Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

минерального cocтава структур и текстур характера взаимодействия грунтов с водой степени их выветрелости и

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

Общие сведения и классификация грунтов

 Грунты — это любые горные породы (осадочные, магматические , метаморфические) и твердые отходы производства залегающие на поверхности, земной коры и входящие в сферу воздействия на них человека при строительстве зданий, сооружений, дорог и других объектов.

 При опенке свойств грунтов, выступающих в роли оснований, большое внимание уделяется их деформативным и прочностным показателям. Показатели в большой степени находятся в зависимости от многих других особенностей грунтов: химико-минерального cocтава, структур и текстур, характера взаимодействия грунтов с водой, степени их выветрелости и ряда других. Недоучет тех или иных особенностей свойств «грунтов-оснований» влечет за собой ошибки при проектировании и строительстве зданий и сооружений, что в итоге приводит к утрате прочности грунтов в период эксплуатации.

Прогноз изменений свойств фунтов во времени под влиянием различных воздействий возможен только при условии полной информации о том, как они сформировались в процессе генезиса и всей последующей их «жизни».

  Состояние грунтов

В последнее время специалистами в инженерной геологии уделяется большое внимание такой важной категории оценки грунтов, как их состояние. Понятие «состояние грунтов» мы уже рассматривали выше, здесь мы попытаемся несколько упорядочить изложенные ранее сведения. Следует отметить, что пока нет четко сформулированного определения этой категории. К числу характеристик, определяющих состояние фунтов, относят степень трещиноватости, выветрелости, влажности, водонасыщенности, плотности и др. Такие характеристики, как трещиноватость и выветрелость, определяют свойства пород в образце и в массиве; как известно, такая величина, как предел прочности на сжатие в образце, существенно превышает ее значения в массиве, иной раз до двух порядков. Степень выветрелости имеет несколько иное влияние на формирование свойств грунтов в образце и в массиве. Трещины выветривания обычно заполнены вторичным минеральным материалом, а это, естественно, резко повышает неоднородность массива, тем самым уменьшая или, точнее, меняя прочностные, деформационные и фильтрационные свойства пород в массиве.

Степень влажности чаще всего учитывают при оценке свойств дисперсных грунтов. Она определяет возникновение, «оживление» и развитие таких неблагоприятных явлений и процессов, как оползни,
солифлюкция, в отдельных случаях способствует селеобразованию и
ряду других явлений. Степень влажности сказывается на деформационно-прочностных характеристиках массивов грунтов, на консолидации грунтов в основании сооружений при приложении к ним нагрузок
инженерных сооружений. Очень близко к степени влажности стоит
степень водонасыщенности, более применимая в настоящее время к
скальным трещиноватым грунтам. Эти две категории определяют
способность грунтов деформироваться под нагрузкой, консолидироваться; существенно влияют на прочностные характеристики массивов
грунтов; в климатических зонах, подверженных резким колебаниям
температур, в районах распространения мерзлых грунтов степень влажности и степень водонасышенности их значительно влияют на морозостойкость пород в массиве.

Для дисперсных грунтов особое значение имеет степень их плотности, например, встречаются недоуплотненные пылеватые и песчаные грунты, такие, как эоловые мелкозернистые, распространенные в южной части Кара-Кумов, эолово-морские (дюнные) пески балтийского побережья, лессовые грунты различного генезиса.

Недоуплотненное состояние этих грунтов является одной из причин просадочных явлений, отчасти разжижения песков, неоднородных деформаций в основании сооружений, нарушения устойчивости пород в откосах естественных и искусственных выемок.

Все перечисленные характеристики состояния грунтов в их «предельных» значениях резко ухудшают свойства массивов при приложении вибрационных, динамических, в частности, сейсмических нагрузок. Сильнотрещиноватые, выветрелые, водонасыщенные или влажные недоуплотненные грунты в массиве значительно снижают возможность использования их в основании ответственных сооружений. При расчетах на сейсмическую устойчивость сооружений, проектируемых на грунтах, которые находятся в указанных выше состояниях, согласно действующим нормативным документам, требуется увеличивать расчетные значения, учитывающие сейсмические воздействия, в некоторых случаях на 1 балл выше установленной для всего района обшей сейсмической интенсивности.

Классификация грунтов

Классификация грунтов могут быть общими, частичными, региональными и отраслевыми.

Задача общих классификаций—по возможности охватить все наиболее распространенные типы горных пород и охарактеризовать их как грунты. Такие классификации должны основываться исключительно на генетическом подходе, при котором оказывается возможным связать инженерно-геологические свойства горных пород с их генетическими особенностями и проследить изменение этих свойств от одной группы грунтов к другой. Эти классификации служат базой для разработки всех других видов классификаций.

Частные  классификации подразделяют и детально расчленяют   грунты на отдельные группы по одному или нескольким признакам. К таким классификациям относятся классификации:

- осадочных, обломочных, песчано-глинистых грунтов по гранулометрическому составу,

-  глинистых пород — по числу пластичности,

- лессовых пород — по степени просадочности и т. п.

Эти классификации могут быть развитием или составной частью общих классификаций.  

