Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
В. Я. Пивкин, Е. П. Бакулин, Д. И. Кореньков
Нечеткие множества в системах управления
Под редакцией
доктора технических наук, профессора Ю.Н. Золотухина
Данное методическое пособие является введением в теорию нечетких множеств - активно развивающейся в последние годы раздел математики, позволяющей моделировать приближенные рассуждения человека. В рукописном виде пособие было основой курса лекций, читавшегося на кафедре 'Автоматизации физико-технических исследований' физического факультета НГУ. |
Оглавление
[0.0.1] Предисловие [0.0.2] ВВЕДЕНИЕ
[0.0.3] [0.0.3.1] Примеры записи нечеткого множества [0.0.3.2] Основные характеристики нечетких множеств [0.0.3.3] Примеры нечетких множеств [0.0.3.4] О методах построения функций принадлежности нечетких множеств [0.0.3.5] Операции над нечеткими множествами [0.0.3.6] Наглядное представление операций над нечеткими множествами [0.0.3.7] Свойства операций È и Ç. [0.0.3.8] Алгебраические операции над нечеткими множествами [0.0.3.9] Расстояние между нечеткими множествами, индексы нечеткости [0.0.3.10] Принцип обобщения
[0.0.4] [0.0.4.1] Операции над нечеткими отношениями [0.0.4.2] Композиция двух нечетких отношений [0.0.4.3] Условные нечеткие подмножества.
[0.0.5] [0.0.5.1] Нечеткие числа [0.0.5.2] Операции над нечеткими числами [0.0.5.3] Нечеткие числа (L-R)-типа
[0.0.6] [0.0.6.1] Правила преобразований нечетких высказываний [0.0.6.2] Способы определения нечеткой импликации [0.0.6.3] Логико-лингвистическое описание систем, нечеткие модели. [0.0.6.4] Модель управления паровым котлом [0.0.6.5] Полнота и непротиворечивость правил управления
[0.0.7] |
Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.
Значительное продвижение в этом направлении сделано 30 лет тому назад профессором Калифорнийского университета (Беркли) Лотфи А. Заде (Lotfi A. Zadeh). Его работа "Fuzzy Sets", появившаяся в 1965 году в журнале Information and Control, ╬ 8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.
Что же предложил Заде? Во-первых, он расширил классическое канторовское понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0;1), а не только значения 0 либо 1. Такие множества были названы им нечеткими (fuzzy). Л.Заде определил также ряд операций над нечеткими множествами и предложил обобщение известных методов логического вывода modus ponens и modus tollens.
Введя затем понятие лингвистической переменной и допустив, что в качестве ее значений (термов) выступают нечеткие множества, Л.Заде создал аппарат для описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.
Дальнейшие работы профессора Л.Заде и его последователей заложили прочный фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику.
Уже к 1990 году по этой проблематике опубликовано свыше 10000 работ, а число исследователей достигло 10000, причем в США, Европе и СССР по 200-300 человек, около 1000 - в Японии, 2000-3000 - в Индии и около 5000 исследователей в Китае.
В последние 5-7 лет началось использование новых методов и моделей в промышленности. И хотя первые применения нечетких систем управления состоялись в Европе, наиболее интенсивно внедряются такие системы в Японии. Спектр приложений их широк: от управления процессом отправления и остановки поезда метрополитена, управления грузовыми лифтами и доменной печью до стиральных машин, пылесосов и СВЧ-печей. При этом нечеткие системы позволяют повысить качество продукции при уменьшении ресурсо и энергозатрат и обеспечивают более высокую устойчивость к воздействию мешающих факторов по сравнению с традиционными системами автоматического управления.
Другими словами, новые подходы позволяют расширить сферу приложения систем автоматизации за пределы применимости классической теории. В этом плане любопытна точка зрения Л.Заде: "Я считаю, что излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. В результате многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ, оставались и остаются в стороне по той причине, что они не поддаются математической трактовке. Для того чтобы сказать что-либо существенное для проблем подобного рода, мы должны отказаться от наших требований точности и допустить результаты, которые являются несколько размытыми или неопределенными".
Смещение центра исследований нечетких систем в сторону практических приложений привело к постановке целого ряда проблем таких, как новые архитектуры компьютеров для нечетких вычислений, элементная база нечетких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое.
Основная цель предлагаемого вниманию читателей учебного пособия - привлечь внимание студентов, аспирантов и молодых научных сотрудников к нечеткой проблематике и дать доступное введение в одну из интереснейших областей современной науки.
профессор Ю.Н.Золотухин
май 1995г.
Математическая теория нечетких множеств, предложенная Л.Заде более четверти века назад, позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.
Пусть E - универсальное множество, x - элемент E, а R - некоторое свойство. Обычное (четкое) подмножество A универсального множества E, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар A = {mA (х)/х}, где
mA(х) - характеристическая функция, принимающая значение 1, если x удовлетворяет свойству R, и 0 - в противном случае.
Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "да-нет" относительно свойства R. В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченных пар A = {mA(х)/х}, где
mA(х) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве M (например, M = [0,1]). Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A. Множество M называют множеством принадлежностей. Если M = {0,1}, то нечеткое подмножество A может рассматриваться как обычное или четкое множество.
Примеры записи нечеткого множества
Пусть E = {x1, x2, x3, x4, x5 }, M = [0,1]; A - нечеткое множество, для которого
mA(x1)=0,3;
mA(x2)=0;
mA(x3)=1;
mA(x4)=0,5;
mA(x5)=0,9.
Тогда A можно представить в виде:
A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или
A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5, или
A = |
x1 x2 x3 x4 x5 0,3 0 1 0,5 0,9 |
.
Замечание. Здесь знак "+" не является обозначением операции сложения, а имеет смысл объединения.
Основные характеристики нечетких множеств
Пусть M = [0,1] и A - нечеткое множество с элементами из универсального множества E и множеством принадлежностей M.
Величина m A(x) называется высотой нечеткого множества A. Нечеткое множество A нормально, если его высота равна 1, т.е. верхняя граница его функции принадлежности равна 1 (m A(x)=1). При mA(x)<1 нечеткое множество называется субнормальным.
Нечеткое множество пусто, если " xÎE m A(x)=0. Непустое субнормальное множество можно нормализовать по формуле mA(x) := .
Нечеткое множество унимодально, m A(x)=1 только на одном x из E.
Носителем нечеткого множества A является обычное подмножество со свойством mA(x)>0, т.е. носитель A = {x/mA(x)>0} " xÎE.
Элементы xÎE, для которых mA(x)=0,5 называются точками перехода множества A.
Примеры нечетких множеств
Пусть E = {0,1,2,..,10}, M =[0,1]. Нечеткое множество "несколько" можно определить следующим образом: "несколько" = 0,5/3+0,8/4+1/5+1/6+0,8/7+0,5/8; его характеристики: высота = 1, носитель={3,4,5,6,7,8}, точки перехода - {3,8}.
Пусть E = {0,1,2,3,...,n,...}. Нечеткое множество "малый" можно определить:
"малый" = .
Пусть E = {1,2,3,...,100} и соответствует понятию "возраст", тогда нечеткое множество "молодой", может быть определено с помощью
m"молодой"(x) = .
Нечеткое множество "молодой" на универсальном множестве E' ={Иванов, Петров, Сидоров,...} задается с помощью функции принадлежности m"молодой"(x) на E = {1,2,3,..100} (возраст), называемой по отношению к E' функцией совместимости, при этом:
m"молодой"(Сидоров):= m"молодой"(x), где x - возраст Сидорова.
Пусть E = {Запорожец, Жигули, Мерседес,....} - множество марок автомобилей, а E' = [0,¥) - универсальное множество "стоимость", тогда на E' мы можем определить нечеткие множества типа: "для бедных", "для среднего класса", "престижные", с функциями принадлежности типа:
Имея эти функции и зная стоимости автомобилей из E в данный момент времени, мы тем самым определим на E' нечеткие множества с этими же названиями.
Так, например, нечеткое множество "для бедных", заданное на универсальном множестве E = {Запорожец, Жигули, Мерседес,....} выглядит следующим образом:
Аналогично можно определить Нечеткое множество "скоростные", "средние", "тихоходные" и т.д.
О методах построения функций принадлежности нечетких множеств
В приведенных выше примерах использованы прямые методы, когда эксперт либо просто задает для каждого xÎE значение m A(x), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности используются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.
Во многих задачах при характеристике объекта можно выделить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.
Например в задаче распознавания лиц можно выделить следующие шкалы:
|
|
0 |
1 |
x1 |
высота лба |
низкий |
широкий |
x2 |
профиль носа |
курносый |
горбатый |
x3 |
длина носа |
короткий |
длинный |
x4 |
разрез глаз |
узкие |
широкие |
x5 |
цвет глаз |
светлые |
темные |
x6 |
форма подбородка |
остроконечный |
квадратный |
x7 |
толщина губ |
тонкие |
толстые |
x8 |
цвет лица |
темный |
светлый |
x9 |
очертание лица |
овальное |
квадратное |
Для конкретного лица А эксперт, исходя из приведенной шкалы, задает mA(x)Î [0,1], формируя векторную функцию принадлежности { mA(x1), mA(x2),... mA(x9)}.
