Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Реферат на тему- Генетическая инженерия и создание с помощью ее методов продуцентов новых лекарственных в

Работа добавлена на сайт samzan.net: 2015-07-10

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.5.2024

Государственное бюджетное образовательное учреждение
высшего профессионального образования
«Казанский Государственный Медесынский Университет»
Министерства здравоохранения Российской Федерации
Медико-Фармацевтический колледж

Реферат на тему:

«Генетическая инженерия и создание с помощью ее методов продуцентов новых лекарственных веществ»

Выполнила студентка 1 курса Исламова Динара Гр

Научный руководитель: Ахмеджанова Н.А

                                                                                  

                                                                          Казань 2014


Содержание:

  1. Введение
  2. Генная инженерия
  3. История генной инженерии
  4. Производство лекарственных препаратов
  5. Использования вакцин в генной инженерии
  6. Получение Интерферона
  7. Генная терапия
  8. Получение Инсулина
  9. Получение Соматотропин
  10. Заключение
  11. Ссылки. Литература


Генная инженерия -- это область биотехнологий, включающая в себя действия по перестройке генотипов. Суть генной инженерии сводится к пониманию того, что любой организм, будь то животного или растительного происхождения, имеет множество характерных признаков. К примеру, у растений это цвет коры, листьев, наличие или отсутствие тех или иных витаминов в плодах, структура ствола и так далее. Каждый признак определяется наличием гена.

Ген в переводе с греческого (Genos) означает наследственный фактор. Ген является маленьким отрезком молекулы ДНК и если его убрать, тогда организм потеряет и тот признак, за который отвечает этот ген. Также существует и обратная ситуация, когда в клетку вводится новый для неё ген, и организм приобретает новое качество, ранее ему не присущее. Другими словами, генная инженерия помогает включать или выключать отдельные гены, благодаря чему появляется возможность контролировать деятельность организма, а также позволяет переносить наследственные схемы из другого организма, в том числе организма другого вида.

По мере того, как генетики больше узнают о работе генов и белков, всё более реальной становится возможность программировать генотип, достигая любых результатов: таких, как устойчивость к радиации, способность жить под водой, способность к регенерации повреждённых органов и т.д.

Таким образом, с помощью генной инженерии можно решить многие социальные и экономические проблемы, в том числе проблемы здоровья человека и сельскохозяйственные проблемы, что становится особо актуально в контексте перенаселения планеты и нехватки запасов еды. По крайней мере, так заявляют многие учёные.

Достоинством генетической инженерии в отличие от традиционного метода получения качественного продукта - селекции, является возможность напрямую вмешиваться в генный аппарат и получать заданный результат.

История генной инженерии

Генная инженерия получила жизнь благодаря многим исследованиям в различных отраслях молекулярной генетики, вирусологии, биохимии, микробиологии и клеточной биологии. Ещё в 1865 году Мендель, наблюдая за горохом, вывел законы о наследственности, в которых утверждал, что существуют «единицы информации», передающиеся по наследству из поколения в поколение. В конце 1860-х биолог Фридрих Мишер выделил из перевязочных бинтов, пропитанных гноем вещество, названное им «нуклеин». В 1903 году Уолтером Саттоном было объявлено, что менделевские «единицы информации» находятся в хромосомах. В 1909 году «единицы информации» Вильгельмом Йохансеном были названы генами. В 1944 году, благодаря совместной работе Эйвери, Мак Карти и Мак Леода стало ясно, что ДНК является носителем наследственной информации. В 1953 Уотсон и Крик создали двуспиральную модель ДНК. В этом году официально родилась молекулярная биология. Десятилетием позже, в 60-х были выяснены основные свойства генетического кода, благодаря чему стало возможным подтвердить его универсальность экспериментально. До этого, ещё в 50-х годах были произведены первые клеточные сельскохозяйственные культуры. В это же время были обнаружены плазмиды бактерий. Генная инженерия начала развиваться с 1973 года, когда американские исследователи Стэнли Коэн и Энли Чанг встроили бартериальную плазмиду в ДНК лягушки. Затем эту трансформированную плазмиду вернули в клетку бактерии, которая стала синтезировать белки лягушки, а также передавать лягушачью ДНК своим потомкам. Таким образом был найден метод, позволяющий встраивать чужеродные гены в геном определенного организма.

