Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Аналитические исследования развития магистральной трещины
Инж. Елоев А.К. (ООО «Стройкомплект»), канд. техн. наук Дзагоев Л.М. (ОАО «Керамик»)
Представлены теоретические исследования динамики зарождения и роста трещин шпуровыми зарядами по контуру выработок статического действия в породах месторождений Садонского рудоуправления на незначительной глубине.
В основе развития механики разрушения лежат аналитические методы определения коэффициента интенсивности напряжений (Ki) - основного параметра трещинообразования. С их помощью получают основные закономерности, описывающие поля напряжений и перемещений при вершине трещины.
Настоящая работа посвящена теоретическому и экспериментальному исследованию на моделях динамики зарождения, «старта» и роста трещин по контуру выработок шпуровыми зарядами статического действия на незначительной глубине при наличии одной или двух обнаженных плоскостей в «зажатой» среде. Задача решалась так, чтобы с максимальной точностью получить достоверные конечные результаты необходимых характеристик для установления в исследуемых породах месторождений Садонского рудоуправления коэффициентов интенсивности напряжений.
Рассмотрим задачу о развитии первоначальной заданной радиальной трещины или системы трещин (число и расположение «зародышных» трещин-«бороздок» выбирается в соответствии с количеством и направлением проектируемых разрушений) при использовании заряда статического нагружения в хрупких породах [1]. При статическом нагружении начальные трещины начинают расти после набора соответствующего давления, обеспечивая заданное расчленение массива в нужном направлении. Известно, что напряженное состояние в каждый момент времени принимается с заданной нагрузкой и соответствующей ему геометрией трещин при малых скоростях их развития.
Вокруг полосы (рис. 1) по всей длине шпура (lшп, м) имеется п (одна или две) радиальных «зародышных» трещин (l0, м) глубиной 0,06, они расположены через равные углы . Начинаются эти трещины на окружности шпура (rшп, м), к которой в начальный момент прикладывается давление от расширяющего состава Pa = 50 МПа. В рамках плоской теории упругости о равновесии п равномерно распределенных вокруг шпура радиальных трещин, когда длина трещин (1тр, м) превосходит радиус шпура, коэффициент интенсивности напряжений (Кl, МПа·м1/2) равен [1, 2]:
, (1)
где σс напряжение, необходимое для разрушения трещин, МПа;
μ коэффициент Пуассона пород.
Зарождение направленных трещин основано на определении допустимого начального давления расширяющим составом в зарядной полости шпура, гарантирующего «старт» искусственных трещин без возникновения побочных нарушений в контурной зоне шпура.
Проведенные расчеты с различным l0 показали, что они мало влияют на конечные размеры lтр , а существенно только на «старт» трещины.
Рассмотрим характер распределения тангенциальных напряжений (σΘ) на контуре шпура. Максимальное значение (σΘтах) будет иметь место вблизи щелевых вырезов («иглы») в т. С, а минимальные значения (σΘтах) в точке наибольшего удаления от щелевых вырезов (А).
Использование щелей (концентратов напряжений) позволяет направлять энергию расширяющих смесей и рационально ее использовать в нужном направлении. Кроме того, обеспечивается значительное снижение контактного давления на горные породы в окрестностях шпуровых стенок. Давление в игловых точках щелей значительно выше и достигает максимального значения, превышающие растягивающие напряжения породного массива. В окрестности их формируется поле напряжений со значительной анизотропностью по направлению. Это поле имеет эллиптическую форму, причем большая ось расположена перпендикулярно направлению магистральной трещины (lтр) (рис.2). И что очень важно, снижается и время на ее оформление.
Лабораторные опыты показали, что рост трещин начинается при условии достижения импульсом тангенциальных растягивающих напряжений, исходящих от заряда с расширяющим составом σ = σс, равном или больше 10 МПа, в то время как без наличия «зародышных» трещин требуется не менее 18 23 МПа. Дальнейшее увеличение напряжений расширяющим составом после «старта» трещины способствует раскрытию ее берегов до их соединения от соседних шпуров справа и слева.
В табл. 1 приведены основные параметры размеров длины трещин при проходках выработки на глубине 80 м от поверхности, проведенных в гранитах и сланцах месторождений Садонского рудоуправления, и напряжения, необходимые для роста, удельная поверхностная энергия и коэффициенты интенсивности напряжений.