Региональные классификации рассматривают грунты применительно к определенной территории. В их основе лежит возрастное и генетическое подразделение пород, встречающихся на данной территории. Разделение групп фунтов проводят, базируясь на формационно-фациальном учении о горных породах.

Отраслевые классификации фунтов составляются применительно к запросам определенного вида строительства. Естественно, такие классификации базируются на положениях вышеописанных классификаций и являются как бы конкретным результатом общих классификаций для решения вопросов при инженерно-геологической оценке территорий и площадки строительства.

Классификация фунтов отражает их свойства. В настоящее время фунты согласно ГОСТ 25100—95 разделяют на следующие классы — природные: скальные, дисперсные, мерзлые и техногенные образования. Каждый класс имеет свои подразделения. Так, фунты скальных, дисперсных и мерзлых классов объединяются в группы, подгруппы, типы, виды и разновидности, а техногенные фунты вначале разделяются на два подкласса, а далее также на группы, подгруппы, типы, виды и разновидности. Классификация фунтов согласно ГОСТ 25100—95 в сокращенном виде показана в таблице:

Строительная  классификация грунтов

Классы

Группы

Подгруппы

Типы

Виды

Разновидности

Скальные грунты (с жесткими структурными связями)

Скальные грунты

Магматические породы

Метаморфические породы

Осадочные

Силикатные

Силикатные

Карбонатные

Железистые

Силикатные

Карбонатные

Граниты, базальты,габбро

Гнейсы, сланцы

Мраморы и др.

Железные руды

Песчаники, конгломераты

Известняки, доломиты

Выделяются по :

  1.  Прочности
  2.  Плотности
  3.  Выветрелости
  4.  Водорастворимости
  5.  Размягчаемости в воде

6. водопроницаемости и т.д.

Полускальные грунты

Магмат. Эффузив.породы

Осадочные

Силикатные

Силикатные

Кремнистые

Карбонатные

Сульфатные

Галоидные

Вулканические туфы

Аргиллиты, алевролиты

Опоки,трепелы

,диатомиты

Мел.мергели

Гипсы,ангидриты

Галиты и др.

Дисперсные грунты (с механическими и водно-коллоидными связями)

Связные грунты

Несвязные грунты

Осадочные породы

Осадочные породы

Минеральные

Органоминеральные

Органические

Силикатные, карбонатные, полиминеральные

Глинистые грунты

Илы, сапропели,заторфованные земли

торф

пески, крупнообломочные грунты

Выделяются по:

  1.  Гранулометрическому и минералогическому составу
  2.  Числу пластичности
  3.  Набуханию
  4.  Просадочности
  5.  Водонасыщению
  6.  Коэф-ту пористости
  7.  Плотности и др.

Мерзлые грунты (с криогенными структурными связями)

Скальные грунты

Полускальные грунты

Связные грунты

Ледяные грунты

Промерзшие магматические, метаморфические и осадочные породы

Померзшие магматические эффузивные породы

Осадочные породы

Промерзшие Осадочные породы

Внутригрунтовые

погребенные

Ледяные минеральные

Ледяные минеральные

Ледяные органоминеральные

Ледяные органические

льды

Все виды грунтов магматических, метаморфических и осадочных

Все виды дисперсных связных и несвязных грунтов

Ледниковые

Наледные,речные,озерные и т.д.

Выделяются по:

  1.  Льдистости
  2.  Температурно-прочностным свойствам
  3.  Засоленности
  4.  Криогенной текстуре и т.д.

Скальные грунты. Их структуры с жесткими кристаллическими связями, например, гранит, известняк. Класс включает две группы грунтов: 1) скальные, куда входит три подгруппы пород, магматические, метаморфические, осадочные сцементированные и хемогенные; 2) полускальные в виде двух подгрупп — магматические излившиеся и осадочные породы типа мергеля и гипса. Деление грунтов этого класса на типы основано на особенностях минерального состава, например, силикатного типа — гнейсы, граниты, карбонатного типа — мрамор, хемогенные известняки. Дальнейшее разделение грунтов на разновидности проводится по свойствам: по прочности—гранит—очень прочный, вулканический туф —менее прочный; по растворимости в воде —кварцит —очень водостойкий, известняк —неводостойкий.

Дисперсные грунты. В этот класс входят только осадочные горные породы. Класс разделяется на две группы — связных и несвязных грунтов. Для этих фунтов характерны механические и водноколлоидные структурные связи. Связные фунты делятся на три типа — минеральные (глинистые образования), органо-минеральные (илы, сапропели и др.) и органические (торфы). Несвязные фунты представлены песками и крупнообломочными породами (гравий, щебень и др.). В основу разновидностей фунтов положены плотность, засоленность, гранулометрический состав и другие показатели

Мерзлые грунты. Все грунты имеют криогенные структурные связи, т. е. цементом грунтов является лед. В состав класса входят практически все скальные, полускальные и связные грунты, находящиеся в условиях отрицательных температур. К этим трем группам добавляется группа ледяных грунтов в виде надземных и подземных льдов. Разновидности мерзлых грунтов основываются по льдистым (криогенным) структурам, засоленности, температурно-прочностным свойствам и др.