При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкретное лицо и каждый должен дать один из двух ответов: "этот человек лысый" или "этот человек не лысый", тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение m "лысый" (данного лица). (В этом примере можно действовать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц).
Косвенные методы определения значений функции принадлежности используются в случаях, когда нет элементарных измеримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравнений. Если бы значения функций принадлежности были нам известны, например, mA(xi) = wi, i=1,2,...,n, то попарные сравнения можно представить матрицей отношений A = {aij}, где aij=wi/wj (операция деления).
На практике эксперт сам формирует матрицу A, при этом предполагается, что диагональные элементы равны 1, а для элементов симметричных относительно диагонали aij = 1/aij, т.е. если один элемент оценивается в a раз сильнее чем другой, то этот последний должен быть в 1/a раз сильнее, чем первый. В общем случае задача сводится к поиску вектора w, удовлетворяющего уравнению вида Аw = lmaxw, где lmax - наибольшее собственное значение матрицы A. Поскольку матрица А положительна по построению, решение данной задачи существует и является положительным.
Операции над нечеткими множествами
Включение.
Пусть A и B - нечеткие множества на универсальном множестве E.
Говорят, что A содержится в B, если "x ÎE mA(x) mB(x).
Обозначение: A Ì B.
Иногда используют термин "доминирование", т.е. в случае когда A Ì B, говорят, что B доминирует A.
Равенство.
A и B равны, если "xÎE mA(x) = mB (x).
Обозначение: A = B.
Дополнение.
Пусть M = [0,1], A и B - нечеткие множества, заданные на E. A и B дополняют друг друга, если
"xÎE mA(x) = 1 - m B(x).
Обозначение: B = или A = .
Очевидно, что = A. (Дополнение определено для M = [0,1], но очевидно, что его можно определить для любого упорядоченного M).
Пересечение.
AÇB - наибольшее нечеткое подмножество, содержащееся одновременно в A и B.
mAÇB(x) = min( mA(x), m B(x)).
Объединение.
А È В - наименьшее нечеткое подмножество, включающее как А, так и В, с функцией принадлежности:
mAÈ B(x) = max(mA(x), m B(x)).
Разность.
А - B = АÇ с функцией принадлежности:
mA-B(x) = mA Ç (x) = min( mA(x), 1 - m B(x)).
Дизъюнктивная сумма.
АÅB = (А - B)È(B - А) = (А Ç) È(Ç B) с функцией принадлежности:
mA-B(x) = max{[min{m A(x), 1 - mB(x)}];[min{1 - mA(x), mB(x)}] }
Примеры.
Пусть:
A = 0,4/ x1 + 0,2/ x2+0/ x3+1/ x4;
B = 0,7/ x1+0,9/ x2+0,1/ x3+1/ x4;
C = 0,1/ x1+1/ x2+0,2/ x3+0,9/ x4.
Здесь:
AÌB, т.е. A содержится в B или B доминирует A, С несравнимо ни с A, ни с B, т.е. пары {A, С} и {A, С} - пары недоминируемых нечетких множеств.
A ¹ B ¹ C.
= 0,6/ x1 + 0,8/x2 + 1/x3 + 0/x4;
= 0,3/x1 + 0,1/x2 + 0,9/x3 + 0/x4.
AÇB = 0,4/x1 + 0,2/x2 + 0/x3 + 1/x4.
АÈВ = 0,7/x1 + 0,9/x2 + 0,1/x3 + 1/x4.
А - В = АÇ = 0,3/x1 + 0,1/x2 + 0/x3 + 0/x4;
В - А = Ç В = 0,6/x1 + 0,8/x2 + 0,1/x3 + 0/x4.
А Å В = 0,6/x1 + 0,8/x2 + 0,1/x3 + 0/x4.
Наглядное представление операций над нечеткими множествами
Для нечетких множеств можно строить визуальное представление. Рассмотрим прямоугольную систему координат, на оси ординат которой откладываются значения mA(x), на оси абсцисс в произвольном порядке расположены элементы E (мы уже использовали такое представление в примерах нечетких множеств). Если E по своей природе упорядочено, то этот порядок желательно сохранить в расположении элементов на оси абсцисс. Такое представление делает наглядными простые операции над нечеткими множествами.
На верхней части рисунка заштрихованная часть соответствует нечеткому множеству A и, если говорить точно, изображает область значений А и всех нечетких множеств, содержащихся в A. На нижней - даны , AÇ , AÈ .
Свойства операций È и Ç.
Пусть А, В, С - нечеткие множества, тогда выполняются следующие свойства:
- коммутативность;
- ассоциативность;
- идемпотентность;
- дистрибутивность;
AÈÆ = A, где Æ - пустое множество, т.е. mÆ(x) = 0 ">xÎE;
AÇÆ = Æ;
AÇE = A, где E - универсальное множество;
AÈE = E;
- теоремы де Моргана.
В отличие от четких множеств, для нечетких множеств в общем случае:
AÇ ¹ Æ,
AÈ ¹ E.
(Что, в частности, проиллюстрировано выше в примере наглядного представления нечетких множеств).
Замечание. Введенные выше операции над нечеткими множествами основаны на использовании операций max и min. В теории нечетких множеств разрабатываются вопросы построения обобщенных, параметризованных операторов пересечения, объединения и дополнения, позволяющих учесть разнообразные смысловые оттенки соответствующих им связок "и", "или", "не".
Один из подходов к операторам пересечения и объединения заключается в их определении в классе треугольных норм и конорм.
Треугольной нормой (t-нормой) называется двуместная действительная функция T:[0,1]´[0,1]®[0,1], удовлетворяющая следующим условиям:
T(0,0)=0; T(mA, 1) = mA; T(1, m A) = mA - ограниченность;
T(mA, mB) £T(mC, mD), если mA£mC , mB£mD - монотонность;
T(mA , m B) = T(mB, mA) - коммутативность;
T(mA, T(m B, mC))= T( T(mA, mB), mC) - ассоциативность;
Простым случаем треугольных норм являются:
min(mA , m B)
произведение mA×mB
max(0, mA + m B -1).
Треугольной конормой (t-конормой) называется двуместная действительная функция ^:[0,1]´[0,1]® [0,1], со свойствами:
T(1,1) = 1; T(mA ,0) = m A ; T(0, m A) = mA - ограниченность;
T(mA, mB )³ T(mC, mD ), если mA ³mC , mB ³mD - монотонность;
T(mA , mB ) = T(mB , mA ) - коммутативность;
T(mA, T(mB , mC )) = T(T(mA , mB ), mC ) - ассоциативность.
Примеры t-конорм:
max(mA, m B)
mA + mB - mA× mB
min(1, mA + mB).
Алгебраические операции над нечеткими множествами
Алгебраическое произведение A и B обозначается A×B и определяется так:
"xÎE mA×B (x) = mA(x)mB(x).
Алгебраическая сумма этих множеств обозначается и определяется так:
"xÎE = m A(x) + mB(x)-mA(x)mB(x).
Для операций {×, } выполняются свойства:
- коммутативность;
- ассоциативность;
A×Æ = Æ, AÆ = A, A×E = A, AE = E
- теоремы де Моргана.
Не выполняются:
- идемпотентность;
- дистрибутивность;
а также A× = Æ, A = E.
Замечание. Доказательства приводимых свойств операций над нечеткими множествами мы оставляем читателю.
Для примера докажем свойство: . Обозначим mA(x) через a, mB(x) через b. Тогда в левой части для каждого элемента х имеем: 1-ab, а в правой: (1-a)+(1-b)-(1-a)(1-b) = 1-a+1-b-1+a+b-ab = 1-ab.
Докажем, что свойство дистрибутивности не выполняется, т.е. A×(BC) ¹ (A×B)(A×C). Для левой части имеем: a(b+c-bc) = ab+ac-abc; для правой: ab+ac-(ab)(ac) = ab+ac+a2bc. Это означает, что дистрибутивность не выполняется при a¹a2.
Замечание. При совместном использовании операций {È, Ç,+,×} выполняются свойства:
А×(BÈC) = (A×B)È(A × C);
А× (BÇC) = (A×B)Ç(A×C);
А(BÈC) = (AB)È(AC);
А(BÇC)=(AB)Ç(AC).
Продолжим обзор основных операций над нечеткими множествами.
На основе операции алгебраического произведения (по крайней мере для целых a эта основа очевидна) определяется операция возведения в степень a нечеткого множества A, где a - положительное число. Нечеткое множество Aa определяется функцией принадлежности mAa = maA(x). Частным случаем возведения в степень являются:
CON(A) = A2 - операция концентрирования,
DIL(A) = A0,5 - операция растяжения,
которые используются при работе с лингвистическими неопределенностями.
Умножение на число. Если a - положительное число, такое, что am A(x)£1, то нечеткое множество aA имеет функцию принадлежности:
maA(x) = amA(x).
Выпуклая комбинация нечетких множеств. Пусть A1, A2,.., An - нечеткие множества универсального множества E, а w1, w2, ..., wn - неотрицательные числа, сумма которых равна 1.