Таблица 1
Основные расчетные энергетические параметры образования и роста магистральной трещины
Параметр трещиностойкости (коэффициент интенсивности напряжений), КI =Кс, МПа·м½ |
7,7 |
7,56 |
7,5 |
6,8 |
5,8 |
5,16 |
3,75 |
2,89 |
2,69 |
Удельная поверхностная энергия, γ·10־³, граниты/сланцы |
0,37/ 0,323 |
0,36/ 0,31 |
0,355/ 0,31 |
0,26/ 0,195 |
0,212/ 0,183 |
0,16/ 0,145 |
0,088/ 0,077 |
0,052/ 0,046 |
0,046/ 0,039 |
Условия роста (движения) трещин, , МПа·м, граниты/сланцы |
0,074/ 0,64 |
0,72/ 0,62 |
0,71/ 0,62 |
0,52/ 0,40 |
0,41/ 0,36 |
0,336/ 0,29 |
0,18/ 0,154 |
0,104/0,092 |
0,091/ 0,078 |
Напряжение, необходимое для роста трещин, σ=σс, МПа |
50 |
40 |
30 |
20 |
15 |
10 |
5 |
3 |
1 |
Длина трещины, lтр, м, граниты/сланцы |
0,1/ 0,13 |
0,096/ 0,126 |
0,094/ 0,12 |
0,08/ 0,10 |
0,056/ 0,07 |
0,045/ 0,06 |
0,023/ 0,03 |
0,013/ 0,02 |
0,012/ 0,016 |
Из данных табл.1 видно, как изменяется динамика роста трещины: с увеличением коэффициента интенсивности напряжений повышается поверхностная энергия растяжения трещин, а, следовательно, и длина трещины. На рис.3 показана зависимость изменения роста длины трещины от коэффициента интенсивности напряжений в исследуемых породах. Установлено, что максимальная длина трещин на глубине Н = 80 м в сланцах и гранитах составляет с наличием «зародышных» трещин, соответственно, 0,1 и 0,13 м, что полностью подтверждается данными практики. Начало роста трещин у гранитов и сланцев с учетом сил гравитации и пористости на различной глубине показана в табл. 2.
Таблица 2
Значения давления на рост трещин по глубине заложения выработки
Глубина заложения выработки, Н, м |
25 |
50 |
75 |
100 |
Давление, при котором начинается «старт» трещины, Ра ,МПа, граниты/сланцы |
11,2/ 10,2 |
12,0/ 11,3 |
12,8/ 12,0 |
13,5/ 12,2 |
С понижением глубины проходки растет вертикальная нагрузка вышележащей толщи пород (сила гравитации), равная q = pH, МПа, стремящаяся сомкнуть гребни движущейся трещины. В этом случае для полуплоскости с начальной поперечной трещиной, расположенной перпендикулярно, коэффициент интенсивности напряжений [3]
, (2)
где f(l0/lтр) значения функции для растяжения с одним боковым разрезом (табл.3).
Таблица 3
Значения коэффициентов функции с одним боковым разрезом
l0/lтр |
0 |
0,1 |
0,2 |
0,3 |
0,4 |
0,5 |
f(l0/lтр) |
1,12 |
1,14 |
1,19 |
1,29 |
1,37 |
1,5 |
При наличии двух боковых разрезов, к берегам («гребням») которых приложена равномерно увеличивающаяся нагрузка от гидратации расширяющего состава в полости шпура и вертикально направленные сверху и снизу силы гравитации (см. рис.1), коэффициент интенсивности напряжений согласно линейной суперпозиции
. (3)
На основании критерия [4] (локального разрушения для нормального разрыва) величина разрывающей нагрузки
, (4)
где р плотность пород, т/м ;
Н глубина заложения выработки, м.
Тогда эффективный коэффициент интенсивности напряжений от центра шпура до т. М :
, (5)
где аэф=rшп+l0+h=rшп+lтр эффективный размер трещины, м;
σi величина растягивающего напряжения, создаваемая расширяющим составом до точки суперпозиции, МПа.
Считаем, что начальная трещина мала по сравнению с диаметром шпура и поэтому ошибка в представленных расчетах определения КIci незначительна:
. (6)
Согласно уравнениям (5) и (6) процесс трещинообразования при наличии искусственных трещин происходит следующим образом: с повышением нагрузки в шпуре длина l0 остается неизменной, пока не достигнет давления, способного преодолеть суммарные силы гравитации и прочностные свойства пород на растяжение и только после этого начинается ее «старт» и движение.