Техногенные грунты. Эти грунты представляют собой, с одной :стороны, природные породы — скальные, дисперсные, мерзлые, которые в каких-либо целях были подвергнуты физическому или физико-химическому воздействию, а с другой стороны, искусственные минеральные и органоминеральные образования, сформировавшиеся в процессе бытовой и производственной деятельности человека. Последние нередко называют антропогенным образованием. В отличие от других классов этот класс вначале разделяется на три подкласса, а уже после этого каждый подкласс, в свою очередь, распадается на группы, подгруппы, типы, виды и разновидности грунтов. Разновидности техногенных грунтов выделяются на основе специфических особенностей свойств.

МЕТОДЫ ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОКАЗАТЕЛЕЙ СВОЙСТВ ГРУНТОВ

Основные показатели физико-механических свойств грунтов

Как было показано выше, каждый грунт имеет свои, только ему присущие строительные свойства. В оценке свойств грунтов, входящих в расчеты оснований фундаментов, наибольшее значение имеют физико-механические характеристики. Значения показателей этих характеристик позволяют выполнять необходимые расчеты при проектировании зданий и сооружений.

Характеристики физических свойств выражают физическое состояние грунтов (плотность, влажность и др.) и позволяют их классифицировать по типу, виду и разновидностям. Под механическими подразумевают такие свойства, которые появляются в грунтах под воздействием внешних усилий (давления, удара). Механические свойства оцениваются прочностными и деформационными характеристиками грунтов.

Показатели физических и механических свойств скальных и нескальных грунтов между собой довольно значительно различаются, особенно физические. Некоторые основные физические и механические свойства скальных и нескальных грунтов приводятся в табл. 16

В табл. 16 показаны характеристики скальных грунтов: физические — плотность, коэффициент размягчения, коэффициент трещиноватости, пористость; механические—сопротивление сжатию и модуль деформации.

Нескальные грунты характеризуются значительно большим количеством физико-механических свойств, особенно физических. Это связано с их более химико-минеральным составом, разнообразием структур и текстур.

К физическим свойствам нескальных фунтов, определяемых экспериментально и используемых непосредственно в расчетах оснований, относятся коэффициент фильтрации Кф и плотность грунтов р. Важными расчетными характеристиками являются коэффициент пористости е, степень влажности Sr и показатель текучести JL. Они характеризуют состояние грунтов. По наименованию грунтов и их коэффициенту пористости определяют плотность сложения песчаных грунтов. Показатель текучести JL , характеризует подвижность глинистых частиц при механических воздействиях на грунт. Значение Sr отражает степень заполнения пор грунтов водой. О физических свойствах скальных, нескальных и специфических грунтов будет сказано дальше при описании их видов и разновидностей. Ниже приводятся разъяснения только по механическим характеристикам.

Прочность грунтов оценивается максимальной нагрузкой, приложенной к нему в момент разрушения (потери сплошности). Эта характеристика называется пределом прочности Ŕс, МПа, или временным сопротивлением сжатию.

На прочность грунтов влияют:

• минеральный состав,

• характер структурных связей,

• трещиноватость,

• степень выветрелости,

• степень размягчаем ости в воде и др.

Для нескальных грунтов другой важной характеристикой прочности является сопротивление сдвигу. Определение этого показателя необходимо для расчета устойчивости оснований, т. е. несущей способности, а также для оценки устойчивости грунтов в откосах строительных котлованов, расчета давления грунта на подпорные стены и т. д. Сопротивление сдвигу оценивается силами внутреннего сдвига φ, град., и сцепления С, кПа. Под первыми понимают силы сопротивления, которые возникают между соприкасающимися друг с другом частями грунта, а под вторыми — сопротивление структурных связей грунта всякому перемещению слагающих частиц.

Деформационные свойства характеризуют поведение грунтов под нагрузками, не превышающими критические и не приводящими к разрушению. Деформируемость грунтов зависит, как от сопротивляемости и податливости структурных связей, пористости, так и от способности деформироваться слагающих их минералов. Деформационные свойства грунтов оценивается модулем деформации Е, МПа

 Следует отметить, что кроме физико-механических характеристик свойства грунтов во многом зависят от ряда других показателей. Большое влияние могут оказывать состав минералов, характеристики структур и текстур, а для нескальных грунтов — присутствие водорастворимых солей и органических веществ. При оценке свойств грунтов все эти их особенности необходимо учитывать.

Для решения задач проектирования зданий и сооружений все физико-механические характеристики грунтовых оснований разделяют на две группы:

1) показатели физико-механических свойств, которые используются непосредственно в расчетах оснований и 2) вспомогательные показатели, с помощью которых осуществляют классификацию грунтов, прогнозируются механические характеристики первой группы, выделяются инженерно-геологические элементы в толще грунтов. Характеристики грунтов, используемые в расчетах оснований, приведены в табл. 18. Вспомогательные характеристики, которые отражают физические свойства грунтов, показаны в табл. 19.