Выпуклой комбинацией A1, A2,.., An называется нечеткое множество A с функцией принадлежности:
"xÎE mA(x1, x1,..., xn) = w1mA1(x) + w2mA2(x) + ... + wnmAi(x).
Декартово произведение нечетких множеств. Пусть A1, A2, ..., An - нечеткие подмножества универсальных множеств E1, E2, ..., En соответственно. Декартово произведение A = A1´A2 ´ ...´An является нечетким подмножеством множества E = E1´E2 ´ ...´En с функцией принадлежности:
mA(x1, x1, ..., xn) = min{ mA1(x1), mA2(x2) , ... , mAi(xn) }.
Оператор увеличения нечеткости используется для преобразования четких множеств в нечеткие и для увеличения нечеткости нечеткого множества.
Пусть A - нечеткое множество, E - универсальное множество и для всех xÎE определены нечеткие множества K(х). Совокупность всех K(х) называется ядром оператора увеличения нечеткости Ф. Результатом действия оператора Ф на нечеткое множество A является нечеткое множество вида:
Ф(A, K) = mA (x)K(х),
где mA(x)K(х) - произведение числа на нечеткое множество.
Пример:
E = {1,2,3,4};
A = 0,8/1+0,6/2+0/3+0/4;
K(1) = 1/1+0,4/2;
K(2) = 1/2+0,4/1+0,4/3;
K(3) = 1/3+0,5/4;
K(4) = 1/4.
Тогда
Ф(A,K) = mA(1) K(1) ÈmA(2)K(2) ÈmA(3)K(3) ÈmA(4)K(4) =
= 0,8(1/1+0,4/2) È 0,6(1/2+0,4/1+0,4/3) =
= 0,8/1+0,6/2+0,24/3.
Четкое множество a-уровня (или уровня a). Множеством a-уровня нечеткого множества A универсального множества E называется четкое подмножество Aa универсального множества E, определяемое в виде:
Aa ={x/m A(x)³a}, где a£1.
Пример: A = 0,2/x1 + 0/x2 + 0,5/x3 + 1/x4 ,
тогда A0.3 = {x3,x4},
A0.7 = {x4}.
Достаточно очевидное свойство: если a1 ³a2 , то Aa1£ Aa2 .
Теорема о декомпозиции. Всякое нечеткое множество A разложимо по его множествам уровня в виде:
A = aA a, где aAa - произведение числа a на множество A, и a "пробегает" область значений M функции принадлежности нечеткого множества A.
Пример: A = 0,1/x1 + 0/x2 + 0,7/x3 + 1/x4 представимо в виде:
A = 0,1(1,0,1,1) È 0,7(0,0,1,1,) È 1(0,0,0,1)=
= (0,1/x1 + 0/x2 + 0,1/x3 + 0,1/x4)È (0/x1 + 0/x2 + 0,7/x3 + 0,7/x4)È
È(0/x1 + 0/x2 + 0/x3 + 1/x4) = 0,1/x1 +0/x2 +0,7/x3 +1/x4 .
Если область значений функции принадлежности состоит из n градаций a1£ a2£ a3£ ...£ an, то A (при фиксированных значениях градаций) представимо в виде:
A = aiAai,
т.е. определяется совокупностью обычных множеств { Aa1, Aa2, ..., Aai}, где Aa1 ³Aa2³ , ..., ³Aai.
Расстояние между нечеткими множествами, индексы нечеткости
Пусть A и B - нечеткие подмножества универсального множества E. Введем понятие расстояния r(A, B) между нечеткими множествами. При введении расстояния обычно предъявляются следующие требования:
r(A, B) ³ 0 - неотрицательность;
r(A, B) = r(B, A) - симметричность;
r(A, B) < r(A, C) + r(C, B).
К этим трем требованиям можно добавить четвертое: r(A, A) = 0.
Определим следующие расстояния по формулам:
Расстояние Хемминга (или линейное расстояние):
r(A, B) = ½mA(xi) - mB(xi)½ .
Очевидно, что r(A, B)Î[0, n].
Евклидово или квадратичное расстояние:
e(A, B) = , e(A, B)Î[0, ].
Относительное расстояние Хемминга:
r(A, B) = , r(A, B)Î[0,1].
Относительное евклидово расстояние:
e(A, B)=, e(A, B)Î[0,1].
Расстояние Хемминга и квадратичное расстояние, в случае когда E бесконечно, определяются аналогично с условием сходимости соответствующих сумм:
если E счетное, то
r(A, B) = ½mA(xi) - mB(xi)½ ,
e(A, B) = ;
если E = R (числовая ось), то
r(A, B) = ,
e(A, B) = .
Замечание. Здесь приведены два наиболее часто встречающихся определения понятия расстояния. Разумеется, для нечетких множеств можно ввести и другие определения понятия расстояния.
Перейдем к индексам нечеткости или показателям размытости нечетких множеств.
Если объект х обладает свойством R (порождающим нечеткое множество A) лишь в частной мере, т.е.
0<mA(x)<1, то внутренняя неопределенность, двусмысленность объекта х в отношении R проявляется в том, что он, хотя и в разной степени, принадлежит сразу двум противоположным классам: классу объектов, "обладающих свойством R", и классу объектов, "не обладающих свойством R". Эта двусмысленность максимальна, когда степени принадлежности объекта обеим классам равны, т.е. mA(x) = (x) = 0,5, и минимальна, когда объект принадлежит только одному классу, т.е. либо mA(x) = 1 и (x) = 0, либо mA(x) = 0 и (x) = 1.
В общем случае показатель размытости нечеткого множества можно определить в виде функционала d(A) со значениями в R (положительная полуось), удовлетворяющего условиям:
d(A) = 0 тогда и только тогда, когда А - обычное множество;
d(A) максимально тогда и только тогда, когда mA(x) = 0.5 для всех xÎE.
d(A)d(B), если A является заострением B, т.е.
mA(x)£mB(x) при mB(x) < 0,5;
mA(x)³mB(x) при mB(x) > 0,5;
mA(x)- любое при mB(x) = 0,5.
d(A) = d() - симметричность по отношению к 0,5.
d(AÈB)+d(AÇB) = d(A)+d(B).
Замечание. Приведенная система аксиом при введении конкретных показателей размытости часто используется частично, т.е., например, ограничиваются свойствами P1, P2 и P3, либо некоторые свойства усиливаются или ослабляются в зависимости от решаемой задачи.
Рассмотрим индексы нечеткости (показатели размытости), которые можно определить, используя понятие расстояния.
Обычное множество, ближайшее к нечеткому
Пусть A - нечеткое множество. Вопрос: какое обычное множество AÌE является ближайшим к A, т.е. находится на наименьшем евклидовом расстоянии от нечеткого множества A. Таким подмножеством, обозначаемым A, является подмножеством с характеристической функцией:
.
Обычно принимают mA(xi) = 0, если mA(xi) = 0,5.
Используя понятие обычного множества, ближайшего к нечеткому, введем следующие индексы нечеткости нечеткого множества А.
Линейный индекс нечеткости:
Здесь r(A, A) - линейное (хеммингово) расстояние, множитель - обеспечивает выполнение условия 0<d(A)<1.
Квадратичный индекс нечеткости
, 0<d(A)<1.
Здесь e(A, A) - квадратичное (евклидово) расстояние.
Замечания.
1. Мы ввели линейный и квадратичный индексы нечеткости, используя понятие расстояния и понятие обычного множества, ближайшего к нечеткому. Эти же индексы можно определить, используя операцию дополнения, следующим образом:
- линейный индекс,
- квадратичный индекс.
2. Отметим следующие свойства, связанные с ближайшим обычным множеством:
АÇВ=АÇВ,
АÈВ=АÈВ;
а также "xÎE:|mA(xi)-mA(xi)|=, откуда для линейного индекса нечеткости имеем:
,
т.е. в этом представлении становится очевидным, что d(A)=d().
3. Нечеткое множество с функцией принадлежности иногда называют векторным индикатором нечеткости.
Оценка нечеткости через энтропию
Ограничимся случаем конечного универсального множества. Энтропия системы с n состояниями e1,e2, ..., en, с которыми связаны вероятности p1,p2, ..., pn определяется выражением:
H(p1, p2, ..., pn) = - pi ln pi, Hmin = 0, Hmax = 1.
В случае нечетких множеств положим:
pA(xi) =
Тогда общую формулу, позволяющую подсчитать энтропию по нечеткости, можно записать в следующем виде:
H(pA(x1), pA(x2), ..., pA(xn)) = - pA(xi) ln pA(xi).
Замечание. Попытки использования энтропии в теории нечетких множеств (в приведенном выше виде) показали, что это не лучший способ оценки. Однако работы по обобщению понятия энтропии для нечетких множеств продолжаются.
Принцип обобщения
Принцип обобщения - одна из основных идей теории нечетких множеств - носит эвристический характер и используется для расширения области применения нечетких множеств на отображения. Пусть X и Y - два заданных универсальных множества. Говорят, что имеется функция, определенная на X со значением в Y, если, в силу некоторого закона f, каждому элементу XÎX соответствует элемент yÎY.
Когда функцию f: X®Y называют отображением, значение f(x)ÎY, которое она принимает на элементе xÎX, обычно называют образом элемента x.
