Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

тема обеспечивает приспособительные реакции крови как на изменения внутренней среды организма так и на разл

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024

 

             Лекция 6. РЕГУЛЯЦИЯ СИСТЕМЫ КРОВИ . ОСНОВНЫЕ СИСТЕМЫ

                                         ГРУПП  КРОВИ.  ЛИМФА.

           Поддержание относительного постоянства состава периферической крови, так же, как и его колебания при воздействии различных физиологических факторов, осуществляется благодаря взаимодействию нескольких процессов - кроветворения, кроверазрушения и перераспределения. Координация этих процессов связана с наличием специальной системы регуляции. Эта система обеспечивает приспособительные реакции крови как на изменения внутренней среды организма, так и на различного рода влияния извне. Нервный и гуморальный пути регуляции могут оказывать свое воздействие на любое из звеньев, формирующих картину крови.

        Роль нервной системы в регуляции системы крови.

      Участие НС в перераспределительных реакциях подтверждается опытами, в которых анестезия предотвращает такие реакции, как возникновение местного лейкоцитоза при болевом раздражении, раздражении брюшины, механическом раздражении слизистой желудка, поверхности печени и т.п.. Четкие изменения состава периферической крови отмечаются и при введении медиаторов НС (адреналина и ацетилхолина). Так, инъекция адреналина приводит к возникновению кратковременного лейкоцитоза.

         Значительно сложнее вопрос о влиянии нервной системы непосредственно на кроветворение. Многочисленные клинические наблюдения над изменениями состава крови при различных поражениях ЦНС явились основой для представления о существовании центральной регуляции кроветворения. При раздражении гипоталамуса стимуляция ядер симпатической НС приводит к ретикулоцитозу и эритропении, а разрушение этих ядер тормозит регенерацию крови после кровопотери. Гипоталамус участвует в регуляции образования гемопоэтинов.

     Кора больших полушарий также оказывает свое влияние на состав крови и кроветворения. При удалении одного или обеих полушарий у животных развивается анемия и умеренно выраженный нейтрофильный лейкоцитоз. Одновременно тормозится регенерация крови в ответ на постгеморрагическую или гемолитическую анемию. При неврозах в клинике и в эксперименте могут развиваться анемии. Возможна выработка условных рефлексов в системе крови (условно-рефлекторный пищевой лейкоцитоз). Все эти исследования, хотя и свидетельствуют о возможном влиянии ЦНС на систему крови, но не раскрывают путей реализации этих воздействий. Можно полагать, что они осуществляются посредством изменения функционального состояния межуточного мозга, что приводит к изменениям деятельности эндокринных желез, обмена веществ, сосудистого тонуса и т.п..

      Несомненное влияние на систему крови оказывают и нижележащие отделы НС. Это доказано многочисленными экспериментами с перерезкой спинного мозга на различных уровнях. При перерезке шейного и грудного отделов наблюдается развитие анемии, ретикулоцитопении и нейтрофильного лейкоцитоза. В костном мозге в этих случаях снижается количество эритробластов.

       Нервные волокна, регулирующие кроветворение, выходят из спинного мозга на уровне D3-L3 сегментов. Симпатическая иннервация стимулирует кроветворение, парасимпатическая тормозит. Однако, при определенных условиях эти эффекты модифицируются и оба отдела ВНС могут оказывать на кроветворение одинаковое действие. Можно считать доказанным, что парасимпатикус влияет более на лейкопоэз, чем на эритропоэз.

        Следует отметить, что в особой зависимости от нормального функционального состояния НС находится эритрон. Выключение определенных рефлексогенных зон (синокаротидная, аортальная), денервация внутренних органов (печень, селезенка, почки), перерезка некоторых периферических нервов (седалищный, бедренный) закономерно вызывают анемию у экспериментальных животных.

      Существует два пути регулирующего влияния НС на систему крови - прямой и косвенный с участием гуморальных посредников. Подтверждением наличия прямого пути является наличие иннервации костного мозга, причем костный мозг является и источником афферентной импульсации, т.е. связь двусторонняя. Вместе с тем велика и роль гуморальных посредников между НС и системой крови (опыты на парабионтах). Эти гуморальные стимуляторы кроветворения получили наименование гемопоэтины. Под гемопоэтинами подразумевают вещества, которые вырабатываются в организме и обладают способностью стимулировать кроветворение. В зависимости от точки приложения их действия различают эритропоэтины, лейкопоэтины и тромбопоэтины.

