У вас вопросы?
У нас ответы:) SamZan.net

Применение изотопных генераторов для получения короткоживущих радионуклидов

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 2.2.2025

Уральский Государственный Технический Университет - УПИ

Кафедра Радиохимии

Лабораторная работа17:

Применение изотопных генераторов

для получения короткоживущих радионуклидов

2008 г.


Цель работы:

Применение изотопных генераторов для получения короткоживущих радионуклидов.

Теоретическая часть:

Для многих прикладных радиохимических целей удобнее применять короткоживущие радионуклиды с периодами полураспада от нескольких минут до нескольких часов. Однако эффективное применение таких изотопов вдали от места их образования (реактор, ускорители) возможно лишь в таких случаях, когда нужный радионуклид является дочерним продуктов другого радионуклида с большим периодом полураспада. Из материнского радионуклида приготовляют "изотопный генератор", который позволяет многократно получать короткоживущий дочерний радионуклид, отделяя его химически от материнского изотопа. Активность дочернего радионуклида при получении его в данный момент из генератора можно определить по формуле:

(1)

где a2 - активность дочернего радионуклида, находящегося в генераторе в данный момент; a01 - начальная активность материнского радионуклида в момент зарядки генератора или в момент начала отсчета времени; t - время, прошедшее с начала отсчета до настоящего момента; т - время, прошедшее с момента предыдущего отделения дочернего радионуклида от генератора до настоящего времени (предполагается, что при этом дочерний радионуклид удаляется полностью): λ1 и λ2 - постоянные распада соответственно материнского и дочернего радионуклидов. После отделения дочернего радионуклида его активность в генераторе возрастает со временем по законам накопления дочерней активности и достигает максимума, а затем убывает в соответствии с формулой (1).

В момент времени, отвечающий максимуму активности дочернего радионуклида, А2 = А1. В дальнейшем отношение А21 возрастает со временем и стремится к предельному значению.

В большинстве случаев изотопный генератор представляет собой колонку, заполненную специально подобранным веществом (насадкой), в верхней части которой фиксирован материнский нуклид. Пропуская через колонку вымывающий раствор, отделяют накопившийся дочерний короткоживущий радионуклид и получают его препарат. Одним из примеров изотопного генератора служит устройство, включающее генетическую пару 137Cs - 137mBa. Схему распада можно представить следующим образом:

β - γ

137Cs - > 137mBa - > 137Ba

Т = 30 лет Т= 2.54 мин

Предельное отношение (А21) пред. для данной генетической пары практически равно единице, т.к λ2>>λ1. Поскольку период полураспада материнского нуклида достаточно велик, то изотопный генератор Ва-137 может служить длительное время без существенного изменения своих радиохимических характеристик. В качестве насадки для фиксации Cs-137 обычно используют высокоспецифичные к цезию неорганические сорбенты, например, ферроцианиды тяжелых металлов, и, в частности, ферроцианид никеля - калия. 

Структура и сорбционные свойства ферроцианидов более подробно рассмотрены в рекомендуемой литературе. Ва-137 обычно выделяют растворами солей бария, которые используют для получения меченого сульфата бария. 

Вымывание бария из ферроцианида никеля - калия можно осуществлять также растворами кислот или солей натрия, калия, кальция и др. Частичное вымывание возможно и при промывании водой.

Практическая часть:

1. Через изотопный генератор пропускаем 15 мл соляной кислоты с концентрацией 0,1 моль/л.

2. Измеряем скорость счета в течении 30 мин (первые 5 мин с интервалом 30 с после через 1 мин). Опыт проводим дважды. Данные заносим в таблицу1. Рассчитываем In=I-Iф; LnIn.

Таблица1.

t

I1

I2

Iп1

Iп2

LN In1

LN In2

0

,79

,80

0,5

,66

,64

1

,53

,52

1,5

,40

,39

2

,26

,26

2,5

,14

,11

3

,01

,00

3,5

,88

,86

4

,74

,72

4,5

,62

,59

5

,47

,45

6

,23

,18

7

,95

,94

8

,68

,66

9

,42

,38

10

,13

,13

11

,84

,85

12

,62

,65

13

,32

,34

14

,10

,08

15

,90

,89

16

,61

,55

17

,40

,36

18

,17

,10

19

,94

,86

20

,58

,58

21

,60

,45

22

,41

,40

23

,18

,30

24

,13

,25

25

,74

,09

26

,85

,72

27

,71

,71

28

,34

,57

29

,79

,08

30

,65

,03

3. Построим график зависимости LnIn от t для обоих опытов.