Кроме вышеуказанных характеристик на свойства грунтов во многих случаях существенное влияние оказывают минеральный и химический состав, структуры и текстуры, для скальных грунтов; трещиноватость, степень выветрелости, у дисперсных—содержание водорастворимых солей, присутствие органического вещества и т. д. Так, большое количество минерала монтмориллонита придает глинам особые свойства, большое количество гумуса типично почвам и т. д. Все эти характеристики грунтов определяют специалисты (геологи, физики, химики) в соответствующих лабораториях, где имеется необходимая аппаратура — рентгеновские приборы, электронные и геологические микроскопы, дериватографы, установки ИКС и др.

Реологические свойства грунтов. При оценке свойств грунтов следует помнить, что эти свойства могут изменяться во времени в силу воздействия процессов выветривания и многолетнего воздействия больших нагрузок. Все это приводит к «усталости» грунтов, их структура расслабляется. В грунтах возникают деформации в виде ползучести и даже текучести. Этот процесс называют реологическим. В результате грунт разрушается и здание деформируется. В последнее десятилетие этот процесс часто наблюдается при строительстве сверхвысоких зданий и крупных промышленных объектов. Реологические свойства грунтов требуют специальной оценки и исследований.

Методы определения свойства грунтов

Грунты определяют устойчивость возводимых на них зданий и сооружений, поэтому необходимо правильно определять характеристики, которые обуславливают прочность и устойчивость грунтов при их взаимодействии со строительными объектами.

Химико-минеральный состав, структуры и текстуры грунтов, содержание органического вещества определяются в геологических лабораториях, оснащенных необходимой аппаратурой (рентген, электронный микроскоп и т. д.). Физико-механические свойства грунтов изучают в грунтоведческих лабораториях и в полевых условиях, т. е. непосредственно на будущих строительных площадках. Методика определения физико-механических свойств выбирается в зависимости от состава и состояния грунтов, условий их поведения в основании, как при строительстве, так и в процессе эксплуатации зданий и сооружений. Особое внимание при этом обращается на достоверность получаемых результатов, так как грунты и грунтовые напластования весьма изменчивы в пространстве и во времени.

По каждой физико-механической характеристике грунтов выполняется несколько определений и проводится их статистический анализ. Количество определений зависит от характера грунтов, назначения сооружения и его конструктивных особенностей. В частности, как правило, для каждого инженерно-геологического элемента минимальное количество определений должно быть не менее шести и только в случаях продолжительных полевых испытаний значения механических характеристик устанавливается по данным трех испытаний.

Грунтоведческая лаборатория. Образцы грунтов для лабораторных исследований отбираются по слоям грунтов в шурфах в буровых скважинах, которые располагают на строительных площадках.

В лабораторию образцы грунтов доставляют в виде монолитов или рыхлых проб. Монолиты — это образцы грунтов с ненарушенной структурой. Такие монолиты отбираются в скальных и связных (пылевато-глинистых) грунтах. Размеры монолитов должны быть не меньше установленных норм. Так, для определения сжимаемости грунта, пробы, отбираемые в шурфах, должны иметь размеры 20 х 20 х 20 см. В монолитах пылевато-глинистых грунтов при этом должна быть сохранена природная влажность. Это достигается созданием на их поверхности водонепроницаемой парафиновой или восковой оболочки. В рыхлых грунтах (песок, гравий и т. д.) образцы отбираются в виде проб определенной массы. Так, для проведения гранулометрического анализа песка необходимо иметь пробу не менее 0,5 кг.

В лабораторных условиях можно определять все физико-механические свойства грунтов. Каждая характеристика этих свойств определяется согласно своему ГОСТу, например, природная влажность и плотность грунта — ГОСТ 5180—84, предел прочности — ГОСТ 17245—79, гранулометрический (зерновой) и микроагрегатный состав — ГОСТ 12536—79 и т. д.

Лабораторные исследования на сегодня остаются основным видом определения физико-механических свойств грунтов. Ряд характеристик, например, природная влажность, плотность частиц грунта и некоторые другие определяются только в лабораторных условиях и с достаточно высокой точностью. В тоже время лабораторные исследования грунтов имеют свои недостатки:

они довольно трудоемки и требуют больших затрат времени;

результаты отдельных анализов, например, определение модуля
общей деформации, не дает достаточно точных результатов, что бывает,
связано с неправильным отбором монолитов, неправильным их хранением, низкой квалификацией исполнителя анализа;

определение свойств массива грунта по результатам анализов
небольшого количества образцов не позволяют получать верное представление о его свойствах в целом.

Это связано с тем, что однотипные грунты, даже в пределах одного массива, все же имеют известные различия в своих свойствах.

Полевые работы. Исследование грунтов в полевых условиях, т. е. на строительной площадке, дает определенное преимущество перед лабораторным анализом. Это позволяет определять значения характеристик физико-механических свойств в условиях естественного залегания фунтов без разрушения их структуры и текстуры, с сохранением режима влажности. При полевых исследованиях лучше, чем по результатам лабораторных анализов, моделируется работа массивов грунтов в основаниях зданий и сооружений.

Полевые методы исследования грунтов обеспечивают высокую точность результатов, поэтому в последние годы их используют все больше. При этом совершенствуется техническая оснащенность, применяются ЭВМ. Некоторые полевые методы относятся к экспресс-методам, что позволяет быстрее получать результаты изучения свойств грунтов.