         Эритропоэтин. Наиболее изученным среди факторов, стимулирующих кроветворение, является эритропоэтин. Учение об эритропоэтинах возникло на основе опытов Карно и Дефландера, которые обнаружили в 1906 г., что сыворотка кроликов с анемией обладает способностью стимулировать эритропоэз при введении ее интактным животным.

       Эритропоэтины образуются не только после острой кровопотери, но и при массивном разрушении эритроцитов при фенилгидразиновом отравлении, при снижении содержания кислорода в воздухе, при любой гипоксии. Использование чувствительных методов обнаружения эритропоэтина показало наличие его в плазме здоровых людей. Это позволяет считать его физиологическим стимулятором эритропоэза. При патологических условиях наблюдается лишь усиление интенсивности его образования. Исключение составляют лишь анемии у больных с заболеваниями почек. Это обусловлено той особой ролью, которая приписывается почкам в формировании эритропоэтина. При двусторонней нефрэктомии выработка эритропоэтина прекращается. Эксплантация собственной почки больному животному восстанавливает синтез эритропоэтина. Это связано с тем, что эритропоэтин синтезируется особыми клетками в т.н. юкста -гломерулярном аппарате почки. Действуя на костный мозг. эритропоэтин стимулирует в нем дифференциацию основных стволовых клеток с сторону эритробластического ряда. Возможно его стимулирующее действие и на скорость созревания эритробластов и нормобластов. По своей химической природе эритропоэтин относится к гликопротеидам. Он имеет специфическую антигенную структуру, термостабилен и не связан с крупнодисперсными белками.

       Лейкопоэтины. Вопрос о лейкопоэтинах изучен несравненно меньше. Безлейкоцитарная плазма обладает способностью вызывать лейкоцитоз при парэнтеральном введении интактным животным. Лейкоцитоз появляется вскоре после инъекции и достигает максимума через 4-6 часов. Механизм действия лейкопоэтинов аналогичен влиянию эритропоэтинов, т.е. они стимулируют дифференциацию основных клеток костного мозга в сторону гранулоцитопоэза. Химический состав лейкопоэтинов не изучен.

         Тромбопоэтины - их наличие доказано, но механизм действия и место выработки неизвестно. Помимо стимуляторов кроветворения, в настоящее время придается определенное значение факторам, обладающим противоположной активностью. Получены данные о повышенном образовании ингибиторов эритропоэза при заболеваниях почек, при экспериментальной полицитемии, при анемиях после перерезки некоторых нервов. Однако этот раздел физиологии регуляции крови только начинает развиваться.

       Роль желез внутренней секреции в регуляции системы крови.

       Наряду со специфической регуляцией системы крови, которая осуществляется посредством гемопоэтинов, и, возможно, веществ с ингибиторными свойствами, имеется немало данных об участии в этом процессе различных желез внутренней секреции.

     Гипофиз. Установлено, что гипофизэктомия приводит к анемии и гипоплазии костного мозга. Несомненное влияние на систему крови оказывают и отдельные гормоны гипофиза (АКТГ и СТГ). Применение СТГ приводит к усилению пролиферации всех костномозговых элементов с нарастанием в крови числа эритроцитов и лейкоцитов на единицу веса. При этом СТГ действует непосредственно на костный мозг, а АКТГ - через глюкокортикоиды.

      Надпочечники. О возможности влияния глюкокортикоидов на систему крови свидетельствуют многочисленные клинические наблюдения, указывающие на тенденцию к эритроцитозу и нейтрофильному лейкоцитозу у больных с синдромом Иценко-Кушинга. Применение глюкортикоидов у больных с не гематологическими заболеваниями сопровождается увеличением числа ретикулоцитов, эритроцитов и лейкоцитов. Аналогичные изменения обнаруживаются у животных при введении кортизона. В то же время адреналэктомия приводит к развитию анемии и увеличению в крови абсолютного количества лимфоцитов. Все эти эффекты связаны со способностью глюкокортикоидов стимулировать эритро- и гранулопоэз и тормозить продукцию лимфоцитов из-за развивающейся гипоплазии лимфоидного аппарата. Эозинопения, нередко отмечающаяся при введении глюкокортикоидов, обычно связывается с перераспределением эозинофилов. Длительное применение АКТГ может приводить к гипоплазии костного мозга из-за торможения митотической активности костномозговых элементов.