Образом множества АÌХ при отображении с®Y называют множество f(A)ÌY тех элементов Y, которые являются образами элементов множества А.
Замечание. Мы напомнили классическое определение отображения, которое в теории нечетких множеств принято называть четким отображением, т.к. наряду с ним мы введем понятие нечеткого отображения (или нечеткой функции).
Будем говорить, что имеется нечеткая функция f, определенная на X со значением в Y, если она каждому элементу xÎX ставит в соответствие элемент yÎY со степенью принадлежности mf(x,y). Нечеткая функция f определяет нечеткое отображение f:XY.
Принцип обобщения заключается в том, что при заданном четком f:X®Y или нечетком f:XY отображении для любого нечеткого множества А, заданного на Х, определяется нечеткое множество f(A) на Y, являющееся образом A.
Пусть f:X®Y заданное четкое отображение,
а A = {mA(x)/х}- нечеткое множество в Х. Тогда образом А при отображении f является нечеткое множество f(A) на Y с функцией принадлежности:
mf(A)(y) = mA(x); yÎY,
где f -1(y)={x/f(x)=y}.
В случае нечеткого отображения f:XY, когда для любых xÎX и yÎY определена двуместная функция принадлежности mf(x,y), образом нечеткого множества А, заданного на Х, является нечеткое множество f(A) на Y с функцией принадлежности:
mf(A)(y) = min(mA(x), mf(x,y)).
Замечание. Мы не приводим примеров использования принципа обобщения. Предлагаем подумать, каким образом можно определить нечеткое число и как с помощью принципа обобщения (не забывая декартова произведения) и классических операций возведения числа в степень(одноместная), сложения и умножения (двуместные) получать соответствующие нечеткие результаты. К нечетким отображениям мы вернемся, когда будем рассматривать понятие нечеткого отношения.
Пусть Е = Е1´Е2´ ...´Еn - прямое произведение универсальных множеств и М - некоторое множество принадлежностей (например М = [0,1]). Нечеткое n-арное отношение определяется как нечеткое подмножество R на E, принимающее свои значения в М. В случае n=2 и М = [0,1], нечетким отношением R между множествами X = Е1 и Y = Е2 будет называться функция R:(X,Y)® [0,1], которая ставит в соответствие каждой паре элементов (х,y)ÎX´Y величину mR(x,y) Î[0,1]. Обозначение: нечеткое отношение на X´Y запишется в виде: xÎX, yÎY: xRy. В случае, когда X = Y, т.е. X и Y совпадают, нечеткое отношение R: X´X®[0,1] называется нечетким отношением на множестве X.
Примеры:
Пусть X = {x1,x2,x3}, Y = {y1,y2,y3,y4}, М = [0,1]. Нечеткое отношение R=XRY может быть задано, к примеру, таблицей:
|
y1 |
y2 |
y3 |
y4 |
x1 |
0 |
0 |
0,1 |
0,3 |
x2 |
0 |
0,8 |
1 |
0,7 |
x3 |
1 |
0,5 |
0,6 |
1 |
Пусть X = Y = (-, ), т.е. множество всех действительных чисел. Отношение x>>y (x много больше y) можно задаеть функцией принадлежности:
Отношение R, для которого mR(x,y) = e-k(x-y)2, при достаточно больших k можно интерпретировать так: "x и y близкие друг к другу числа".
В случае конечных или счетных универсальных множеств очевидна интерпретация нечеткого отношения в виде нечеткого графа, в котором пара вершин (xi,xj) в случае XRX соединяется ребром с весом mR(xi,xj), в случае XRY пара вершин (xi,yj) соединяется ребром c весом mR(xi,yj).
Примеры:
Пусть Х={x1,x2,x3}, и задано нечеткое отношение R: X´X® [0,1], представимое графом:
Пусть X={x1,x2} и Y={y1,y2,y3}, тогда нечеткий граф вида:
задает нечеткое отношение XRY.
Замечание. В общем случае нечеткий граф может быть определен на некотором GÌX´Y, где G - множество упорядоченных пар (x,y) (необязательно всех возможных) такое, что GÇ = Æ и GÈ = X´Y.
Будем использовать обозначения вместо и вместо .
Пусть R: X´Y®[0,1].
Носитель нечеткого отношения.
Носителем нечеткого отношения R называется обычное множество упорядоченных пар (x,y), для которых функция принадлежности положительна:
S(R)={(x,y): mR(x,y)>0}.
Нечеткое отношение содержащее данное нечеткое отношение, или содержащееся в нем.
Пусть R1 и R2 - два нечетких отношения такие, что:
"(x,y)ÎX´ Y: mR1(x,y)£mR2(x,y),
тогда говорят, что R2 содержит R1 или R1 содержится в R2 .
Обозначение: R1ÍR2 .
Пример:
Отношения R1 , R2 - отношения типа y>>x (y много больше x). При k2 > k1 отношение R2 содержит R1 .
Операции над нечеткими отношениями
Объединение двух отношений R1 и R2.
Объединение двух отношений обозначается R1ÈR2 и определяется выражением:
mR1ÈR2(x,y) = mR1(x,y)Ú mR2(x,y)
Примеры:
1. Ниже изображены отношения действительных чисел, содержательно означающие: xR1y - "числа x и y очень близкие", xR2y - "числа x и y очень различны" и их объединение xR1ÈR2y - "числа x и y очень близкие или очень различные".
Функции принадлежности отношений заданы на |y-x|.
mR1ÈR2(x,y) = |
|
mR1(x,y), | y - x | £a mR2(x,y), | y - x | >a |
где a - такое |y-x|, что mR1(x,y) = mR2(x,y)
2.
R1
y1 y2 y3 x1 0,1 0 0,8 x2 1 0,7 0 |
R2
y1 y2 y3 x1 0,7 0,9 1 x2 0,3 0,4 0,5 |
R1ÈR2
y1 y2 y3 x1 0,7 0,9 1 x2 1 0,7 0,5 |
Пересечение двух отношений.
Пересечение двух отношений R1 и R2 обозначается R1ÇR2 и определяется выражением:
mR1ÇR2(x,y) = mR1(x,y)Ù mR2(x,y)
.
Примеры:
1. Ниже изображены отношения: xR1y, означающее "модуль разности |y-x| близок к a", xR2y, означающее "модуль разности |y-x| близок к b", и их пересечение.
Алгебраическое произведение двух отношений.
Алгебраическое произведение двух отношений R1 и R2 обозначается R1×R2 и определяется выражением:
mR1×R2(x,y) = mR1(x,y)× mR2(x,y)
Алгебраическая сумма двух отношений.
Алгебраическая сумма двух отношений R1 и R2 обозначается R1R2 и определяется выражением: .
Для введенных операций справедливы следующие свойства дистрибутивности:
R1Ç(R2ÈR3) = (R1ÇR2 )È(R1ÇR3),
R1È(R2ÇR3) = (R1ÈR2)Ç(R1ÈR3),
R1×(R2ÈR3) = (R1×R2)È(R1×R3),
R1×(R2ÇR3) = (R1×R2)Ç(R1×R3),
R1(R2ÈR3) = (R1R2)È(R1R3),
R1(R2ÇR3) = (R1R2)Ç (R1R3).
Дополнение отношения.
Дополнение отношения R обозначается и определяется функцией принадлежности:
(x,y) = 1 - mR(x,y)
.
Дизъюнктивная сумма двух отношений.
Дизъюнктивная сумма двух отношений R1 и R2 обозначается RÅR и определяется выражением:
R1ÅR2 = (R1Ç2)È(1ÇR2) .
Обычное отношение, ближайшее к нечеткому.
Пусть R - нечеткое отношение с функцией принадлежности mR(x,y). Обычное отношение, ближайшее к нечеткому, обозначается R и определяется выражением:
По договоренности принимают mR(x,y)=0 при mR(x,y) = 0,5.
Проекции нечеткого отношения.
Пусть R - нечеткое отношение R: (x,y)®[0,1]. Первой проекцией отношения R (проекция на X) называется нечеткое множество , заданное на множестве X, с функцией принадлежности:
.
Аналогично, второй проекцией (проекцией на Y) называется нечеткое множество , заданное на множестве Y, с функцией принадлежности:
.
Величина h(R) = называется глобальной проекцией отношения R. Если h(R)=1, то отношение R нормально, в противном случае - субнормально.
Пример:
R = |
y1 y2 y3 y4 y5 x1 0,1 0,2 1 0,3 0,9 x2 0,9 0,1 0,5 0,8 0,5 x3 0,4 0 0,6 1 0,3 |
1-я проекция 1 0,9 1 |
= R1' |
|
|
|
|
|
|
R2' = |
0,9 0,2 1 1 0,9 |
|
1 |
= h(R) |
2-я проекция |
|
Цилиндрические продолжения проекций нечеткого отношения
Проекции R1¢ и R2¢ нечеткого отношения XRY в свою очередь определяют в X´Y нечеткие отношения и с функциями принадлежности:
(x,y)=(x) при любом y, (x,y)=(y) при любом x,
называемые, соответственно, цилиндрическим продолжением R1' и цилиндрическим продолжением R2'.