Необходимо отметить, что если полевые методы дают хорошую возможность определять свойства в условиях естественного залегания Фунтов, то они не всегда позволяют прогнозировать поведение массивов фунтов на период эксплуатации зданий и сооружений. Поэтому целесообразно разумно сочетать лабораторные и полевые методы.

В полевых условиях определяют все прочностные и деформационные характеристики, как скальных, так и нескальных фунтов.

Среди методов деформационных испытаний фунтов на сжимаемость эталонным следует считать метод полевых штамповых испытаний (ГОСТ 20278—85). Результаты других методов деформационных испытаний, как полевых (прессиометрия, динамическое и статическое зондирование), так и лабораторных (компрессионные и стабилометрические) обязательно должны сопоставляться с результатами штамповых испытаний.

При определении прочностных характеристик фунтов наиболее достоверные результаты дают полевые испытания на срез целиков фунта непосредственно на строительной площадке (ГОСТ 23741—79). Из-за высокой стоимости и трудоемкости этих работ их проводят только для сооружений I класса применительно к расчетам по несущейспособности. К I классу относятся здания и сооружения, имеющие большое хозяйственное значение, социальные объекты, объекты, требующие повышенной надежности (главные корпуса ТЭС, АЭС, телевизионные башни, промышленные трубы высотой более 200 м, здания театров, цирков, рынков, учебных заведений и т. д.). Для других случаев строительства (II и Ш класс сооружений) достаточно надежные показатели С и <р получают в результате лабораторных испытаний грунтов в приборах плоского среза (ГОСТ 12248—78) и трехосного сжатия (ГОСТ 26518—85).

Прочностные характеристики можно также определять по методу лопастного зондирования. Результаты этой работы при проектировании ответственных сооружений сопоставляют со сдвиговыми испытаниями. Это обеспечивает достаточную достоверность результатов исследований.

Ниже приводится краткое описание полевых методов исследований, с помощью которых определяются механические характеристики грунтов, показываются примеры выявления свойств грунтов с помощью производства опытных строительных работ.

Деформационные испытания грунтов. Сжимаемость грунтов изучают методами штампов, прессиометрами, динамическим и статическим зондированием.

М е т о д  ш т а м п о в. В нескальных грунтах на дне шурфов или в забое буровых скважин устанавливают штампы, на которые передаются статические нагрузки (ГОСТ 20276—85). Штамп в шурфе — это стальная или железобетонная плита. Форма штампа находится в зависимости от фундамента, который он моделирует, и может быть различной, но чаше всего плита круглая площадью 5000 см2. Для создания под штампом заданного напряжения применяют домкраты или платформы с грузом (рис. 27). Осадку штампов измеряют прогибомерами. При проходке шурфа на отметке подошвы штампа и вне его отбирают образцы грунтов для параллельных лабораторных исследований. Загрузку штампа производят ступенями и выдерживают определенное время. Значение нагрузки устанавливается в зависимости от вида грунта и его состояния. В итоге работы строят графики:

зависимость осадки штампа от давления;

осадки штампа во времени по ступеням нагрузки. После этого по
формуле вычисляют модуль деформации грунта
Е, МПа.

Штамп в буровой скважине. Для производства работ бурят скважину диаметром более 320 мм. Испытание грунтов проводят специальными установками, которые дают возможность работать на глубине скважины до 20 м. На забой скважины опускают штамп площадью 600 см3. Нагрузка на штамп передается через штангу, на которой располагается платформа с грузом. Модуль деформации определяют по формуле.

Определение модуля деформации в массиве скального фунта проводят в опытных котлованах. Испытания ведут с помощью прибетонированных в скале бетонных штампов. Давление на штампы подается от гидравлических домкратов (до 10 МПа). Конечным результатом работы является определение модуля деформации скального грунта по соответствующей формуле.

Прессиометрические исследования проводят в глинистых грунтах с помощью разведочных скважин. Прессиометр представляет собой резиновую цилиндрическую камеру, которую опускают в скважину на заданную глубину. Камеру расширяют давлением жидкости или газа. В процессе работы в стенках скважины замеряют радиальное перемещение грунта и давление. Это позволяет определять модуль деформации грунтов.

Зондирование (или пенетрация) используется для изучения толщ пород до глубины 15—20 м. Сущность метода заключается в определении сопротивления проникновению в грунт металлического наконечника (зонда). Зондирование дает представление о плотности и прочности грунтов на определенной глубине и характеризует изменение в вертикальном разрезе.

Зондирование относится к экспресс-методам определения механических свойств грунтов и применяется в целях ускоренного получения результатов исследований. Этот метод используется при изучении песчаных, глинистых и органогенных грунтов, которые не содержат или мало содержат примесей щебня или гальки. По способу погружения наконечника различают зондирование динамическое и статическое. При статическом зондировании конус в грунт залавливается плавно, а при динамическом его забивают молотом.

