Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Министерство образования и науки РТ
ГАОУ СПО «Колледж малого бизнеса и предпринимательства»
Методические указания
для студентов- заочников по дисциплине «математика»
специальности:
260807 Технология продукции общественного питания
2013
Содержание
Введение
В настоящее время математические методы широко используются для решения самых разнообразных задач науки, техники и экономики. Значение этих методов существенно выросло в связи с массовым применением во всех отраслях электронно- вычислительных машин.
Математика является фундаментальной дисциплиной. Цель ее преподавания в учреждении среднего профессионального образования предусматривает:
- развить логическое мышление и повысить общий уровень математической культуры;
- познакомить студентов с математическим аппаратом. Необходимым для изучения общенаучных дисциплин;
- выработать у студентов умение самостоятельно изучать учебную литературу тпо математике и ее приложениям;
- выработать навыки к математическому исследованию прикладных задач .
Общие рекомендации
студенту-заочнику по работе над курсом математики
Основной формой обучения студента-заочника является самостоятельная работа над учебным материалом, которая состоит из следующих элементов: изучение материала по учебнику, решение задач. Самопроверка. Выполнение контрольных работ. Во время сессий студенты слушаю лекции, посещают практические занятия. Сдают устные зачеты и экзамены. При самостоятельном изучении учебного материала можно использовать следующие рекомендации.
1 . Чтение учебника
1. Каждый следующий вопрос должен изучаться только после правильного понимания предыдущего .
2. Особое внимание следует обращать на определение основных понятий. Их следует знать точно, а также подробно разбирать примеры, которые поясняют такие определения и уметь строить аналогичные примеры самостоятельно.
3. При изучении материала по учебнику полезно вести конспект, в который рекомендуется вписывать определения, формулировки теорем, уравнения и т.д. На полях конспекта необходимо отмечать вопросы, на которые необходимо получение устной или письменной консультации преподавателя.
4. Выводы, полученные в виде формул, рекомендуется подчеркивать или обводить рамкой, чтобы при перечитывании они выделялись и лучше запоминались. Полезно составить лист, содержащий важнейшие и наиболее часто употребляемые формулы курса. Такой лист поможет запомнить эти формулы , а также послужит постоянным справочником.
2. Решение задач
3.Самопроверка
При изучении математики большое значение имеет проверка правильности понимания, усвоения и выполнения задания. Необходимо научиться самопроверке. При этом приемы самоконтроля могут быть различные:
- проверка правильности усвоения материала путем сравнения своих формулировок с данными в учебнике ( если свои записаны);
- проверка результатов решения задачи по готовому ответу, а еще лучше по готовому решению, когда сразу видно, в каких местах есть пробелы;
- проверка результатов решения по аналогичному решению;
- проверка результата с помощью обратных действий.
Требования к выполнению и оформлению письменной контрольной работы
При выполнении контрольной работы необходимо строго придерживаться указанных ниже правил. Работы, выполненные без соблюдения этих правил, не зачитываются и возвращаются студенту для переработки.
Теория к контрольной работе
Последовательности
Пусть задан занумерованный бесконечный набор чисел х1,х2,…,хn,… . Это значит, что всякому натуральному числу n=1,2,… поставлено в соответствие по определенному закону число хn.
Определение: Всякий занумерованный бесконечный набор чисел х1,х2,…,хn,… называется числовой последовательностью.
Пример: 1) Последовательность всех четных натуральных чисел
2,4,6,….2n,…
2) Последовательность всех квадратов натуральных чисел
1,4,9,16,…n2,…
Обозначают: хn, n=1,2,… или
Хn называется общим членом последовательности.
Способы задания последовательностей
Пример: хn=, n=1,2,…
Пример : х1=х2=1, хn=xn-1+xn-2
Пример: последовательность простых чисел
2,3,5,7,11,13,17,19,23,… (т.е. можно указать саму последовательность, но для нее нет общего члена)
Определение: последовательность называется монотонно возрастающей, если для любого n выполняется неравенство хn<хn-1, т.е. каждый следующий член больше предыдущего.
Определение: Числовая последовательность называется ограниченной, если найдется число ε>0 такое, что дл всех номеров n=1,2,…выполняется равенство.
Определение: Числовая последовательность называется неограниченной, если какое бы большое число ε>0 ни взять, всегда найдется номер n такой, что .
Определение: Неограниченная последовательность, для которой неравенство выполняется сплошь для всех n, больших некорого номера, зависящего от ε, называются бесконечно большими (б.б.), т.е.
Пример:
Определение: числовая последовательность называется бесконечно малой(б.м.), если
Предел последовательности
Рассмотрим последовательность хn=, n=1,2,…
:1,… ,т.е. члены этой последовательности с увеличением номера приближаются к нулю. Если рассмотреть другую последовательность, то там может быть другое число, к которому приближаются члены последовательности.
Определение: Число А называется пределом последовательности хn, n=1,2…, если разность αn=хn-А является б.м. последовательностью.