     Действие минералокортикоидов на систему крови осуществляется через изменения объема циркулирующей жидкой части крови. Определенные изменения состава крови возникают и при введении гормонов мозгового слоя надпочечников (адреналина и норадреналина). Они выражаются в кратковременной полиглобулии при отсутствии существенных нарушений в лейкоцитарной формуле. Развитие полиглобулии обусловлено перераспределением форменных элементов, уменьшением количества депонированных клеток крови в печени, селезенке, легких и других паренхиматозных органах при одновременном усилении выхода зрелых сегментоядерных нейтрофилов из синусов костного мозга в кровь.

      Половые железы. Половые различия в составе крови известны. Показано, что применение женских половых гормонов, эстрогенов, у людей и животных приводит к развитию панцитопении, особенно анемии. Применение малых доз эстрогенов оказывает стимулирующее действие на гранулоцитопоэз, при больших дозах отмечается аплазия гранулопоэза и лимфопоэза.

     Введение мужских половых гормонов, андрогенов, оказывает противоположное действие, выражающееся в появлении полиглобулии и гиперплазии костного мозга.

      Щитовидная железа. Менее определенное действие на систему крови оказывают гормоны щитовидной железы. При гиперфункции ее нередко развивается лейкопения, связанная с уменьшением абсолютного количества нейтрофилов. Абсолютное же количество лимфоцитов увеличивается, одновременно с увеличением размеров тимуса и лимфатических органов.

      Более закономерным является развитие анемии при гипофункции щитовидной железы. Количество лейкоцитов и тромбоцитов не меняется. Изменения кроветворения при нарушениях функции щитовидной железы не являются специфическими. Их появление связано с изменением темпа обменных процессов в организме, нарушением витаминного баланса и, возможно, нарушением всасывания необходимых для кроветворения веществ в ЖКТ.

      Зобная железа. Установлено, что зобная железа имеет непосредственное отношение к регуляции развития лимфоидного аппарата. Удаление тимуса у новорожденных мышей приводит к задержке развития лимфоидного аппарата вплоть до его атрофии. Одновременно у животных отмечается повышенная чувствительность к инфекции в связи со снижением способности вырабатывать антитела. Менее изученным является влияние зобной железы на эритропоэз. В физиологических условиях у взрослых людей тимус не может принимать существенного участия в регуляции кроветворения из-за возрастной инволюции этой железы.

      Прочие регулирующие влияния на систему крови.

     Внутренние органы. Помимо эндокринных желез, к регуляции системы крови имеют отношение такие органы, как селезенка и легкие. Они являются депо крови, в селезенке происходит разрушение элементов крови. При этом в селезенке разрушаются только старые, качественно измененные клетки. Большую роль играет селезенка и в стимуляции эритропоэза (продукты распада эритроцитов стимулируют созревание новых клеток) и лейкопоэза (удаление селезенки приводит к лимфоцитозу, эозинофилии и моноцитозу), а также тромбоцитопоэза.

     Продукты распада форменных элементов крови играют определенную роль в регуляции системы крови, так как симулируют свой росток. Терапевтический эффект переливания эритроцитарной и лейкоцитарной массы во многом связан с этим свойством, поскольку время циркуляции перелитых клеток, особенно лейкоцитов, невелико.

     Влияние питания. Функциональная активность гемопоэза во многом определяется характером питания. Длительное белковое голодание приводит к развитию лейкопении и анемии. Из других алиментарных факторов в регуляции кроветворения, особенно эритропоэза, придается значение некоторым микроэлементам (железо, кобальт, медь).

     Роль витаминов в эритропоэзе здорового человека определяется, с одной стороны, их участием в качестве коферментов на различных этапах синтеза гема, а с другой стороны, тем существенным значением, которое они имеют в процессе образования глобина.