Статическое зондирование позволяет:

• расчленить толщу грунта на отдельные слои; определить глубину залегания скальных и крупнообломочных
грунтов;

установить приблизительно плотность песков, консистенцию гли
нистых грунтов, определить модуль деформации;
 

оценить качество искусственно уплотненных грунтов в насыпях
и намывных образованиях;
 

измерить мощность органогенных фунтов на болотах

Динамическое зондирование дает возможность определять:

мощность толщ современных (четвертичных) отложений;

границы между слоями;

степень уплотнения насыпных и намывных грунтов.
На рис. 28 показана пенетрационно-каротажная станция.

Прочностные испытания грунтов. Оценка сопротивления грунтов сдвигу в полевых условиях выполняется как в скальных, так и в нескальных грунтах. Сопротивление грунтов сдвигу определяется предельными значениями напряжений, при которых начинается их разрушение. В скальных грунтах опыты проводят в строительных котлованах, в которых оставляют целики в виде ненарушенного грунта столбчатого вида. К целикам прикладывают горизонтальное сдвигающее усилие. При этом для правильного определения внутреннего трения и удельного сцепления опыт проводят не менее, чем на трех столбчатых целиках.

Сдвиг в нескальных грунтах выполняют двумя способами: 1) на целиках; 2) с помощью вращательных срезов при кручении крыльчатки. Работа на целиках аналогична скальным грунтам. Крыльчатка представляет собой лопастной прибор и используется для определения сопротивления сдвигу в пылевато-глинистых грунтах. Крыльчатый четырехлопастной зонд опускают в забой скважины, вдавливают в грунт и поворачивают. При этом замеряют крутящий момент и рассчитывают сопротивление сдвигу.

Опытные строительные работы. При строительстве объектов I класса полевые исследования грунтов приобретают особо важное значение. В ряде случаев прибегают к опытным строительным работам, т. е. к испытаниям грунтов строительными конструкциями. Приведем примеры таких работ.

Опытные сваи. В пылевато-глинистый грунт строительной площадки забивают железобетонную сваю, при этом наблюдают за характером погружения сваи и сопротивляемостью грунта. На сваю дают нагрузку и определяют ее несущую способность, как в условиях природной влажности фунта, так и при его замачивании. Результаты испытаний сравнивают с расчетными данными, полученными на основе лабораторных исследований грунта.

Опытные фундаменты. Строят фундамент будущего здания в натуральную величину и на проектную глубину. На фундамент дают нагрузку, соответствующую нагрузке от будущего здания, и ведут наблюдения за сжатием грунта основания. Так определяется реальная несущая способность грунта и осадка будущего объекта.

Опытные здания. Лессовые грунты обладают просадочными свойствами. Количественную оценку этих свойств производят по данным лабораторных исследований и полевых испытаний грунтов. Несмотря на такую комплексную оценку просадочных свойств не всегда удается правильно оценить будущую устойчивость здания. Для решения этого вопроса строят здания в натуральную величину. Лессовые основания насыщают водой, что искусственно вызывает просадочный процесс. В этот период проводят наблюдения за характером развития просадочного процесса, определяют значения просадок, оценивают состояние конструкций зданий.

Обработка результатов исследований грунтов. Оценку свойств массивов грунтов проводят на основе физико-механических характеристик, которые получают по нормативным документам, в результате лабораторных исследований отдельных образцов грунтов и полевых работ на территории массива. Полученные в лаборатории и в поле характеристики отвечают только тем точкам, где были отобраны образцы и проведены полевые испытания грунтов. В связи с этим разрозненные результаты исследований и нормативные показатели необходимо обобщить, т. е. статистически обработать с целью получения усредненных значений и установления их применимости для всего массива фунта. После такой обработки результаты исследований можно использовать в расчетах оснований. Такую работу чаще всего выполняют методом математической статистики.

Стационарные наблюдения при инженерно-геологических и гидрогеологических исследованиях проводят за развитием неблагоприятных геологических процессов (карстом, оползнями и др.), режимом подземных вод и температурным режимом многолетнемерзлых пород. Заключаются они в выборе характерных участков для наблюдений, установке сети реперов, инструментальных наблюдениях за их перемещением и т. д. Наблюдения ведут в период эксплуатации зданий и сооружений, но они могут быть начаты и в период их проектирования. Продолжительность работ —до 1 года и более.

Свойства связных грунтов.

К связным грунтам относятся осадочные породы трех типов:

минеральные;

органоминеральные;

органические.

Наибольшее распространение на земной поверхности имеет минеральный тип, представленный глинистыми грунтами с водо-коллоидными связями между частицами. Земная кора практически повсеместно (не менее 60 % объема осадочных пород) покрыта глинистыми образованиями. В эти образования входят три литологических разновидности: супеси, суглинки и глины.

Минеральные (глинистые) грунты. Этот тип грунтов характеризуется большой группой физических свойств: пористостью, влажностью; поглотительной способностью; коррозионными и специфическими свойствами (пластичностью, консистенцией, липкостью, набуханием и садкой).