Обозначается предел символом
Замечание: предел постоянной равен самой постоянной.
Последовательности, имеющие предел, называются сходящимися; в противном случае последовательность называется расходящейся.
Теорема 1:Если последовательность имеет предел, то он единственный.
Заметим , что из определения можно сделать вывод, что б.м. последовательности это те и только те, предел которых равен нулю, т.е. сказать , что хn,n=1,2… - б.м. и - одно и то же.
Свойства сходящихся последовательностей
Теорема 2:Пусть хnи уn ,n=1,2,… - сходящиеся последовательности, т.е. limxn=a, limyn=b.
Тогда справедливы следующие утверждения:
пример :Найти предел .
=(утверждение 1)== =()=(утверждение 2)= (1--)=(1-0-0)=
В рассмотренном примере непосредственное (т.е. без предварительных преобразований) использование теоремы 2 невозможно, т.к.это приводит к виду . Выражение данного вида называют неопределенностью вида . Аналогично определяются неопределенности вида . Раскрытие этих неопределенностей и составляет содержание практики нахождения пределов.
Монотонные последовательности. Число e.
Теорема: всякая монотонная и ограниченная последовательность сходится (т.е. имеет конечный предел).
Последовательность хn=монотонно возрастает и ограничена сверху числом М=3 и предел этой последовательности по определению равен e, т.е. e.
Данный предел носит название второго замечательного предела и используется для раскрытия неопределенности вида (1).
Функция. Предел функции.
Пусть Х и У некоторые множества и каждому элементу хХ поставлено в соответствие по некоторому правилу уУ. говорят , что задана функция у=f(x) на множестве Х со значениями во множестве У.
х аргумент функции
Х область определения
У- область значений.
Если Х и У-множество действительных чисел, то говорят о числовой функции.примерами числовых функций являются линейная (у=ах+b), тригонометрическая (у=cosx),…
Функции могут быть заданы с помощью формул, таблиц, словесно и т.д.
Рассмотрим поведение функции при условии, что х стремится к числу а (ха)
Определение: число b называется пределом функции у=f(x) при ха, если для любой последовательности аргументов х1,х2,…хn,…( хnа), сходящейся к а, соответствующая последовательность значений функции у(х1), у(х2),…у(хn),… сходится к b.
Обозначается:
Пример:
Основные теоремы о функциях, имеющих предел, аналогичны теоремам для сходящихся последовательностей.
неопределенности и способы их раскрытия для функций определяются аналогично последовательностям.
Замечательные пределы функции
Для вычисления пределов функций и раскрытия неопределенностей используют 2 замечательных предела и их следствия, которые отразим в следующей таблице.
Таблица замечательных пределов
1. первый замечательный предел |
7. |
2. |
8. |
3. |
9. , где α-вещественный параметр |
4. |
10. |
5. |
11. -второй замечательный предел |
6. |
12. |
Пример: Найти предел
=x2+=0+=2=2
При решении использовалось свойство для вычисления предела суммы двух функций и первый замечательный предел.
Бесконечно малые функции. Метод эквивалентных бесконечно малых величин.
Определение:Функция α(х) называется бесконечно малой при х, если она имеет предел, причем этот предел равен нулю, т.е. α(х)=0.
Бесконечно малые функции могут стремиться к нулю по-разному или.как говорят, с разной скоростью. Поэтому их принято сравнивать между собой в зависимости от того , как ведет себя их отношение.
Пусть α(х) и β(х) две бесконечно малые (б.м.) функции при х.
Определение:Б.м. α(х) и β(х) называют б.м. одного порядка малости, если существует предел , причем А0.
Пример:
Получаем, что б.м. функции х2 и 1-cosx имеют один порядок малости.
Определение: Две б.м. функции α(х) и β(х) называются эквивалентными при х, если предел их отношения равен 1, т.е. .
Примерами эквивалентных б.м. функций являются пары функций, приводящие к замечательным пределам (см.таблицу) .
Эквивалентность б.м. обозначается символом~
Таблица эквивалентных величин (при х)
1. sinx~x |
6. ln(1+x)~x |
2. arcsinx~x |
7. ax~x·lna, a1,a>0 |
3.tgx~x |
8. loga(1+x)~x/lna, a1,a>0 |
4.arctgx~x |
9. (1+x)α-1~αx,αR |
5. ex-1~x |
10. 1-cosx~x2/2 |
Практическое значение таблицы определяется следующей теоремой
Теорема: Пустьα(х) ~ α1(х), β(х) ~ β1(х) и существует . Тогдасуществует и предел , причем =.
Пример: Найти предел
Т.к. sin2x~2х при х, то ==0+2=2
Непрерывность функции
Пусть функция у=f(х) определена в некоторой окрестности точки а, включая саму точку а.
Определение: Функция у=f(х) называется непрерывной в точке а, если:
1) она определена в точке а;
2) существует
3) .