Замечание. Очевидно, что для любых нечетких подмножеств А и В, определенных, соответственно, на X и Y, можно построить их цилиндрические продолжения А и В.
Пример (продолжение):
Имеем:
R1' = |
x1 1 x2 0,9 x3 1 |
|
= |
y1 y2 y3 y4 y5 x1 1 1 1 1 1 x2 0,9 0,9 0,9 0,9 0,9 x3 1 1 1 1 1 |
и
R2' = |
y1 y2 y3 y4 y5
0,9 0,2 1 1 0,9 |
= |
x1 0,9 0,2 1 1 0,9 x2 0,9 0,2 1 1 0,9 x3 0,9 0,2 1 1 0,9 |
Сепарабельность отношений
Нечеткое отношение XRY называется сепарабeльным, если оно равно пересечению цилиндрических продолжений своих проекций, т.е. если R = Ç , т.е. mR (x,y) = (x)Ç (y).
Замечание. Если определено декартово произведение нечетких множеств (выше оно введено), то, очевидно, нечеткое отношение XRY сепарабельно, если оно является декартовым произведением своих проекций, т.е. R = R1'´R2'.
Пример (продолжение):
Ç = |
y1 y2 y3 y4 y5 x1 0,9 0,2 1 1 0,9 x2 0,9 0,2 0,9 0,9 0,9 x3 0,9 0,2 1 1 0,9 |
¹ R, |
т.е. исходное отношение R несепарабельно.
Композиция двух нечетких отношений
Композиция двух нечетких отношений
Пусть R1 - нечеткое отношение R1: (X´ Y)®[0,1] между X и Y, и R2 - нечеткое отношение R2: (Y´Z)® [0,1] между Y и Z. Нечеткое отношение между X и Z, обозначаемое R2·R1, определенное через R1 и R2 выражением
mR1·R2 (x,z) = [mR1 (x,y)LmR1(y,z)],
называется (max-min)-композицией отношений R1 и R2.
Примеры:
R1
y1 y2 y3 x1 0,1 0,7 0,4 x2 1 0,5 0 |
R2
z1 z2 z3 z4 y1 0,9 0 1 0,2 y2 0,3 0,6 0 0,9 y3 0,1 1 0 0,5 |
R2·R1
z1 z2 z3 z4 x1 0,3 0,6 0,1 0,7 x2 0,9 0,5 1 0,5 |
mR1·R2(x1, z1) = [mR1(x1, y1) L mR2 (y1, z1)] V [mR1(x1, y2) L mR2(y2, z1)] V [mR1(x1, y3) L mR2(y3, z1)] =
= (0,1L0,9)V(0,7L0,3)V(0,4L0,1) = 0,1V0,3V0,1 = 0,3
mR1·R2(x1,z2) = (0,1L0)V(0,7L0,6)V(0,4L 1) = 0V0,6V0,4 = 0,6
mR1·R2(x1,z3) = 0,1
...................
...................
mR1·R2(x2,z5) = 0,5
Замечание. В данном примере вначале использован "аналитический" способ композиции отношений R1 и R2 , т.е. i-я строка R1 "умножается" на j-й столбец R2 с использованием операции L, полученный результат "свертывается" с использованием операции V в m (xi,zj).
Ниже приведены графы, соответствующие R1 и R2, "склеенные" по Y. В полученном графе рассматриваем пути от xi к zj и каждому ставим в соответствие минимальный из "весов" его составляющих. Затем определяем максимум по всем путям из xi в zj, который и дает искомое m(xi,zj).
Свойства max-min композиции
Операция (max-min)-композиции ассоциативна, т.е.
R3·(R2·R1) = (R3·R2 )·R1,
дистрибутивна относительно объединения, но недистрибутивна относительно пересечения:
R3·(R2È R1) = (R3·R2)È (R3·R1),
R3·(R2Ç R1)¹(R3· R2)Ç(R3· R1).
Кроме того, для (max-min)-композиции выполняется следующее важное свойство: если R1ÌR2 то, R·R1 ÌR·R2.
(max-*) - композиция
В выражении mR1·R2(x, z) = [mR1(x, y)LmR2(y, z)] для (max-min)-композиции отношений R1 и R2 операцию L можно заменить любой другой, для которой выполняются те же ограничения, что и для L: ассоциативность и монотонность (в смысле неубывания) по каждому аргументу. Тогда:
mR1·R2(x, z) = [mR1(x, y)*mR1(y, z)]
В частности, операция L может быть заменена алгебраическим умножением, тогда говорят о (max - prod)-композиции.
Обычное подмножество a - уровня нечеткого отношения
Обычным подмножеством a - уровня нечеткого отношения R называется четкое (обычное) отношение Ra такое, что
mR1(x,y) =
Очевидно, что из a1£ a2 следует Ra1 ³ Ra2.
Теорема декомпозиции
Любое нечеткое отношение R представимо в форме:
R = a×Ra, 0<a£1,
где a×Ra означает, что все элементы Ra умножаются на a.
Условные нечеткие подмножества.
Пусть X и Y - универсальные множества, взаимосвязь которых задана нечетким отношением R: (X´Y)®[0,1], т.е. для каждой пары (x,y)ÎX´Y задано значение функции принадлежности mR(x,y)Î[0,1].
Пусть А - некоторое нечеткое множество, заданное на Х, т.е. определена функция принадлежности mA(x) для всех х из Х. Тогда нечеткое множество А и нечеткое отношение R индуцируют в Y нечеткое подмножество B с функцией принадлежности
mB(y) = min[mA(x), m R(x,y)] = [m A(x)L mR(x,y)].
Обозначение: B = A·R.
Пример:
Пусть X = {x1, x2, x3}, Y = {y1, y2, y3, y4} и заданы нечеткое отношение
XRY = |
|
y1 |
y2 |
y3 |
y4 |
x1 |
0,8 |
1 |
0 |
0,3 |
|
x2 |
0,8 |
0,3 |
0,8 |
0,2 |
|
x3 |
0,2 |
0,3 |
0 |
0,4 |
и нечеткое множество A = {0,3/x1,0,7/x2,1/x3}.
Проведем операцию L для А и столбца y1 :
x1 x2 x3 0,3 0,7 1 |
L |
y1 0,8 0,8 0,2 |
= |
y1 0,3L0,8 0,7L0,8 1L0,2 |
= |
y1 0,3 0,7 0,2 |
После выполнения операции V на элементах полученного столбца имеем:
mB(y1) = 0,3V0,7V0,2 = 0,7.
Проделав аналогичные вычисления для y2, y3, y4 имеем:
mB(y2) = 0,3
mB(y3) = 0,7
mB(y4) = 0,4.
И окончательно:
A |
R |
B |
||
0,3 0,7 1 |
· |
0,8 1 0 0,3 0,8 0,3 0,8 0,2 0,2 0,3 0 0,4 |
= |
0,7 0,3 0,7 0,4 |
Замечание. При заданном R, если А индуцирует В, то ближайшее четкое подмножество А индуцирует В.
Нечеткие подмножества последовательно обуславливающие друг друга
Если
А1 индуцирует А2 посредством R1,
А2 индуцирует А3 посредством R2,
.............................................
Аn-1 индуцирует Аn посредством Rn-1,
то
А1 индуцирует Аn посредством Rn-1·Rn-2· ...·R1,
где Rn-1·Rn-2· ...·R1 - определенная выше композиция нечетких отношений R1, R2, ..., Rn.
Пример:
Вернемся к примеру (max-min)-композиции.
R1 |
· |
R2 |
= |
R1·R2 |
y1 y2 y3 x1 0,1 0,7 0,4 x2 1 0,5 0 |
z1 z2 z3 z4 y1 0,9 0 1 0,2 y2 0,3 0,6 0 0,9 y3 0,1 1 0 0,5 |
z1 z2 z3 z4 x1 0,3 0,6 0,1 0,7 x2 0,9 0,5 1 0,5 |
Пусть А={0,3/x1, 0,7/x2 }, тогда
А1 |
|
R1 |
|
А2 |
0,3 0,7 |
· |
0,1 0,7 0,4 1 0,5 0 |
= |
0,7 0,5 0,3 |
А2 |
|
R2 |
|
А3 |
0,7 0,5 0,3 |
· |
0,9 0 1 0,2 0,3 0,6 0 0,9 0,1 1 0 0,5 |
= |
0,7 0,5 0,7 0,5 |
А1 |
|
R1·R2 |
|
А3 |
0,3 0,7 |
· |
0,3 0,6 0,1 0,7 0,9 0,5 1 0,5 |
= |
0,7 0,5 0,7 0,5 |
Немного о бинарных отношениях вида XRX
Нечеткие отношения вида XRX задаются функцией принадлежности m R(x,y), но с условием, что x и y - элементы одного и того же универсального множества. В зависимости от своих свойств (основные - симметричность, рефлексивность, транзитивность) конкретные нечеткие отношения задают отношения сходства и различия, порядка или слабого порядка между элементами Х. Они имеют обширную сферу приложений в задачах автоматической классификации и принятия решений (сравнение альтернатив).