Глинистые грунты обычно залегают самостоятельными слоями, иногда в виде прослоев или линз в толщах других грунтов, что типично з основном озерным и речным отложениям. Мощность слоев очень разнообразна—от сантиметров до десятков и сотен метров. Глины стожены глинистыми минералами (до 95 %), среди которых преобла-zatoT гидрослюда, в качестве примесей присутствуют каолинит, монтмориллонит и др. Иногда встречаются глины, в которых основное место занимают каолиниты или монтмориллонит. В суглинках кроме глинистых минералов присутствуют (до 30—50 %) кварц, полевые шпаты и другие кластогенные минералы, имеющие размер пылеватых частиц. В составе супесей основное место занимают кластогенные зерна (кварц, долевые шпаты и др.), а глинистые минералы находятся в подчиненном -сложении (до 10—20 %).

Пористость п глинистых грунтов различна: супеси —10—15 %,  суглинки—20—30%,глины—90—95% активность во взаимоотношениях с водой. В грунтах увеличивается влагоемкость, пластичность, сжатие под нагрузками и т. д.

Глинистые грунты, особенно в условиях влажного состояния, под нагрузками способны сжиматься, т. е. уплотняться. Сжатие происходит за счет уменьшения пористости. Вначале из пор вытесняется воздух, а потом свободная (жидкая) вода. Грунт при этом ведет себя как пластичное тело. Дальнейшее увеличение нагрузки принимает на себя минеральный скелет грунта. Если структура грунта не была разрушена, то после снятия нагрузки объем грунта может несколько увеличиться. Это связано с расклинивающим действием пленочной воды, которая восстанавливает толщину своих пленок и раздвигает частицы грунта.

ВлажностьW в глинистых грунтов. Вода в глинистых грунтах находится в порах, заполняя их полностью или частично. Природная влажность W – это общее количество воды, содержащееся в объеме грунта, т.е. весовое кол-во воды к весу грунта. Если поры грунта полностью заполнены водой, то его относят к водонасыщенным Wsat. Величина W может меняться за счет испарения, давления на грунт, притока воды из окружающей среды.

Поглотительная способность глинистых грунтов связана с активной поверхностью глинистых частиц, которая энергично взаимодействует с окружающей частицы средой. Наивысшей активностью отличаются глинистые частицы, которые несут на своей поверхности электрические заряды. Минералы, например, алюмосиликатного или состава имеют отрицательные заряды, а карбонаты — положительные.

Коррозионные свойства глинистых грунтов. Коррозия—это разрушение строительных материалов и подземных металлических трубопроводов, расположенных в глинистых грунтах. Коррозия возникает в результате электролиза, который начинается в грунтах после воздействия блуждающих электрических токов на поровый водно-солевой раствор. В этом процессе вода пор становится электролитом. Коррозионные разрушения наиболее типичны городским территориям, где развито трамвайное движение. При проектировании объектов против коррозии следует предусматривать меры защиты.

Специфические свойства глинистых грунтов. Вода и ее количество придает грунтам ряд особых свойств, которые принято называть специфическими или «характерными». Это пластичность, липкость, набухание и усадка

Все эти свойства типичны глинистым грунтам и имеют большое значение при их строительной оценке.

Пластичность. Это способность глинистых грунтов под действием внешнего давления изменять свою форму без разрыва сплошности, т. е. без образования трещин, и сохранять полученную форму. Пластичные свойства обуславливаются наличием пленочной воды и проявляются только между двумя определенными значениями влажности. Меньшее значение называют нижним пределом пластичности или границей раскатывания Wр , а большее—верхним пределом пластичности, или границей текучести Wi. При влажности ниже Wр грунт находится в твердом состоянии, а когда влажность выше Wi —грунт растекается. Разница между значениями Wp и Wy называют числом пластичности Iр, (доли ед.) (рис. 30).

Консистенция тесно связана с пластичностью, отражает физическое состояние грунтов и показывает степень подвижности частиц в зависимости от различного количества в грунтах воды. Консистенцию Jt определяют по формуле

Ii=(W-Wp)/( Wi-Wp)

По значениям Ii  с помощью таблиц устанавливают, в каком состоянии находится грунт, например, суглинки и глины могут иметь консистенцию твердую, полутвердую, тугопластичную, мягкопластич-ную, текучепластичную, текучую. Супеси бывают в твердом состоянии, пластичном и текучем (табл. 25).

Липкость (г/см2)—способность глинистых грунтов прилипать к поверхности предметов (колесам и тракам дорожных машин, к лопате и т. д.). Липкостью обладают грунты, которые находятся в пластичном состоянии и обуславливаются наличием пленочной воды, а в почвах также гидрофильного гумуса. Пески и супеси липкостью не обладают

Липкость определяют лабораторным путем. При строительных работах в период дождей она осложняет разработку котлованов и процесс уплотнения грунтов.

Набухание—способность глинистых грунтов увеличивать свой объем в результате увлажнения. Этот процесс свойственен, прежде всего глинам и тяжелым суглинкам. Набухающие грунты обычно залегают слоями и чаще всего встречаются на поверхности земли сухих районов. Мощность слоев набухающих глин обозначается Нsw.. За счет давления набухания грунтов здание деформируется.

Набухание грунтов происходит после соприкосновения с водой, если они были сухие или слабо влажные.

