У вас вопросы?
У нас ответы:) SamZan.net

Кодирование информации

Работа добавлена на сайт samzan.net: 2015-12-26

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.2.2025

Билет№20

Вопрос 1. Кодирование информации. Общие понятия и определения. Кодирование как процесс выражения информации в цифровой форме. Позиционные коды. Эффективное кодирование.

Любому дискретному сообщению или знаку сообщения можно приписать какой-либо порядковый номер. Измерение аналоговой величины, выражающееся в сравнении ее с образцовыми мерами, также приводит к числовому представлению информации. Передача или хранение сообщений при этом сводится к передаче или хранению чисел. Числа можно выразить в какой-либо системе счисления. Таким образом, будет получен один из кодов, основанный на данной системе счисления.

Чем больше основание системы счисления, тем меньшее число разрядов требуется для представления данного числа, а следовательно, и меньшее время для его передачи.

предпочтение необходимо отдать двоичной системе. Арифметические и логические действия также наиболее просто осуществляются в двоичной системе. В таблицы сложения, вычитания и умножения входит всего по четыре равенства:

 Правила              Правила                         Правила

сложения:         вычитания:                      умножения

0 + 0 = 0

0 – 0 = 0

0 · 0 = 0

0 + 1 = 1

1 – 0 = 1

0 · 1 = 0

1 + 0 = 1

1 – 1 = 0

1 · 0 = 0

1 + 1 = 1

0 – 1 = 1

1 · 1 = 1

Алгоритм перевода из двоичной в привычную для человека десятичную систему несложен. Пересчет начинается со старшего разряда. Если в следующем разделе стоит 0, то цифра предыдущего (высшего) разряда удваивается. Если же в следующем разряде единица, то после удвоения предыдущего разряда результат увеличивается на единицу.

ЭФФЕКТИВНОЕ КОДИРОВАНИЕ

Как отмечалось, в большинстве случаев знаки сообщений преобразуются в последовательности двоичных символов.

Учитывая статистические свойства источника сообщения, можно минимизировать среднее число символов, требующихся для выражения одного знака сообщения, что при отсутствии шума позволяет уменьшить время передачи или объем запоминающего устройства.

Основная теорема Шеннона о кодировании для канала без помех. Эффективное кодирование сообщений для передачи их по дискретному каналу без помех базируется на теореме Шеннона, которую можно сформулировать так:

1. При любой производительности источника сообщений, меньшей пропускной способности канала,существует способ кодирования, позволяющий передавать по каналу все сообщения, вырабатываемые источником.

2. Не существует способа кодирования, обеспечивающего передачу сообщений без их неограниченного накопления

В основе доказательства лежит идея возможности повышения скорости передачи информации по каналу, если при кодировании последовательности символов ставить в соответствие не отдельным знакам, а их последовательностям такой длины, при которой справедлива теорема об их асимптотической равновероятности..

Методы эффективного кодирования некорреляционной последовательности знаков. Теорема не указывает конкретного способа кодирования, но из нее следует, что при выборе каждого символа кодовой комбинации необходимо стараться, чтобы он нес максимальную информацию.

Следовательно, каждый символ должен принимать значения 0 и 1 по возможности с равными вероятностями и каждый выбор должен быть независим от значений предыдущих символов.

Код строят следующим образом: знаки алфавита сообщений выписывают в таблицу в порядке убывания вероятностей. Затем их разделяют на две группы так, чтобы суммы вероятностей в каждой из групп были по возможности одинаковы. Всем знакам верхней половины в качестве первого символа приписывают 0, а всем нижним — 1. Каждую из полученных групп, в свою очередь, разбивают на две подгруппы с одинаковыми суммарными вероятностями и т. д. Процесс повторяется до тех пор, пока в каждой подгруппе останется по одному знаку.