Сама генная инженерия стала активно развиваться в 1970-е годы, когда биологи смогли выделить фермент транскриптазу, благодаря которой значительно упростилось получение копий единичных генов. В 1973 году Стэнли Коэн, Герберт Бойер и Энни Чанг успешно пересадили ДНК от одного организма к другому. Именно 1973 год принято считать годом рождения генной инженерии.

http://knowledge.allbest.ru/biolog/3c0a65635b2ac78b5d53a89521216c26_0.html

http://otherreferats.allbest.ru/biology/00157990_0.html

Производство лекартсвенных препоратов

Одним из наиболее значимых отраслей в генной инженерии является производство лекарственных препаратов. Современные технологии производства различных лекарств позволяют излечивать тяжелейшие заболевания, или хотя бы замедлять их развитие. Одним из наиболее значимых отраслей в генной инженерии является производство лекарственных препаратов. Современные технологии производства различных лекарств позволяют излечивать тяжелейшие заболевания, или хотя бы замедлять их развитие.  Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств. Микроорганизмы после введения соответствующих генов становятся продуцентами ценных для медицины белков. В биореакторах на специальных питательных средах выращивают бактерии, грибы, дрожжи, продуцирующие антибиотики, ферменты, гормоны, витамины и другие биологически активные соединения. Например, клетки кишечной палочки служат для продуцирования человеческого инсулина. До 1982 г. инсулин получали весьма трудоемким способом обеспечивали только 10 % больных сахарным диабетом - инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100 г кристаллического инсулина требуется 800-1000 кг поджелудочной железы, а одна железа коровы весит 200-250грамм. Было показано, что полученный таким способом инсулин не содержит эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается. Кишечная палочка также производит соматотропин - гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на 1 кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа: 4 - 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. Противовирусный препарат интерферон в организме человека вырабатывается в крайне незначительных количествах. После выявления аминокислотной последовательности интерферона ген был искусственно синтезирован и встроен в вектор, затем вектор ввели в клетки бактерии и получили штамм-продуцент интерферона.

http://biofile.ru/bio/6796.html

Получение интерферона

Впервые интерферон был описан в 1956 году английскими учеными А. Исааком и Е. Линдеманом. Интерфероны (ИФН) - белки, которые синтезируются в разных клетках организма. Их главная функция - защита организма от вирусных инфекций. Кроме того, интерфероны тормозят деление клеток, в том числе опухолевых, влияют на иммунные реакции организма, защищают клетки от радиационного повреждения. По своему действию интерфероны напоминают гормоны. Это вещества с очень высокой активностью. За единицу активности интерферона принято количество интерферона, которое защищает от поражения вирусом 10 млн. клеток. Таким защитным эффектом обладает 1 пикограмм интерферона (10-12г). Способность интерферонов защищать организм от вирусов и тормозить рост опухолей вызывает большой интерес к ним. Интерфероны имеют видовую специфичность, поэтому нельзя использовать интерфероны различного происхождения. В связи с этим интенсивно разрабатывались методы получения человеческого интерферона из клеток культур отдельных тканей человека, а также из микроорганизмов, созданных методами генетической инженерии. В зависимости от клеток-продуцентов интерфероны человека подразделяются на три группы:

1. альфа-интерферон, продуцируемый лейкоцитами человека (лейкоцитарный);

2. бета-интерферон, продуцируемый диплоидными фибробластами (фибробластовый);

3. гамма-интерферон или иммунный интерферон, продуцируемый гамма-лимфоцитами человека.

Первым из этих соединений на рынок поступил альфа-интерферон, затем бета-интерферон.

ИФН подразделяются на два типа. К первому типу, действующему как ингибиторы репликации вируса и оказывающему преимущественно противовирусный эффект, относятся 22 различных подтипа ИФН-б и один подтип ИФН-в. Ко второму типу, проявляющему иммуномодуляторную активность, относятся ИФН-г.

В клетке интерферон начинает синтезироваться в ответ на определенные возбудители. Основным возбудителем синтеза интерферона являются вирусы, мутагены и специфические антигены, которые могут индуцировать синтез интерферона. Производство интерферона в медицинских целях до недавнего времени основывалось на технологии с использованием клеточных культур. В последние годы эти технологии усовершенствованы: применяют новейшие методы концентрирования и очистки белков, достижения генетической инженерии.