Наличие набухающих грунтов устанавливают в период инженерно-геологических изысканий. Если грунты являются набухающими, то при проектировании объектов необходимо предусматривать определенные мероприятия: 1) в надземной части зданий (увеличивать жесткость и прочность зданий) и 2) в грунтовом основании.

При строительстве на набухающих основаниях могут быть использованы следующие мероприятия

.

Водозащита вокруг зданий и сооружений для предотвращения
проникновения в основания атмосферных и технических вод. Вокруг
зданий устраивают широкие асфальтовые отмостки, канавы и лотки
для отвода воды; надземные водонесущие коммуникации помещают в
специальные каналы.

Устранение свойств набухания в пределах всей или части толщи
грунта путем предпостроечного замачивания. Для промачивания грунтов используют дренирующие скважины. Грунт провоцируется на
набухание и в таком виде должен находиться весь период эксплуатации
объекта. Следует отметить, что при этом в грунтах понижаются прочностные и деформативные характеристики. В связи с этим рекомендуется строить объекты с небольшими нагрузками.

Устройство компенсирующих подушек под всем зданием или
фундаментами из слоя уплотненного грунта (песка, суглинка, глины).
Это позволяет уменьшать до допустимого предела величину
Рsw

Полная или частичная прорезка сборными фундаментами слоя
набухающего грунта. При этом боковая часть фундаментов должна
обсыпаться песком в целях устранения прилипания грунта к фундаментам.

Полная или частичная замена слоя набухающего грунта не набухаюшим грунтом. Этот способ экономически оправдан при набухающих грунтах с небольшой мощностью слоев.

Увеличение давления от зданий на основание, чтобы оно было
больше
Рsw.

Необходимо отметить, что наибольший эффект при строительстве объектов на набухающих грунтах можно получить при сочетании нескольких мероприятий и при увеличении жесткости и прочности самих зданий.

Техногенные грунты

Ниже рассматриваются искусственные техногенные грунты, а также образования, которые нередко называют антропогенными.

На поверхности литосферы при проведении различных строительных и горных работ, в результате производственной деятельности человека образуется достаточно большое количество отложений, представляющих собой или отходы хозяйственной деятельности человека (отвалы шахт, заводов, городские свалки и т. д.), или отложения, специально созданные человеком в строительных и производственных целях (намывные грунты, грунты обратной засыпки, насыпи дорог и т. д.). Эти образования получили название техногенных грунтов.

В настоящее время под техногенными грунтами понимают естественные грунты и почвы, измененные и перемещенные в результате производственной и хозяйственной деятельности человека, и антропогенные образования. Под антропогенными образованиями следует понимать твердые отходы производственной и хозяйственной деятельности человека, в результате которой произошло коренное изменение состава, структуры и текстуры природного минерального и органического сырья.

Наибольшая часть искусственных грунтов на Земле приурочена к промышленным и городским территориям. Особое беспокойство при этом у человечества вызывают бытовые и производственные отходы, которые занимают очень большие, непрерывно расширяющиеся площади и уже наносят серьезный вред жизненной среде человека.

Большое количество искусственных грунтов образуется также в результате военных действий, что тоже значительно изменяет облик земной поверхности, существенно нарушает природные массивы горных пород, создает искусственные грунтовые накопления, как из природных минеральных масс, так и за счет разрушенных зданий и сооружений.

Техногенные грунты используются в качестве оснований зданий и сооружений, а также материала для строительства различных инженерных сооружений (земляных плотин, насыпей автомобильных и железных дорог и пр.). Глобальный объем техногенных отложений в различных сооружениях измеряется сотнями миллиардов кубических метров. Только при добыче, переработке и сжигании твёрдого топлива каждые 5 лет в отвалах размещаются около 40 млрд. м3 пустых(для открытых разработок – вскрышных) пород и 2 млрд. м3золошлаков.




1. понятие осн содержание целевые направления фин политики формы и типы фин политики современная фин политик.html
2. Реферат- Инвестиционные решения предприятия
3. ЛАБОРАТОРНАЯ РАБОТА 1 Тема- Основы работы в табличном процессоре Excel
4. а и продолговатого мозга и располагается позади ската внутреннего основания черепа до края большого затылоч
5. Доклад- Об эрцгерцоге Фердинанде
6. История Иконы
7. 12 Принятие общегосударственной программы перехода России к рыночной экономике необходимость обеспеч
8. на тему- Семейный этикет
9. Охрана труда и защита окружающей среды
10. ЛЕКЦИЯ ПО ТЕМЕ 23 ГРАНИЦЫ ПОЛИТИКИ Что такое политика разнообразие определений история возникновени
11. Информационные технологии в антикризисном управлении
12. 1997 гг В первом полугодии 1996 г
13. Реферат- Город-империя Теотиуакан
14. РЕФЕРАТ дисертації на здобуття наукового степеня кандидата мистецтвознавства Киев ~ 2001
15. География промышленного рыболовств
16. Найти приток воды к совершенной канаве горизонтальному водозабору в случае напорных вод
17. Поиски духовной красоты в творчестве поэтов Серебряного века
18. ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ Профессиональнопедагогический университет
19. неуспішність і відставання
20. Шпаргалки по бюджетированию