Если хотя бы одно из условий не выполняется, то говорят, что функция у=f(x) имеет разрыв в точке а, а сама точкаа называется точкой разрыва.
Обозначим х-х0 = у-у0=у. тогда определение непрерывности можно сформулировать по-другому: функция называется непрерывной а точке х, если из условия следует, что и у.
Утверждение: Все элементарные функции непрерывны в каждой точке своей области определения.
Свойства непрерывных функций
Пусть функции f(x) и y(x) непрерывны в точке а, с-любое число. Тогда функции сf(x), f(x)±y(x), f(x)·y(x), (y(x)≠0) также непрерывны.
Свойства непрерывных функций отражают 2 теоремы. Известные как теоремы Вейерштрасса.
Определение: Функция у=f(х) , определенная на отрезке , называется ограниченной на этом отрезке, если найдется число М>0 такое, что для любого х выполняется неравенство .
Первая теорема Вейерштрасса: Если функция f(x) непрерывна на отрезке , то она ограничена на этом отрезке.
Определение: Значение f(x0), где х0, называется наибольшим значением функции на отрезке, если для любой точки х справедливо неравенство f(x)≤f(x0).
Максимальное значение функции в точке обозначают , а саму точку хmax
Аналогично определяется минимальное значение функции в точке.
Вторая теорема Вейерштрасса: Если функция f(x) непрерывна на отрезке , то она принимает на этом отрезке как свое максимальное , так и свое минимальное значение.
Дифференциальное исчисление функции одной переменной
Разность х-х0 называется приращением аргумента и обозначается т.е. =х-х0, тогда близкая к х0 точка х=х0+.
Приращением функции у=f(х) в точке х0 называется разность у=f(х0+)-f(x0).
Если существует предел отношения у к приращению в этой точке, когда приращение аргумента стремится к нулю, то этот предел называется производной функции в точке х0 и обозначается у/(х0).
Производную функции можно обозначать символами: у/,, .
Операция нахождения производной функции называется дифференцированием функции.
Из равенства dy дифференциал функции.
С геометрической точки зрения производная это угловой коэффициент касательной к графику функции в данной точке.
С физической точки зрения производная это скорость изменения функции по отношению к изменению аргумента.
Определение: Если у=f(u) есть функция аргумента u, u=u(x) есть функция аргумента х, то y=f(u(x)) есть сложная функция от х.
Производная сложной функции вычисляется по формуле
Правила дифференцирования
1.
2.
3.
4.
Таблица производных элементарных функций
1. В частности;
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Здесь а= const, u-u(x)/если u(x)=x , то .
Правило Лопиталя Бернулли применяется для раскрытия неопределенностей при вычислении пределов функции:
, т.е. если функции дифференцируемы, то предел отношения функций равен пределу отношения их производных.
Если после применения правила Лопиталя неопределенность сохраняется , то правило следует применить еще раз.
Пример:В этом примере правило Лопиталя использовали три раза.
Интегральное исчисление функции одной вещественной переменной
Определение: Дифференцируемая функция F(x) называется первообразной функции f(x), если в каждой точке интервала (a;b) справедливо равенство
Пример: Пусть f(x)=1 . тогда F(x)= х, т.к.
Первообразная для функции определяется неоднозначно. Если функция F(x)= х является первообразной для f(x)=1, то и функция G(x)=x+c , где с- произвольная постоянная, также является первообразной для f(x)=1 , т.к.
Определение: Множество всех первообразных фугнкции называется неопределенным интегралом и обозначается
=F(x)+C, где С-произвольная постоянная
Интегралы вычисляются с помощью таблицы основных неопределенных интегралов и правил вычисления интегралов.
Связь между неопределенным интегралом и дифференциалом выражается формулами:
1) ( или )
2)
Правила вычисления интегралов
Правило 1.Постоянную можно выносить за знак интеграла, т.е.
, где α- любое число
Правило 2. Интеграл от суммы равен сумме интегралов, т.е.
Правило 3 . Интегрирование по частям
Пусть u и v дифференцируемые функции. Тогда
Правило 4. Замена переменной
Пусть x=φ(x), где φ(х)- дифференцируемая функция переменногоt. Тогда , при этом в правой части формулы переменная должна быть выражена через х, исходя из замены х=
Примеры:
1. (использовали первое правило и таблицу)
2.
При вычислении данного интеграла использовали метод интегрирования по частям и таблицу интегралов.
Задания контрольной работы
Вычислите пределы функций:
10. 20.
Для данной функции найдите производную указанного порядка в заданной
точке:
1. ; 11. ;
2. ; 12. ;
3. ; 13. ;
4. ; 14. ;
5. ; 15. ;
6. ; 16. ;
7. ; 17. ;
8. ; 18. ;
9.; 19. ;
10.; 20. ;
21. ; 22. ;
Вычислите интеграл:
1.
2.
3.
4.
5.
6.
7.
8.
9.
ЛИТЕРАТУРА
Основная
Дополнительная