Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Министерство Образования Республики Таджикистан
Таджикский Технический Университет
имени М.С. Осими
Кафедра «АСОИиУ»
Лабораторная работа №1
На тему: Моделирование датчиков случайных чисел с заданным законом распределения
Выполнила:
ст-т. 3-го курса гр. 2202 Б2
Принял: преподаватель кафедры
Ли И.Р.
Душанбе-2010
Лабораторная работа № 2
Моделирование датчиков случайных чисел с заданным законом распределения
I Цель работы
Целью работы является:
II Теоретические сведения
1. Основные методы моделирования случайных последовательностей с заданным законом распределения
При исследовании и моделировании различных сложных систем в условиях действия помех возникает необходимость в использовании датчиков случайных чисел с заданным законом распределения. Исходным материалом для этого является последовательность x1,x2….xn с равномерным законом распределения в интервале [0,1]. Обозначим случайную величину, распределенную равномерно через ζ(кси).
Тогда равномерно-распределенные случайные числа будут представлять собой независимые реализации случайной величины ζ, которые можно получить с помощью стандартной функции RND (ζ)программно реализованной на ПЭВМ в виде генератора случайных чисел с равномерным законом распределения в интервале [0,1]. Требуется получить последовательность y1,y2,..yn независимых реализаций случайной величины η, распределенных по заданному закону распределения. При этом закон распределения непрерывной случайной величины может быть задан интегральной функцией распределения:
F(y)= P(ksiy) (1)
или плотностью вероятности
f(y)=F(y) (2)
Функции f(y) и F(y) могут быть заданы графически или аналитически.
Для получения случайной величины η с функцией распределения F(y) из случайной величины ζ, равномерно-распределенной в интервале [0,1], используются различные методы. К основным методам моделирования случайных чисел с заданным законом распределения относятся:
- метод обратной функции
- метод отбора или исключения
- метод композиции.
2. Метод обратной функции
Если ζ- равномерно-распределенная на интервале [0,1] случайная величина, то искомая случайная величина может быть получена с помощью преобразования:
η=F-1 (ζ) (3)
Где F-1 (ζ) - обратная функция по отношению к функции распределения F(ζ)
F(y)
1
ζ
0 η y
Рис 1 Функция распределения F(ζ)
Действительно, при таком определении случайной величины η имеем:
P(ηy)=P{F-1(ζ)y}=P{ ζ F(y) }= F(y) (4)
В данной цепочке равенств первое равенство следует из (3), второе из неубывающего характера функций F(ζ) и F-1 (ζ) и третье из равномерного в интервале [0,1] распределения величин ζ.
Таким образом, если задана функция распределения F(y), то для получения случайной последовательности с таким распределением необходимо найти ее обратную функцию.
Для нахождения обратной функции можно использовать два метода: аналитический и графический.
3.Метод отбора или исключения
Данный метод удобнее использовать, если требуемый закон распределения задан плотностью вероятности f(y). В отличии от метода обратной функции метод отбора или исключения для получения одного требуемого случайного числа требует не одного равномерно- распределенного случайного числа, а двух, четырех, шести или более случайных чисел. В этом случае область возможных значений η представляет конечный отрезок (a,b), а плотность вероятности f(y) ограничена сверху значением fmax (Рис.7). Тогда область значений η* и ζ* можно ограничить ступенчатой кривой:
0, если y<a
g(y)= fmax, если a y b (25)
0, если y>b
Затем берутся с помощью генератора случайных чисел (RND(ζ)) два равномерно-распределенных числа ζ1 и ζ2 , по которым определяются равномерные на интервале [a,b] независимые величины:
η =a + (b-a)*ζ1
ζ=fmax* ζ2 (26)
Где a,b границы возможных значений случайной величины η,
fmax- максимальное значение функции f(y) (Рис.7)
f(y) g(y)
fmax
f(y)
ζ
a η b
Рис.7 Заданная плотность вероятности
Если ζ f (η ) , то η принимается в качестве очередной реализации случайной величины η. В противном случае η отбрасывается и берется следующая пара равномерно- распределенных случайных чисел ζ1 и ζ2 . Такая процедура повторяется до тех пор, пока мы не получим требуемого количества случайных чисел с заданной плотностью вероятности.