Методы эффективного кодирования коррелированной последовательности знаков. Декорреляция исходной последовательности может быть осуществлена путем укрупнения алфавита знаков. Подлежащие передаче сообщения разбиваются на двух-, трех- или n-знаковые сочетания, вероятности которых известны:

Недостаток такого метода заключается в том, что не учитываются корреляционные связи между знаками, входящими в состав следующих друг за другом сочетаний. Естественно, он проявляется тем меньше, чем больше знаков входит в каждое сочетание.

Недостатки системы эффективного кодирования. Причиной одного из недостатков является различие в длине кодовых комбинаций. Если моменты снятия информации с источника неуправляемы (например, при непрерывном съеме информации с запоминающего устройства на магнитной ленте), кодирующее устройство через равные промежутки времени выдает комбинации различной длины. Так как линия связи используется эффективно только в том случае, когда символы поступают в нее с постоянной скоростью, то на выходе кодирующего устройства должно быть предусмотрено буферное устройство («упругая» задержка). Оно запасает символы по мере поступления и выдает их в линию связи с постоянной скоростью. Аналогичное устройство необходимо и на приемной стороне.

Второй недостаток связан с возникновением задержки в передаче информации.

Наибольший эффект достигается при кодировании длинными блоками, а это приводит к необходимости накапливать знаки, прежде чем поставить им в соответствие определенную последовательность символов. При декодировании задержка возникает снова.

Вопрос 2 Сетевые модели OSI и IEEE Project 802.  Протоколы и службы.

Работа сети заключается в передаче данных от одного компьютера к другому. В этом процессе можно выделить несколько отдельных задач:

распознать данные;

разбить данные на управляемые блоки;

добавить информацию к каждому блоку, чтобы:

указать местонахождение данных;

указать получателя;

добавить информацию синхронизации и информацию для проверки ошибок;

поместить данные в сеть и отправить их по заданному адресу.

Сетевая операционная система при выполнении всех задач следует строгому набору процедур. Эти процедуры называются протоколами или правилами поведения. Протоколы регламентируют каждую сетевую операцию.

Стандартные протоколы позволяют программному и аппаратному обеспечению различных производителей нормально взаимодействовать. Существует два главных набора стандартов: модель OSI и ее модификация, называемая Project 802.

Модель OSI

В 1978 году International Standards Organization (ISO) выпустила набор спецификаций, описывающих архитектуру сети с неоднородными устройствами. В 1984 году ISO выпустила новую версию своей модели, названную эталонной моделью взаимодействия открытых систем (Open System Interconnection reference model, OSI). Версия 1984 года стала международным стандартом: именно ее спецификации используют производители при разработке сетевых продуктов, именно ее придерживаются при построении сетей.

Эта модель — широко распространенный метод описания сетевых сред.

В модели OSI сетевые функции распределены между семью уровнями. Каждому уровню соответствуют различные сетевые операции, оборудование и протоколы.

Прикладной уровень

Представительский уровень

Сеансовый уровень

Транспортный уровень

Сетевой уровень

Канальный уровень

Физический уровень

Это и есть многоуровневая архитектура модели OSI. На каждом уровне выполняются определенные сетевые функции, которые взаимодействуют с функциями соседних уровней, вышележащего и нижележащего. Нижние уровни — Физический и Канальный — определяют физическую среду передачи данных и сопутствующие задачи (такие, как передача битов данных через плату сетевого адаптера и кабель). Самые верхние уровни определяют, каким способом осуществляется доступ приложений к услугам связи. Чем выше уровень, тем более сложную задачу он решает.

Взаимодействие уровней модели OSI

Задача каждого уровня - предоставление услуг вышележащему уровню, «маскируя» детали реализации этих услуг. При этом каждый уровень на одном компьютере работает так, будто он напрямую связан с таким же уровнем на другом компьютере. Перед подачей в сеть данные разбиваются на пакеты. Пакет (packet) — это единица информации, передаваемая между устройствами сети как единое целое. Пакет проходит последовательно через все уровни программного обеспечения. На каждом уровне к пакету добавляется некоторая информация, форматирующая или адресная, которая необходима для успешной передачи данных по сети.