Рассмотрим критерий распространения трещин с волновой точки зрения, который становится возможным после определения основных волновых характеристик волн напряжений, исходящих от заряда с расширяющим составом в «зажатой» среде (табл.4). Перечисленные зависимости, найденные аналитическим методом, дают объективные представления об основных чертах распространения фронта образования магистральной трещины с наличием «зародышных» трещин. Полученные результаты в исследуемых породных образцах полностью совпадают с результатами лабораторных исследований. В целом их параметры разнятся в среднем в пределах 2 8 %. Действительно, поле напряжений на конце «иглы» искусственной трещины в начальный период (от момента приложения эффективной нагрузки до начала «старта» в единичном или двух зарядов, расположенных на одной линии) совпадает с полем, полученным оптико-поляризационным методом (см. рис.2).
Кривые зависимости коэффициента интенсивности напряжений, полученные от безразмерного волнового числа (рис.5), свидетельствуют об их монотонности снижения с понижением частоты нагрузки.
Рис.5. Зависимость коэффициента интенсивности напряжений от относительного волнового числа в гранитах (1) и в окварцованных сланцах (2).
На рис.6 показано изменение коэффициента интенсивности напряжений как основной характеристики трещинообразования в зависимости от влияния радиусов зон напряжений, сосредоточенных у «иглы» трещины на расстоянии l0, и снижается по мере роста трещины в глубь массива.
Рис.6. Изменение коэффициента интенсивности напряжений в зависимости от радиусов зон напряжений в окварцованных сланцах (1) и в гранитах (2).
Исследованиями установлено, что параметр трещиностойкости (Kc=KI) для начала «старта» трещин составляет для окварцованных сланцев 6,8, а для гранитов 7,7 МПа·м½ . Если давление в плоскости достаточно для обеспечения роста трещин до длины, равной четверти расстояний между соседними шпурами, то их дальнейшее движение вплоть до смыкания в единую щель гарантировано (рис.7).
Рис.7. График изменения растягивающих напряжений по глубине массива от вершины искусственной трещины в окварцованных сланцах (1) и в гранитах (2).
Изменения размеров направленных трещин с изменением радиуса шпурового отверстия показали, что с ростом диаметра шпура (dшп, м) при неизменном давлении несколько растут и их длины, в то время как относительные размеры К=lтр/dшп резко снижаются (рис.8).
Установлено, что с увеличением коэффициента интенсивности напряжений, скорость развития трещин возрастает. Вблизи вершины трещин при ее движении напряжения превосходят прочностные свойства пород по всему пути, постепенно снижаясь до полного смыкания.
Таким образом, найденные в процессе исследований закономерности влияния статического заряда с наличием искусственных трещин в полости шпура на процесс формирования полей напряжений «старта» и распространения в контурной части выработок магистральной трещины на незначительной глубине полностью согласуется с данными, полученными практикой.
Рис.8. График изменения размеров трещин в зависимости от коэффициента К в полости шпура диаметром, мм: 1 36; 2 42 и 3 60.
Заключение. Выявлены зависимости изменения коэффициента интенсивности напряжений в зависимости от радиуса зоны напряжений, волнового числа, глубины заложения выработок, тектонических и гравитационных сил, а также его влияние на размеры трещин, скорости их распространения и на время трещинообразования. Энергетическим балансом установлены его эффективные значения на зарождение и рост трещин в породах месторождений Садонского рудоуправление.
Полученные расчеты позволяют осуществить обоснованный подход к разработке и выдаче технологических решений на оформление «зародышных» трещин, расстояний между шпурами с обеспечением трещинообразования контурной части выработок на незначительной глубине в «зажатой» среде.
Список литературы
Черепанов Г. П. Механика хрупкого разрушения. М.: Наука, 1974.
Griffith A. A. The theory of rupture. Proc. Jst Jnt. Congress Appl. Mech. (1924) p.p. 55-63. Biezeno and Burgers ed. Weltman, 1925.
Партон В. З. Механика разрушения: от теории к практике. М.: Наука, 1990.
Броек Д. Основы механики разрушения. М.: Высшая школа, 1980.
Для подготовки данной работы были использованы материалы с сайта http://www.skgtu.ru/