Рисунок1. График зависимости LnIn от t для Опыта1.


Рисунок2. График зависимости LnIn от t для Опыта2.

4. Методом наименьших квадратов рассчитаем скорость счета короткоживущего радионуклида на момент выделения и период полураспада для первого опыта.

Уравнение прямой:

y= 10,67 - 0,259x.

В данном уравнении величина 10,67 есть LnI0, следовательно скорость счет на момент выделения равна:

I0=Exp (10,67) = 47741 имп/10 с

Коэффициент регрессии - λ, следовательно период полураспада равен:

T1/2=Ln (2) / λ= 2,67 мин

Погрешность в определении λ равна 0,001 следовательно для периода полураспада равна:

Δ T1/2=0,01

5. Методом наименьших квадратов рассчитаем скорость счета короткоживущего радионуклида на момент выделения и период полураспада для второго опыта.

Уравнение прямой:

y= 10,76 - 0,261x.

В данном уравнении величина 10,67 есть LnI0, следовательно, скорость счет на момент выделения равна:

I0=Exp (10,76) = 47269 имп/10 с

Коэффициент регрессии - λ, следовательно период полураспада равен:

T1/2=Ln (2) / λ= 2,66 мин

Погрешность в определении λ равна 0,001 следовательно для периода полураспада равна:Δ T1/2=0,01

6. Рассчитаем РНЧ для обоих опытов.

РНЧ= (I0-Iк) / I0

РНЧ1= (47741-373) *100%/ 47741=99,78%

РНЧ2= (47269-325) *100%/ 47741=99,88%


Вывод

В ходе данной лабораторной работы мы получили навык работы с изотопным генератором. Рассчитали скорость счета короткоживущего радионуклида на момент выделения (I01=47741; I02=47269) и период полураспада (T1/2 1=2.67±0.01; T1/2 2=2.66±0.01). По периоду полураспада можно судить о том, что данный радионуклид - 137mBa. Так же рассчитали РНЧ1 (99,78%) и РНЧ2 (99,88%), полученные значения РНЧ подтверждаются графиками зависимости LnIn от t (скорость счета LnIn недостигает нуля, это связано с наличием 137Cs). По высокой РНЧ и высокой активности (о ней можно судить по скорости счета), а так же по тому, что 137mBa мы можем получить по истечении 10 периодов полураспада можно сказать, что мы применяли изотопный генератор. Погрешность в определении периода полураспада связана с неточностью оборудования (секундомера), а так же с неточностью проведения опыта.

Ответы на коллоквиум:

1. Высокая селиктивность ферроцианида никеля-калия к 137Cs объясняется тем что, сорбент имеет подходящую кристаллическую решетку, так же К и Cs оба являются щелочными металлами, оба катионы так же у них близкие химические свойства.

2. РНЧ= (I0-Iк) / I0= 99,99%

Можно предположить, что A (137mВа) =99,99%, а A (137Cs) =0,01%, тогда воспользуемся формулой связи массы радионуклида с его активностью.




1. Объектом политологии выступает политическая действительность или политическая сфера общества
2. вид профессиональной деятельности направленный на управление финансовохозяйственным функционированием
3. тематизации научных знаний и представлений о власти как уникальном феномене в жизни человеческого общества.html
4. Конституционно-правовое регулирование политической системы
5. Кислород в Периодической системе находится в группе 2 подгруппе 3 В атоме кислорода всего
6. Статья- К историографии творчества Карамзина
7. ФУНКЦИИ БЮДЖЕТА Бюджет представляет собой основной финансовый план государства
8. техническим потенциалом инфраструктурой социальной сферой продукция и услуги которых экспортируются за п
9. Регистрации актов гражданского состояния
10. тема Раздел 14 Глава 1 Налогового Кодекса Верховный Совет Законом 8521 разделил на 4 группы- 1 группа-