4. Метод композиции
Метод композиции основывается на представлении плотности вероятности fη (x) по формуле полной вероятности:
fη (x)= (27)
Где H(z)=P(ζz) интегральная функция распределения случайной величины ζ;
P(x/z )- условная плотность вероятности.
Переходя к дискретной форме, интеграл заменяется на сумму и тогда получаем
fη (x)=Pj*fj (x) (28)
где Pj=1 (29)
fj (x) -условная плотность вероятности
Таким образом, для любой заданной плотности вероятности ее фигура единичной площади, ограниченной осью x и кривой fη(x), разбивается на произвольное число простых не пересекающихся частей gj (i=1,k),с площадями Pj (j=1,k), (Рис.8)
Рис.8Разбивка плотности вероятности на отдельном участке
fη(x)
g1 (Р1)
g2 (Р2) g3 (Р3)
x
g1 (Р1)
x
Рис. 9 Условные плотности
вероятности
g2 (Р2)
x
g3 (Р3)
x
Условные плотности вероятности имеют вид (Рис.9)
Для полученных условных плотностей вероятности одним из предыдущих методов определяются случайные последовательности, которые в сумме дадут требуемую случайную последовательность с заданной плотностью вероятности.
5. Оценка закона распределения
Для полученной случайной последовательности y1, y2,…,yn с заданным законом распределения необходимо провести оценку соответствия заданного закона распределения, который реализует смоделированный датчик случайных чисел. Поэтому для последовательности y1, y2,…,yn строится статистическая функция распределения
F* (y) (Рис. 10). На этом же графике строится интегральная функция распределения F(y) для заданного закона распределения и производится сопоставление F*(y) и F(y). Согласие закона проверяется по критерию Колмогорова. Для этого вычисляется статистика:
Ди=maxF*(y) - F(y) (30)
Для конечных решений и распределения статистики Ди получены пороговые значения в форме таблиц (Таблица 1.). По этой таблице для заданных объемов последовательности и и значению статистики Ди определяется уровень значимости .
Если гипотеза верна то статистика Ди* имеет в пределе при n распределение Колмогорова и квантили уровня P= (1-2) близки к 1. Это значит, что полученный генератор случайных чисел вырабатывает последовательность с заданным законом распределения. Если значения статистики Ди не попадают в пороговые значения, то такой генератор не годится для пользования.
F(y)
F(y) 1
F*(y)
0.5 Dn {
y
y1 y2 y3 y4 …….yn-1 yn
Рис.10Оценка распределения
III Содержание исследования
Исследование, проводимое в данной работе, заключается в получении программного датчика случайных чисел, пригодного для моделирования случайной последовательности с заданным законом распределения. При этом необходимо разработать алгоритм и программу датчика, а затем исследовать свойства выработанной им последовательности. При проведении исследований необходимо:
1.По двадцати числам (n=20) выведенным на печать построить статистическую функцию распределения F*(y)(рис.10) На этом же графике построить интегральную функцию распределения F(y) для заданного преподавателем закона распределения. Сопоставив значения F*(y)и F(y), вычислить статистику Ди (30).
2. Составить блок- схему и программу для ПЭВМ, в которой следует предусмотреть построение статистического ряда и вычисление статистики Ди по критерию Колмогорова.
3.По таблице пороговых значений статистики Ди произвести оценку распределения.
4. Для полученной последовательности произвести оценку математического ожидания, дисперсии, среднеквадратического отклонения.
Блок- схема генератора
ed
c2 e6Np1,p2
I=1,N I
p1=p1/N
e6 =RND(e6)