     В12 и фолиевая кислота оказывают в конечном итоге сходное и взаимодополняющее влияние на эритропоэз. Минимальная потребность здорового человека в витамине В12 составляет 0,6-1,2 мкг в день. Он поступает в связанном с животным белком состоянии с пищей в желудок, где происходит расщепление этого комплекса, а затем соединение витамина в "внутренним фактором" Кастла. Последний идентичен гастромукопротеину, который секретируется добавочными клетками главных желез желудка. Витамин В12 всасывается на всем протяжении тонкой кишки, но преимущественно в дистальной части повздошной. Существует два механизма всасывания этого витамина: один связан с действием внутреннего фактора, другой основан на простой диффузии без участия гастромукопротеина. Диффузионный механизм возможен только при больших дозах витамина (500-1000 гамм).

    Фолиевая кислота относится к водорастворимым витаминам, широко представлена в растительных продуктах, легко всасывается в дистальных отделах кишечника. В печени в присутствии В12 и аскорбиновой кислоты превращается в активно действующее соединение - фолиновую кислоту.

      Витамин С. Значение аскорбиновой кислоты для эритропоэза определяется прежде всего активным участием этого витамина во всех этапах обмена железа. Этот витамин усиливает всасывание железа в 8-20 раз

      Витамин В6 - участвует в синтезе гема.  Недостаток этих витаминов в организме приводит к нарушению образования флавиновых коферментов, которые принимают участие в синтезе жирных кислот, необходимых для образования липидной стромы эритроцитов. Эти же коферменты влияют на образование эритропоэтина.

     Витамин В15 (пангамовая кислота). Недостаточное поступление пангамовой кислоты приводит к возникновению лейкопении и гипоплазии костного мозга. Такие же изменения отмечаются и при недостатке фолиевой кислоты. Считается, что пангамовая и пантотеновая кислоты необходимы для микробов кишечника, синтезирующих в физиологических условиях фолиевую кислоту.

     Таким образом, регуляция гемопоэза сложна и многообразна. Далеко не все из описанные факторов имеют решающее значение. Ведущими среди них являются нейроэндокринные влияния и специфические гемопоэтины. Но все эти факторы взаимосвязаны и оказывают свое регулирующее влияние в тесном взаимодействии друг с другом, создавая в конечном итоге условия для нормального функционирования системы крови.

           ОСНОВНЫЕ СИСТЕМЫ ГРУПП КРОВИ

      В 1901 г. Ландштейнер в крови здоровых людей открыл вещества, которые способны вызывать агглютинацию (склеивание) эритроцитов других людей. Оказалось, что эритроциты человека (так же, как и другие клетки крови) являются носителями многочисленных антигенов, которые обладают определенной специфичностью и вызывают против себя образование одноименных антител. Кровь каждого человека имеет определенный антигенный состав и отражает его индивидуальность. Как нет двух людей с одинаковыми отпечатками пальцев, так нет и двух лиц с абсолютно одинаковым антигенным составом эритроцитов.

      Различные антигены составляют уже более 15 систем групп крови, но практически наиболее важными из них являются система АВ0 и резус (Rh). Другие разновидности факторов крови встречаются очень редко. Групповые свойства крови передаются по наследству согласно законам наследования. Поэтому у детей не может быть агглютиногенов, отсутствующих у родителей. Такая экспертиза применяется при определении отцовства.

     Групповые свойства системы АВ0 появляются у человека в ранние сроки эмбрионального развития (уже у 5-7 недельного эмбриона ткани имеют антигенную дифференцировку). Группа крови у человека является его постоянным признаком и не изменяется в течение всей жизни. Выделение четырех групп крови положило начало новой эре в истории переливания крови, устранив основную причину пострансфузионных реакций.

      В системе АВ0 в эритроцитах обнаруживаются два агглютинируемых фактора - агглютиногены А и В, а в плазме - соответственно два агглютинина - а и в (альфа и бета). В крови человека никогда не встречаются одновременно одноименные факторы, поэтому в организме агглютинации не происходит.