Понятие нечеткой и лингвистической переменных используется при описании объектов и явлений с помощью нечетких множеств.
Нечеткая переменная характеризуется тройкой <a, X, A>, где
a - наименование переменной,
X - универсальное множество (область определения a),
A - нечеткое множество на X, описывающее ограничения (т.е. m A(x)) на значения нечеткой переменной a.
Лингвистической переменной называется набор <b ,T,X,G,M>, где
b - наименование лингвистической переменной;
Т - множество ее значений (терм-множество), представляющих собой наименования нечетких переменных, областью определения каждой из которых является множество X. Множество T называется базовым терм-множеством лингвистической переменной;
G - синтаксическая процедура, позволяющая оперировать элементами терм-множества T, в частности, генерировать новые термы (значения). Множество TÈ G(T), где G(T) - множество сгенерированных термов, называется расширенным терм-множеством лингвистической переменной;
М - семантическая процедура, позволяющая превратить каждое новое значение лингвистической переменной, образуемое процедурой G, в нечеткую переменную, т.е. сформировать соответствующее нечеткое множество.
Замечание. Чтобы избежать большого количества символов
символ b используют как для названия самой переменной, так и для всех ее значений;
пользуются одним и тем же символом для обозначения нечеткого множества и его названия, например терм "молодой", являющийся значением лингвистической переменной b = "возраст", одновременно есть и нечеткое множество М ("молодой").
Присвоение нескольких значений символам предполагает, что контекст позволяет разрешить возможные неопределенности.
Пример: Пусть эксперт определяет толщину выпускаемого изделия с помощью понятий "малая толщина", "средняя толщина" и "большая толщина", при этом минимальная толщина равна 10 мм, а максимальная - 80 мм.
Формализация такого описания может быть проведена с помощью следующей лингвистической переменной <b, T, X, G, M>, где
b - толщина изделия;
T - {"малая толщина", "средняя толщина", "большая толщина"};
X - [10, 80];
G - процедура образования новых термов с помощью связок "и", "или" и модификаторов типа "очень", "не", "слегка" и др. Например: "малая или средняя толщина", "очень малая толщина" и др.;
М - процедура задания на X = [10, 80] нечетких подмножеств А1="малая толщина", А2 = "средняя толщина", А3="большая толщина", а также нечетких множеств для термов из G(T) в соответствии с правилами трансляции нечетких связок и модификаторов "и", "или", "не", "очень", "слегка" и др. операции над нечеткими множествами вида: А Ç В, АÈ В, , CON А = А2 , DIL А = А0,5 и др.
Замечание. Наряду с рассмотренными выше базовыми значениями лингвистической переменной "толщина" (Т={"малая толщина", "средняя толщина", "большая толщина"}) возможны значения, зависящие от области определения Х. В данном случае значения лингвистической переменной "толщина изделия" могут быть определены как "около 20 мм", "около 50 мм", "около 70 мм", т.е. в виде нечетких чисел.
Продолжение примера:
Функции принадлежности нечетких множеств:
"малая толщина" = А1 , "средняя толщина"= А2, " большая толщина"= А3 .
Функция принадлежности:
нечеткое множество "малая или средняя толщина" = А1ÈА1.
Нечеткие числа
Нечеткие числа - нечеткие переменные, определенные на числовой оси, т.е. нечеткое число определяется как нечеткое множество А на множестве действительных чисел R с функцией принадлежности mA(x)Î[0,1], где x - действительное число, т.е. xÎR.
Нечеткое число А нормально, если mA(x)=1, выпуклое, если для любых x£y£z выполняется
mA(x)³mA(y)LmA(z).
Множество a - уровня нечеткого числа А определяется как
Аa = {x/m A(x)³a}.
Подмножество SAÌR называется носителем нечеткого числа А, если
S = {x/mA(x)>0}.
Нечеткое число А унимодально, если условие mA(x) = 1 справедливо только для одной точки действительной оси.
Выпуклое нечеткое число А называется нечетким нулем, если
mA(0) = (mA(x)).
Нечеткое число А положительно, если "xÎSA, x>0
и отрицательно, если "xÎSA, x<0.
Операции над нечеткими числами
Расширенные бинарные арифметические операции (сложение, умножение и пр.) для нечетких чисел определяются через соответствующие операции для четких чисел с использованием принципа обобщения следующим образом.
Пусть А и В - нечеткие числа, и - нечеткая операция, соответствующая операции над обычными числами. Тогда
С = АB ÛmC(z)=(mA(x)LmB(y))).
Отсюда:
С = ÛmC(z)=(mA(x)LmB(y))),
С = Û mC(z)=(mA(x)LmB(y))),
С = Û mC(z)=(mA(x)L mB(y))),
С = Û mC(z)=(mA(x)LmB(y))),
С = Û mC(z)=(mA(x)LmB(y))),
С = Û mC(z)=(mA(x)LmB(y))).
Нечеткие числа (L-R)-типа
Нечеткие числа (L-R)-типа - это разновидность нечетких чисел специального вида, т.е. задаваемых по определенным правилам с целью снижения объема вычислений при операциях над ними.
Функции принадлежности нечетких чисел (L-R)-типа задаются с помощью невозрастающих на множестве неотрицательных действительных чисел функций действительного переменного L(x) и R(x), удовлетворяющих свойствам:
а) L(-x)=L(x), R(-x)=R(x);
б) L(0)=R(0).
Очевидно, что к классу (L-R) функций относятся функции, графики которых имеют следующий вид:
Примерами аналитического задания (L-R) функций могут быть
L(x) = , p³0;
R(x)= , p³ 0 и т.д.
Пусть L(y) и R(y) - функции (L-R)-типа (конкретные). Унимодальное нечеткое число А с модой а (т.е. mA(a)=1) c помощью L(y) и R(y) задается следующим образом:
mA(x) =
где а - мода; a>0, b>0 - левый и правый коэффициенты нечеткости.
Таким образом, при заданных L(y) и R(y) нечеткое число (унимодальное) задается тройкой А = (а, a, b).
Толерантное нечеткое число задается, соответственно, четверкой параметров А=(а1, a2, a, b), где а1 и a2 - границы толерантности, т.е. в промежутке [а1,a2] значение функции принадлежности равно 1.
Примеры графиков функций принадлежности нечетких чисел (L-R)-типа приведены ниже.
Мы не будем здесь рассматривать операции над (L-R) числами; отметим, что в конкретных ситуациях функции L(y), R(y), а также параметры a, b нечетких чисел (а, a, b) и (а1, a2, a, b ) должны подбираться таким образом, чтобы результат операции (сложения, вычитания, деления и т.д.) был точно или приблизительно равен нечеткому числу с теми же L(y) и R(y), а параметры a¢ и b¢ результата не выходили за рамки ограничений на эти параметры для исходных нечетких чисел, особенно если результат в дальнейшем будет участвовать в операциях.
Замечание. Решение задач математического моделирования сложных систем с применением аппарата нечетких множеств требует выполнения большого объема операций над разного рода лингвистическими и другими нечеткими переменными. Для удобства исполнения операций, а также для ввода-вывода и хранения данных, желательно работать с функциями принадлежности стандартного вида.
Нечеткие множества, которыми приходится оперировать в большинстве задач, являются, как правило, унимодальными и нормальными. Одним из возможных методов аппроксимации унимодальных нечетких множеств является аппроксимация с помощью функций (L-R)-типа.
Примеры (L-R)-представлений некоторых лингвистических переменных:
Терм ЛП |
(L-R)-представление |
Графическое представление |
Средний |
А = (а, a, b)LR a = b>0 |
a b |
Малый |
А = (а, ¥, b)LR a = ¥ |
a = ¥ b |
Большой |
А = (а, a, ¥)LR b=¥ |
a b = ¥ |
Приблизительно в диапазоне |
А = (а1, а2, a, ¥)LR a = b>0 |
a b a1 a2 |
Определенный |
А = (а, 0, 0)LR a = b = 0 |
a = 0 b = 0 |
Разнообразный зона полной неопределенности |
А = (а, ¥, ¥)LR a = b = ¥ |
a = b = ¥ |
Нечеткими высказываниями будем называть высказывания следующего вида:
Высказывание <b есть b'>, где b - наименование лингвистической переменной, b' - ее значение, которому соответствует нечеткое множество на универсальном множестве Х.
Например высказывание <давление большое> предполагает, что лингвистической переменной "давление" придается значение "большое", для которого на универсальном множестве Х переменной "давление" определено соответствующее данному значению "большое" нечеткое множество.
Высказывание <b есть mb'>, где m - модификатор, которому соответствуют слова "ОЧЕНЬ", "БОЛЕЕ ИЛИ МЕНЕЕ", "МНОГО БОЛЬШЕ" и др.
Например: <давление очень большое>, <скорость много больше средней> и др.
Составные высказывания, образованные из высказываний видов 1. и 2. и союзов "И", "ИЛИ", "ЕСЛИ.., ТО...", "ЕСЛИ.., ТО.., ИНАЧЕ".
Высказывания на множестве значений фиксированной лингвистической переменной
То, что значения фиксированной лингвистической переменной соответствуют нечетким множествам одного и того же универсального множества Х, позволяет отождествлять модификаторы "очень" или "не" с операциями "CON" и "дополнение", а союзы "И", "ИЛИ" с операциями "пересечение" и "объединение" над нечеткими множествами .