На принимающей стороне пакет проходит через все уровни в обратном порядке. Программное обеспечение на каждом уровне читает информацию пакета, затем удаляет информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передает пакет следующему уровню. Когда пакет дойдет до Прикладного уровня, вся адресная информация будет удалена и данные примут свой первоначальный вид.

Взаимодействие смежных уровней осуществляется через интерфейс. Интерфейс определяет услуги, которые нижний уровень предоставляет верхнему, и способ доступа к ним.

Прикладной уровень

Уровень 7, Прикладной (Application), — самый верхний уровень модели OSI. Он представляет собой окно для доступа прикладных процессов к сетевым услугам. Этот уровень обеспечивает услуги, напрямую поддерживающие приложения пользователя

Представительский уровень

Уровень 6, Представительский (Presentation), определяет формат, используемый для обмена данными между сетевыми компьютерами. Этот уровень можно назвать переводчиком.

Сеансовый уровень

Уровень 5, Сеансовый (Session), позволяет двум приложениям на разных компьютерах устанавливать, использовать и завершать соединение, называемое сеансом. Сеансовый уровень обеспечивает синхронизацию между пользовательскими задачами посредством расстановки в потоке данных контрольных точек (chekpoints).

Транспортный уровень

Уровень 4, Транспортный (Transport), обеспечивает дополнительный уровень соединения — ниже Сеансового уровня. Транспортный уровень гарантирует доставку пакетов без ошибок, в той же последовательности, без потерь и дублирования.

Сетевой уровень

Уровень 3, Сетевой (Network), отвечает за адресацию сообщений и перевод логических адресов и имен в физические адреса. На этом уровне решаются также такие задачи и проблемы, связанные с сетевым трафиком, как коммутация пакетов, маршрутизация и перегрузки.

Канальный уровень

Уровень 2, Канальный, осуществляет передачу кадров (frames) данных от Сетевого уровня к Физическому. Кадры — это логически организованная структура, в которую можно помещать данные.

Физический уровень

Уровень 1, Физический, — самый нижний в модели OSI. Этот уровень осуществляет передачу неструктурированного, «сырого» потока битов по физической среде (например, по сетевому кабелю). Здесь реализуются электрический, оптический, механический и функциональный интерфейсы с кабелем.

Модель IEEE Project 802

В конце 70-х годов, когда ЛВС стали восприниматься в качестве потенциального инструмента для ведения бизнеса, IEEE пришел к выводу: необходимо определить для них стандарты. В результате был выпущен Project 802, названный в соответствии с годом и месяцем своего издания (1980 год, февраль).

Project 802 установил стандарты для физических компонентов сети — интерфейсных плат и кабельной системы, — с которыми имеют дело Физический и Канальный уровни модели OSI.

Итак, эти стандарты, называемые 802-спецификациями, распространяются:

на платы сетевых адаптеров;

компоненты глобальных вычислительных сетей;

компоненты сетей, при построении которых используют коаксиальный кабель и витую пару.

Категории

Стандарты ЛВС, определенные Project 802, делятся на 12 категорий, каждая из которых имеет свой номер.

802.1 — объединение сетей.

802.2 — Управление логической связью.

802.3 — ЛВС с множественным доступом, контролем несущей и обнаружением коллизий (Ethernet).

802.4 — ЛВС топологии «шина» с передачей маркера.

802.5 — ЛВС топологии «кольцо» с передачей маркера.

802.6 — сеть масштаба города (Metropolitan Area Network, MAN).

802.7 — Консультативный совет по широковещательной технологии (Broadcast Technical Advisory Group).

802.8 -- Консультативный совет по оптоволоконной технологии (Fiber-Optic Technical Advisory Group).

802.9 — Интегрированные сети с передачей речи и данных (Integrated Voice/Data Networks).