     Тяжелые последствия переливания крови наступают в том случае, когда эритроциты крови донора (дающего кровь) агглютинируются плазмой крови реципиента (получающего кровь). Это бывает, когда в эритроцитах введенной крови содержится агглютиноген, совпадающий (одноименный) с агглютинином плазмы, причем концентрация последних достаточна для склеивания агглютиногенов. Это условие схематически можно обозначить так:

                     А+а,  а>А  или В+в,  в>В

       В результате склеивания эритроцитов и последующего их гемолиза возникает т.н. гемотрансфузионный шок, который может привести к смерти.

       Установлено, что всех людей по наличию или отсутствию этих факторов можно разделить на 4 группы. У людей 1 группы эритроциты не содержат агглютиногенов - 0(I), а в плазме оба агглютиногена. У людей второй группы - А(II) в эритроцитах обнаруживается агглютиноген А, а в плазме - бета-агглютинин. У лиц с третьей группой - В(III) в эритроцитах есть агглютиноген В, в плазме агглютинин альфа. А у людей с четвертой группой крови - АВ(IV) в эритроцитах есть оба агглютиногена, зато в плазме нет ни альфа, ни бета агглютининов. Способ определения групповой принадлежности крови  основан на использовании стандартных групповых сывороток. Более подробно об этом Вы узнаете на занятиях.

       В настоящее время считается, что переливать необходимо только одногруппную кровь, хотя в малых дозах из-за недостаточной концентрации агглютининов в донорской крови можно перелить кровь первой группы в любую другую. Раньше это было достаточно распространенным явлением, и такая кровь считалась универсальной донорской, то теперь от этого отказались, так как существует возможность агглютинации не по АВ0 антигенам, а объем крови, которую надо переливать, постоянно растет из-за большой сложности оперативных вмешательств.

        Резус-фактор. В эритроцитах большинства людей (85%) имеется еще один фактор, обнаруженный Ландштейнером и Винером в 1940 году в крови макак и названный резус-фактором (Rh). Этот фактор был открыт с помощью сыворотки, полученной от кроликов, иммунизированных эритроцитами обезьян. Иммунная сыворотка такого кролика обнаруживала способность агглютинировать эритроциты обезьян и эритроциты большинства людей независимо от их АВ0 принадлежности. Резус-фактор находится в эритроцитах 85% людей независимо от возраста и пола и не связан с агглютиногенами других систем.

       При помощи стандартных антирезусных сывороток можно определить резус-принадлежность людей (наличие фактора обозначается как Rh+, отсутствие - Rh-). Резус фактор передается по наследству и равномерно распределен по всем группам крови.

       Находясь в эритроцитах человека, резус-агглютиноген не имеет в сыворотке соответствующих антирезус-агглютининов, но они могут вырабатываться у лиц с резус-отрицательной кровью под влиянием систематического попадания в организм таких лиц резус-антигенов. При этом происходит Rh-иммунизация.

Резус-иммунизация может происходить при двух условиях:

      1. Если больному с Rh- кровью перелили кровь Rh+.

При беременности Rh- женщины Rh+ плодом.

     В последнем случае резус-фактор плода диффундирует через плаценту и иммунизирует мать, в крови которой начинают накапливаться антирезус-агглютинины. В ходе первой беременности их титр, как правило, не достигает критической величины, и первый ребенок рождается нормально.

     У мужчин резус-конфликт наступает при повторном переливании Rh+ крови.

     У женщин Rh-конфликт может наступить и при повторной беременности Rh- матери RH+ плодом, В этом случае антирез-антитела матери поступают к плоду, агглютинируют и разрушают его эритроциты, в результате плод или погибает внутриутробно, или рождается с признаками гемолитической болезни новорожденных.

       Доказано, что при несовместимости матери и плода по АВ0 антигенам тоже возможна иммунизация матери антигенами плода и это также может привести к внутриутробной гибели или появлению у плода гемолитической болезни.

      В настоящее время открыто много новых систем групп крови . Комбинации таких факторов, как M,N,C,P,K, Келл, Челлано и др. дают огромное число сочетаний. Однако, агглютинация по этим антигенам встречается крайне редко,: поэтому клиническое значение имеют только АВ0 и резус-фактор. Для того, чтобы избежать неконтролируемой агглютинации по этим системам, используют т.н. пробу на совместимость крови, смешивая кровь донора и реципиента непосредственно перед переливанием, а так же способ введения крови по Безредко - сначала немного, потом, при отсутствии реакции организма - остальное.