Для иллюстрации понятия лингвистической переменной мы в качестве примера рассматривали лингвистическую переменную "толщина изделия" с базовым терм-множеством Т = {"малая", "средняя", "большая"}. При этом на Х = [10, 80] мы определили нечеткие множества А1, А2, А3, соответствующие базовым значениям: "малая", "средняя", "большая".
В этом случае высказыванию <толщина изделия очень малая> соответствует нечеткое множество CONA = A2; высказыванию <толщина изделия не большая или средняя> - нечеткое множество А2È высказыванию <толщина изделия не малая и не большая> А1Ç.
Высказывания <толщина изделия много больше средней> или <толщина изделия близка к средней> требуют использования нечетких отношений R ("много больше,чем") и R ("близко к"), заданных на Х´Х. Тогда этим высказываниям будут соответствовать нечеткие множества A·R1 и A·R2, индуцированные нечеткими отношениями R1 и R2.
Случай двух и более лингвистических переменных
Пусть <a, Ta, X, Ga, Ma> и <b, Tb, Y, Gb, Mb> - лингвистические переменные, и высказываниям <a есть a'>, <b есть b '> соответствуют нечеткие множества А и В заданные на X и Y.
Составные нечеткие высказывания вида 3, связывающие значения лингвистических переменных a и b, можно привести к высказываниям вида 1, введя лингвистическую переменную (a, b), значениям которой будут соответствовать нечеткие множества на X´Y.
Напомним, что нечеткие множества А и В, заданные на X и Y, порождают на X´Y нечеткие множества и , называемые цилиндрическими продолжениями, с функциями принадлежности:
(x,y) = mA(x) при любом y,
(x,y) = mB(y) при любом x,
где (x,y) X´Y.
Нечеткие множества, соответствующие составным высказываниям
<a есть a' и b есть b'> и
<a есть a' или b есть b'>,
определяются по следующим правилам (преобразования к виду 1), справедливым при условии невзаимодействия переменных, т.е. множества X и Y таковы, что их элементы не связаны какой-либо функциональной зависимостью.
Правила преобразований нечетких высказываний
Правило преобразования конъюнктивной формы
Справедливо выражение:
<a есть a' и b есть b'>Þ<(a, b) есть (a'Çb')>.
Здесь Þ - знак подстановки, a'Çb' - значение лингвистической переменной (a, b), соответствующее исходному высказыванию <a есть a' и b есть b'>, которому на X´Y ставится в соответствие нечеткое множество Ç c функцией принадлежности
(x,y) = (x,y)L(x,y) = mA(x)LmB(y).
Правило преобразования дизъюнктивной формы
Справедливо выражение:
<a есть a' или b есть b'>Þ<(a,b) есть (a'Èb')>, где значению (a'Èb') лингвистической переменной (a, b) соответствует нечеткое множество È, с функцией принадлежности
(x,y) = (x,y)V(x,y) = mA(x)VmB(y).
Замечание 1. Правила справедливы также для переменных вида <a, T1, X, G1,M1> и <a, T2, Y, G2, M2>, когда в форме значений лингвистических переменных формализованы невзаимодействующие характеристики одного и того же объекта. Например, для построения нечеткого множества высказывания <ночь теплая и очень темная> нужно использовать правило конъюнктивной формы, а для высказывания <ночь теплая или очень темная> - правило дизъюнктивной формы.
Замечание 2. Если задана совокупность лингвистических переменных {<ai, Ti, Xi, Gi, Mi>}, i = 1, 2, .., n, то любое составное высказывание, полученное из высказываний <a есть a'> с использованием модификаторов "очень", "не", "более или менее" и др. и связок "и", "или", можно привести к виду <a есть a'>, где a - составная лингвистическая переменная (a1,a2,..,an ), a' - ее значение, определяемое (как и функция принадлежности) в соответствии с вышеуказанными правилами.
Правило преобразования высказываний импликативной формы
Справедливо выражение:
<если a есть a', то b есть b'>Þ <(a, b) есть (a'®b')>, где значению (a'®b') лингвистической переменной (a, b) соответствует нечеткое отношение XRY на X´Y.
Функция принадлежности mR(x,y) зависит от выбранного способа задания нечеткой импликации.
Способы определения нечеткой импликации
Будем считать, что заданы универсальные множества X и Y, содержащие конечное число элементов. Под способом определения нечеткой импликации "если А, то В" (где А и В нечеткие множества на X и Y соответственно) будем понимать способ задания нечеткого отношения R на X´Y, соответствующего данному высказыванию.
С целью обоснованного выбора определения нечеткой импликации, японскими математиками Мидзумото, Танака и Фуками было проведено исследование всех известных по литературе определений (плюс предложенные авторами). Рассмотренные определения задавали следующие нечеткие отношения для высказывания "если А, то В":
Rm = (A´B)È(´Y)
mRm(x,y) = (mA(x)L mB(y)) V (1 - mA(x));
Ra = (´Y)Å(X´B)
mRa(x,y) = 1 L (1-mA(x) + mB(y));
Rc = A´B
mRc(x,y) = mA(x)L mB(y);
Rs = A´YX´B
mRs(x,y) = ;
Rg = A´YX´B
mRg(x,y) = ;
Rsg = ( A´YX´B ) Ç ( )
;
Rgg = ( A´YX´B) Ç ()
;
Rgs = ( A´YX´B) Ç ()
;
Rss = ( A´YX´B) Ç ()
;
Rb = (´Y)È(X´B)
mRb(x,y) = (1-mA(x)) Ú mB(y);
Rà = A´YX´B
;
R· = A´YX´B
R* = A´YX´B
mR*(x,y) = 1 - mA(x)+ mA(x)× mB(y);
R# = A´YX´B
mR#(x,y)=( mA(x)Ù mB(y))Ú ((1 - mA(x)) Ù(1 - mB(y)) Ú(mB(y) Ù(1 - mA (x));
RÑ = A´YX´B
Правилом вывода являлось композиционное правило вывода с использованием (max-min)-композиции.
В качестве значений на входе системы рассматривались:
A' = A;
A' = "очень А"= А2 , mA0,5(x) = mA(x)2 ;
A' = "более или менее А" = А0,5 mA0,5(x)= mA(x)0,5;
A' = mA(x)0,5, (x) = 1 - mA (x).
Приведем таблицу итогов исследования. В ней символ "0" означает выполнение соответствующей схемы вход-выход, символ "x" - невыполнение. Следствие "неизвестно" (Н) соответствует утверждению: "если x=A, то нельзя получить никакой информации об y".
В данной таблице первая графа -"Посылка", вторая -"Следствие".
1 |
2 |
Rm |
Ra |
Rc |
Rs |
Rg |
Rsg |
Rgg |
Rgs |
Rss |
Rb |
Rà |
R· |
R* |
R# |
RÑ |
A |
B |
x |
x |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
x |
x |
x |
x |
x |
x |
A2 |
B2 |
x |
x |
x |
0 |
x |
0 |
x |
x |
0 |
x |
x |
x |
x |
x |
x |
A2 |
B |
x |
x |
0 |
x |
0 |
x |
0 |
0 |
x |
x |
x |
x |
x |
x |
x |
A0,5 |
B0,5 |
x |
x |
x |
0 |
0 |
0 |
0 |
0 |
0 |
x |
x |
x |
x |
x |
x |
A0,5 |
B |
x |
x |
0 |
x |
x |
x |
x |
x |
x |
x |
x |
x |
x |
x |
x |
Н |
0 |
0 |
x |
0 |
0 |
x |
x |
x |
x |
0 |
0 |
0 |
0 |
x |
x |
|
A |
B |
x |
x |
x |
x |
x |
0 |
0 |
0 |
0 |
x |
x |
x |
x |
x |
x |
Кроме ответа о выполнении соответствующей схемы (0 или х),авторами исследованы явные выражения для функций принадлежности следствий по каждому из вариантов определения нечеткой импликации, на основе чего ими был сформулирован вывод:
- Rm и Ra не могут быть использованы;
- Rc может использоваться частично; - Rs , Rg , Rsg , Rgg , Rgs , Rss рекомендованы к использованию;
- Rb , Rà, R·, R* , R# , RÑ не рекомендованы к использованию.
Логико-лингвистическое описание систем, нечеткие модели.
Логико-лингвистические методы описания систем основаны на том, что поведение исследуемой системы описывается на естественном (или близком к естественному) языке в терминах лингвистических переменных.
Входные и выходные параметры системы рассматриваются как лингвистические переменные, а качественное описание процесса задается совокупностью высказываний следующего вида:
L1 : если <A1 > то <B1 >,
L2 : если <A2 > то <B2 >,
....................
Lk : если <Ak > то <Bk >,
где <Ai>, i=1,2,..,k - составные нечеткие высказывания, определенные на значениях входных лингвистических переменных, а <Bi>, i = 1,2,..,k - высказывания, определенные на значениях выходных лингвистических переменных.