802.10 — Безопасность сетей.

802.11 — Беспроводная сеть.

802.12 — ЛВС с доступом по приоритету запроса (Demand Priority Access LAN, lOObaseVG-AnyLan).

Расширения модели OSI

Два нижних уровня модели OSI, Физический и Канальный, устанавливают, каким образом несколько компьютеров могут одновременно использовать сеть, чтобы при этом не мешать друг другу.

IEEE, подробно описывая Канальный уровень, разделил его на два подуровня:

Управление логической связью (Logical Link Control, LLC) — контроль ошибок и управление потоком данных;

Управление доступом к среде (Media Access Control, MAC).

Сетевые службы и протоколы.

Сетевые протоколы фактически управляют сетью, указывая сетевым устройствам, что они должны делать. Сетевые протоколы - это набор правил по которым работает сеть.

Существует множество типов сетевых протоколов, работающих в разных сетях и на разных уровнях модели OSI. Вот некоторые из них:

TCP/IP

NetBEUI

IPX/SPX

NWLink

Apple Talk

DLC.

Протоколы:

протокол НТТР - используется для организации доступа к общим данным, расположенным на веб-серверах, с целью публикации и чтения общедоступной информации.

протокол FTP - служба Интернета, обеспечивающая передачу файлов между компьютерами.

Протокол IP (Internet protocol) - основной протокол сетевого уровня. Определяет способ адресации на сетевом уровне.

Протокол TCP (Transmission Control Protocol) - протокол, обеспечивающий гарантированную доставку данных с установлением виртуального соединения между программами, которым требуется использовать сетевые услуги

Протокол Apple Talk. Это набор протоколов, разработанный Apple Computer, Inc. для связи компьютеров Apple Macintosh. Windows поддерживает все протоколы AppleTalk, что позволяет этой операционной системе выступать в роли маршрутизатора и сервера удаленного доступа сетей Macintosh.

Вопрос 3 Цифровые сети с интеграцией служб – ISDN. Организация базового и первичного доступа.

Цели и история создания технологии ISDN

ISDN (Integrated Services Digital Network — цифровые сети с интегральными услугами) относятся к сетям, в которых основным режимом коммутации является режим коммутации каналов, а данные обрабатываются в цифровой форме. Архитектура сети ISDN предусматривает несколько видов служб

• некоммутируемые средства (выделенные цифровые каналы);

• коммутируемая телефонная сеть общего пользования;

• сеть передачи данных с коммутацией каналов;

• сеть передачи данных с коммутацией пакетов;

• сеть передачи данных с трансляцией кадров (frame relay);

• средства контроля и управления работой сети.

Пользовательские интерфейсы ISDN

Одним из базовых принципов ISDN является предоставление пользователю стандартного интерфейса, с помощью которого пользователь может запрашивать у сети разнообразные услуги

Пользовательский интерфейс основан на каналах трех типов:

• В—со скоростью передачи данных 64 Кбит/с;

D — со скоростью передачи данных 16 или 64 Кбит/с;

• Н — со скоростью передачи данных 384 Кбит/с (НО), 1536 Кбит/с (НИ) или 1920 Кбит/с (Н12   




1. тема Анатомия функция и значение Вегетативная нервная система автономная нервная система ганглионарная
2. 0 н~ктені базистік ретінде алып 2 н~ктені~ потенцилын тап
3. Разработка организационно-методических документов процесса снабжения (на примере ОАО ресторан Разгуляй, г. Нижний Новгород)
4. Как мы упомянули ранее для вас это время перемен на многих уровнях
5. Практикум Создание webстраницы Рассмотрим основные приемы создания Webстраниц на языке HTML такие как вво
6. 1 Склеивание коробки.
7. Расчет эффективности земельно-кадастровых работ
8. На всей скорости на мотоцикле несется молодой парень лет двадцати
9.  Талин Чан Tling Chn Mrket; 21
10. Зайнятість та безробіття в Україні