                                         ЛИМФА

        Лимфой называется жидкость, содержащаяся у позвоночных животных и человека в лимфатических капиллярах и сосудах. Лимфатическая система начинается лимфатическими капиллярами, которые дренируют все тканевые межклеточные пространства. Движение лимфы осуществляется в одну сторону- по направлению к большим венам. На этом пути мелкие капилляры сливаются в крупные лимфатические сосуды, которые постепенно, увеличиваясь в размерах, образуют правый лимфатический и грудной протоки. В кровяное русло через грудной проток оттекает не вся лимфа, так как некоторые лимфатические стволы (правый лимфатический проток, яремный, подключичный и бронхомедиастинальный) самостоятельно впадают в вены.

      По ходу лимфатических сосудов расположены лимфатические узлы, после прохождения которых лимфа снова собирается в лимфатические сосуды несколько больших размеров.

     У голодающих лимфа прозрачная или слабо опалесцирующая жидкость. Удельный вес в среднем равен 1016, реакция щелочная, рН - 9. Химический состав близок к составу плазмы, тканевой жидкости, а также других биологических жидкостей (спинномозговой, синовиальной), но некоторые различия имеются и зависят от проницаемости отделяющих их друг от друга мембран. Наиболее важным отличием состава лимфы от плазмы крови является более низкое содержание белка. Общее содержание белка в среднем составляет около половины его содержания в крови.

     В период пищеварения концентрация всосавшихся из кишечника веществ в лимфе резко нарастает. В хилусе (лимфе брыжеечных сосудов) резко возрастает концентрация жира, в меньшей степени углеводов и незначительно белков.

      Клеточный состав лимфы не совсем одинаков в зависимости от того, прошла она через один или все лимфатические узлы или не контактировала с ними. Соответственно различают периферическую и центральную (взятую из грудного протока) лимфу. Периферическая лимфа гораздо беднее клеточными элементами. Так, в 2 мм. куб. периферической лимфы у собаки содержится в среднем 550 лейкоцитов, а в центральной - 7800 лейкоцитов. У человека в центральной лимфе может быть до 20000 лейкоцитов в 1 мм.куб. Наряду с лимфоцитами, составляющими 88% в состав лимфы входят в небольшом количестве эритроциты, макрофаги, эозинофилы, нейтрофилы.

      Общая продукция лимфоцитов в лимфоузлах человека составляет 3 млн. на 1 кг массы /час.

     Основные функции лимфатической системы весьма разнообразны и в основном состоят в:

        - возвращении белка в кровь из тканевых пространств;

   - в участии в перераспределении жидкости в теле;

   - в защитных реакциях как путем удаления и уничтожения различных бактерий, так и участием в иммунных реакциях;

  - в участии в транспорте питательных веществ, особенно жиров.




1. Экспериментальные исследования диэлектрических свойств материалов
2. Тому властивості особистості виступають головними факторами діяльності вчителя
3. наука которая изучает и обобщает опыт борьбы с преступностью разрабатывает средства приемы и методы раскр
4. Я побывал в ином мире и вернулся
5. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата економічних наук.5
6. тема не лише забезпечує необхідні взаємозв~язки в економіці вона є одним з найвпливовіших важелів макроекон
7. . Назначение область применения и краткая характеристика большепролетных зданий Большепрол.
8. Контрольная работа- УНР часів директорії
9. Реферат- Лекции (часть) по теории государства и права
10. сравнительно медленный постепенный характер реформ в КНР или быстрый скачкообразный в России На первый
11. Статья 43. Обязанности и ответственность обучающихся 1
12. Электрическая сеть района
13. Управление государственным долгом
14. технологии Определение Интернет
15. задание С1 Баллы I Содержание сочинения
16. тематика сказки и Романтические традиции.
17. Компьютерные сети Адресация в Интернете
18. Виды и назначение индикаторов эко-эффективности
19. Private label
20. Тема 6 Планування й формування персоналу 6