтобы спрашивалось о расстоянии. Учащиеся могут поставить такие вопросы: На каком расстоянии от Москвы (от Киева) произошла встреча? Какое расстояние прошел каждый поезд до встречи? Какое расстояние надо пройти каждому поезду после встреча до места назначения? На сколько километров больше прошел до встречи киевский поезд? И т.д.

Этот прием используется с различной дидактиче ской целью.

Во многих случаях целесообразно вводить некоторые ограничения. Например, предлагается изменить вопрос так, чтобы задача решалась одним действием, двумя действиями и т.д., или чтобы задача решалась указанным действием. Такие задания предусмотрены программой и находят отражение в учебниках математики для I и II классов, но редко используются на уроке из-за недостатка времени, несмотря на то, что применение его приносит большую пользу и позволяет более полно использовать условие той или иной задачи.

Задаваемые вопросы и поиск ответов на них дают возможность решить не одну, а несколько задач по одному и тому же условию, позволяют более полно использовать условие задачи, экономить время, которое тратится на осмысление содержания и выполнение наглядной интерпретации (краткой записи) задач. Кроме того, постановка различных вопросов к задаче и затем ее решение развивают мышление. Также эти упражнения помогают обобщению знаний о связях между данными и искомым, так как при этом дети устанавливают, что можно узнать по определенным данным.

Изменение условия задачи.

Видоизменяя условие задачи, дети глубже вникают во взаимосвязь между элементами задачи, учатся рассматривать условие задачи под углом зрения ее вопроса и наоборот.

Используя данный вид преобразования задачи учащимся можно предложить решить задачу в одно действие, а затем так изменить её условие, чтобы она решалась двумя действиями. Например, «У Насти было 20 руб. Она купила ручку, которая стоит 8 руб. Сколько денег у нее осталось?». Ученики могут преобразовать задачу в такой вид: «У Насти было 20 руб. Она купила ручку, которая стоит 8 руб., и карандаш, который стоит 7 руб. Сколько денег у нее осталось?». Можно наоборот, предлагать детям задачи в 2 действия. Видоизменяя условия, дети должны из составной задачи сделать простую.

Изменение условия и вопроса задачи.

Изменение условия и вопроса задачи предлагает больший круг задач, дает возможность решить не одну, а несколь ко задач, позволяют более полно использовать условие и требование задачи, экономить время. Данный вид упражнений развивают мышление учащихся, помогает обобщению знаний о связях между данными и искомым.




1. Все биомембраны построены одинаково; они состоят из двух слоев липидных молекул толщиной около 6 нм в кото
2. Вероятно она в определенной степени поменяет представление об Америке особенно если у вас нет собственно.
3. изумрудфункциональные характеристики особенности сравнение с бытовымиводоочистителями других систем у
4. Оценка качества Интернет-ресурса
5. ВАРИАНТ 9 Порядок выполнения ДКР ПРОВОДНИКИ ПОЛУП
6. тематически мечтающий спросонья об избавлении от сушняка либо черствый начисто лишенный чувства прекрасно
7. Семья как институт социализации ребенка
8. Финансы Учреждения Университет Туран Протокол ’ от 2013 г
9. Функции норм права
10.  Переход экономики на военные рельсы В первые месяцы войны Советский Союз утратил значительную часть свое
11. Идеи алхими
12. Теоретический анализ военного искусства Древнерусского государства в IX-XI веках
13. В воздухе стоял запах корицы и свежей выпечки
14. нагревание тепловая денатурация; взбивание поверхностная; высокая концентрация Н или ОН ионов кисло
15. Контрольная работа- Административно-правовой статус общественных объединений
16. Реферат- Информационные технологии управления страховой деятельностью
17. вариант изделия его конструктивные элементы материалы анализируют образцы изделий и выполняют чертежи
18. положившая начало формированию системы подготовки инженерных и технических кадров для Российской армии
19. Ребенка бьют- к вопросу о происхождении сексуальных извращений
20. Реформа системы государственного управления в КНР в 80-90 гг