С помощью правил преобразования дизъюнктивной и конъюнктивной формы описание системы можно привести к виду:
L1 : если <A1 > то <B1 >,
L2 : если <A2 > то <B2 >,
....................
Lk : если <Ak > то <Bk >,
где A1,A2,..,Ak - нечеткие множества, заданные на декартовом произведении X универсальных множеств входных лингвистических переменных, а B1, B2, .., Bk - нечеткие множества, заданные на декартовом произведении Y универсальных множеств выходных лингвистических переменных.
Совокупность импликаций {L1, L2, ..., Lk} отражает функциональную взаимосвязь входных и выходных переменных и является основой построения нечеткого отношения XRY, заданного на произведении X´Y универсальных множеств входных и выходных переменных. Если на множестве X задано нечеткое множество A, то композиционное правило вывода B = A·R определяет на Y нечеткое множество B с функцией принадлежности
mB(y) =(mA(x) LmR(x,y))
Таким образом, композиционное правило вывода в этом случае задает закон функционирования нечеткой модели системы.
Рассмотрим широко цитируемый пример решения задачи нечеткого логического управления: построение модели управления паровым котлом.
Модель управления паровым котлом
Прототипом модели послужил паровой двигатель (лабораторный) с двумя входами (подача тепла, открытие дросселя) и двумя выходами (давление в котле, скорость двигателя).
Цель управления: поддержание заданного давления в котле (зависит от подачи тепла) и заданной скорости двигателя (зависит от открытия дросселя). В соответствии с этим, схема системы управления двигателем выглядит следующим образом:
Рассмотрим одну часть задачи - управление давлением.
Входные лингвистические переменные:
РЕ - отклонение давления (разность между текущим и заданным значениями);
СРЕ - скорость изменения отклонения давления.
Выходная лингвистическая переменная:
НС - изменение количества тепла.
Значения лингвистических переменных:
NB - отрицательное большое;
NM- отрицательное среднее;
NS- отрицательное малое;
NO- отрицательное близкое к нулю;
ZO- близкое к нулю;
PO - положительное близкое к нулю;
PS - положительное малое;
PM - положительное среднее;
PB - положительное большое.
Управляющие правила (15 правил), связывающие лингвистические значения входных и выходных переменных, имеют вид: "Если отклонение давления = Аi и, если скорость отклонения давления = Вi , то изменение количества подаваемого тепла равно Сi", где Аi, Вi ,Сi - перечисленные выше лингвистические значения.
Полный набор правил задавался таблицей:
╬ |
Отклонение давления РЕ |
Скорость изменения отклонения давления СРЕ |
Изменение количества подаваемого тепла НС |
1 |
NB |
NB или NM |
PB |
2 |
NB или NM |
NS |
PM |
3 |
NS |
PS или NO |
PM |
4 |
NO |
PB или PM |
PM |
5 |
NO |
NB или NM |
NM |
6 |
PO или ZO |
NO |
NO |
7 |
PO |
NB или NM |
PM |
8 |
PO |
PB или PM |
NM |
9 |
PS |
PS или NO |
NM |
10 |
PB или PM |
NS |
NM |
11 |
PB |
NB или NM |
NB |
12 |
NO |
PS |
PS |
13 |
NO |
NS |
NS |
14 |
PO |
PS |
PS |
15 |
PO |
PS |
NS |
Лингвистические значения отклонений задавались нечеткими подмножествами на шкалах X, Y, Z следующей таблицей:
|
-6 |
-5 |
-4 |
-3 |
-2 |
-1 |
0 |
+1 |
+2 |
+3 |
+4 |
+5 |
+6 |
PB |
|
|
|
|
|
|
|
|
|
|
0,3 |
0,7 |
1 |
PM |
|
|
|
|
|
|
|
|
0,3 |
0,7 |
1 |
0,7 |
0,3 |
PS |
|
|
|
|
|
|
0,3 |
0,7 |
1 |
0,7 |
0,3 |
|
|
PO |
|
|
|
|
|
0,3 |
1 |
0,7 |
0,3 |
|
|
|
|
NO |
|
|
|
|
0,3 |
0,7 |
1 |
0,3 |
|
|
|
|
|
NS |
|
|
0,3 |
0,7 |
1 |
0,7 |
0,3 |
|
|
|
|
|
|
NM |
0,3 |
0,7 |
1 |
0,7 |
0,3 |
|
|
|
|
|
|
|
|
NB |
1 |
0,7 |
0,3 |
|
|
|
|
|
|
|
|
|
|
То есть области значений входных переменных PE, CPE и выходной переменной НС представлялись 13 точками [-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6], равномерно расположенными между максимальными отрицательными и положительными значениями этих переменных.
Приведем управляющие правила к виду: "если (Аi´ Вi ), то Сi", где (Аi´Вi) декартово произведение нечетких множеств А и В , заданных на шкалах X и Y с функцией принадлежности
(x,y)= mAi(x)LmBi(y),
определенной на X´Y.
Для каждого из правил вида "если (Аi´Вi ), то Сi", где (Аi´Вi)- входное нечеткое множество, а Сi - соответствующее нечеткое значение выхода, определялось нечеткое отношение
Ri=(Аi´Вi)´Сi, i = 1, 2, ..., 15
с функцией принадлежности
mRi((x,y),z)= (mAi(x)LmBi(y))LmCi(z).
Совокупности всех правил соответствовало нечеткое отношение
R = Ri
с функцией принадлежности
mR(x,y,z) = mRi((x,y),z).
При заданных значениях А¢, В¢ входных переменных регулирующее значение С¢ входной переменной определялось на основе композиционного правила вывода:
С¢ = (А¢´В¢)R,
где - (max-min)-композиция.
Функция принадлежности С¢ имеет вид:
mC¢(z) = (mA¢(x) L mB¢ (y)) L mR(x,y,z).
Числовое значение z0 (изменение подаваемого тепла) определяется при этом либо из условия mC¢(z0) = mC¢ (z),
либо по формуле
z0 = ,
где N - количество точек в Z (в данном случае N=13).
Задача управления скоростью двигателя решалась аналогично. Результаты практического использования показали, что разработанная нечеткая модель управления сравнима с классическими моделями оптимального управления.
Появление первых работ по построению моделей нечеткого логического управления для конкретных систем определило ряд общих вопросов, касающихся логических основ моделей, в их числе:
о полноте и непротиворечивости совокупности правил управления;
об адекватности представления правил управления вида "если А, то В" нечеткими отношениями, определяемыми разными способами;
о правильности способа вывода, основанного на (max-min)-композиции и возможности использования других видов операции композиции.
Полнота и непротиворечивость правил управления
Наиболее часто требование полноты для системы "если Аi, то Вi", i=1,2,..,n, сводится к
X = Supp Ai,
где Supp Ai - носитель нечеткого множества Ai. Содержательно это означает, что для каждого текущего состояния х процесса существует хотя бы одно управляющее правило, посылка которого имеет ненулевую степень принадлежности для х.
Непротиворечивость системы управляющих правил чаще всего трактуется как отсутствие правил, имеющих сходные посылки и различные или взаимоисключающие следствия.
Степень непротиворечивости i-го и k-го правил можно задавать величиной
Cik = | (mAi(x)L mAk(x)) - (mBi(y)L mBk (y))|.
Суммируя по k, получаем оценку непротиворечивости i-го правила в системе:
Ci = Cik, 1<i<N, k¹i.
Если эта оценка превосходит некоторое пороговое значение, то правило из системы удаляется. В частности, для рассматриваемой выше модели управляющей системы парового котла, оценки степеней непротиворечивости равны:
╬ правила |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
Ci |
2,4 |
3,4 |
4,2 |
3,8 |
4,2 |
1,8 |
4,5 |
3,5 |
4,0 |
3,9 |
1,7 |
3,3 |
4,1 |
3,7 |
3,3 |
Таким образом, при пороговом значении g=3 в модели остается всего три правила 1, 6 и 11.
Заде Л.А. Понятие лингвистической переменной и его применение к принятию приближенных решений. М.:Мир, 1976.
Кофман А. Введение в теорию нечетких множеств. М.: Радио и связь, 1982.
Нечеткие множества в моделях управления и искусственного интеллекта /Под ред. Д.А. Поспелова. М., 1986.
Прикладные нечеткие системы /Под ред. Тэтано Т., Асаи К., Сугэно М: Мир, 1993.
Нечеткие множества и теория возможностей. Последние достижения / Под ред. Р.Ягера М.: Радио и связь, 1986.
Орловский С.А. Проблемы принятия решений при нечеткой исходной информации. М.: Наука, 1981.
Борисов А.Н., Крумберг О.А., Федоров И.П. Принятие решений на основе нечетких моделей. Примеры использования. Рига:/ "Зинатне", 1990.
Малышев Н.Г., Берштейн Л.С., Боженюк А.В. Нечеткие модели для экспертных систем в САПР. М.: Энергоатомиздат, 1991.
Мелихов А.Н., Бернштейн Л.С., Коровин С.Я. Ситуационные советующие системы с нечеткой логикой. М.: Наука, 1990.
Р.Беллман, Л.Заде. Вопросы принятия решений в расплывчатых условиях // Вопросы анализа и процедуры принятия решений. / М.: Мир,1976.