Исторически первым методом получения интерферона можно считать метод П. Кантелы, который основан на культивировании лейкоцитов и очистке интерферона. Отделенные от других кровяных элементов лейкоциты помещают в поддерживающую среду. Синтез интерферона индуцируют 16-20 часов при помощи вируса Сендай (линия Кантелы). Индуцирование синтеза интерферона надо начинать не позднее 24 часов после взятия крови. Так как для получения интерферона методом Кантелы требуется много донорской крови, возможности этого метода ограничены. Фибробластовый интерферон получают от культур диплоидных клеток. Максимальный выход интерферона наблюдается при помощи синтетической двунитчатой РНК. Человеческий лимфобластоидный интерферон получен из лимфоидных клеток инфильтрата плевры больных лимфомой Беркита. Для индуцирования синтеза такого интерферона также используется вирус Сендай. Иммунный интерферон синтезируют В- и Т-лимфоциты. Его получают от кратковременных культур Т- и В-лимфоцитов. Выход этого интерферона ниже, чем альфа- и бета-интерферона.

Теперь умеют уже синтезировать гены, и с помощью таких синтезированных генов, введенных в бактерии, получают ряд веществ, в частности гормоны и интерферон. Их производство составило важную отрасль биотехнологии. Теперь умеют уже синтезировать гены, и с помощью таких синтезированных генов, введенных в бактерии, получают ряд веществ, в частности гормоны и интерферон. Их производство составило важную отрасль биотехнологии.

Интерферон – белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое дает всего один литр бактериальной культуры. Ясно, что выигрыш от массового производства этого вещества очень велик. Очень важную роль играет также получаемый на основе микробиологического синтеза инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать и ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, единственное средство лечения редкой детской болезни – гипофизарной карликовости. Интерферон – белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое дает всего один литр бактериальной культуры. Ясно, что выигрыш от массового производства этого вещества очень велик. Очень важную роль играет также получаемый на основе микробиологического синтеза инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать и ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, единственное средство лечения редкой детской болезни – гипофизарной карликовости.

                                   http://revolution.allbest.ru/biology/00279213_0.html 

Генная Терапия

Еще одно перспективное направление в медицине, связанное с рекомбинантной ДНК, – т.н. генная терапия. В этих работах, которые пока еще не вышли из экспериментальной стадии, в организм для борьбы с опухолью вводится сконструированная по методу генной инженерии копия гена, кодирующего мощный противоопухолевый фермент.

Генную терапию начали применять также для борьбы с наследственными нарушениями в иммунной системе. В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока; с помощью генетически измененного вируса создана вакцина против герпеса у свиней.

ешающим условием успешной генотерапии является обеспечение эффективной доставки, то есть трансфекции (в широком смысле) или трансдукции (при использовании вирусных векторов) чужеродного гена в клетки-мишени, обеспечение длительного функционирования его в этих клетках и создание условий для полноценной работы гена (его экспрессии). Трансфекция может проводиться с использованием чистой ("голой" — naked) ДНК, легированной (встроенной) в соответствующую плазмиду, или комплексированной ДНК (плазмидная ДНК, соединенная с солями, белками (трансферрин), органическими полимерами (DEAE-декстран, полилизин, липосомами или частицами золота), или ДНК в составе вирусных частиц, предварительно лишенных способности к репликации.

Основные методы доставки чужеродных генов в клетки разделяются на химические, физические и биологические. Эффективность трансфекции и интеграционная способность трансдуцированной чужеродной ДНК при различных способах трансфекции в ДНК-клетки мишени неодинакова. Только вирусные векторы или генетические конструкции, включающие вирусные последовательности, способны к активной трансдукции, а в некоторых случаях и к длительной экспрессии чужеродных генов. Из более 175 уже одобренных протоколов клинических испытаний по генотерапии более 120 предполагают использовать вирусную трансдукцию и около 100 из них основаны на применении ретровирусных векторов.

Обзор данных позволяет прийти к заключению, что, несмотря на усилия многих лабораторий мира, все уже известные и испытанные in vivo и in vitro векторные системы далеки от совершенства. Если проблема доставки чужеродной ДНК in vitro практически решена, а ее доставка в клетки-мишени разных тканей in vivo успешно решается (главным образом путем создания конструкций, несущих рецепторные белки, в том числе и антигены, специфичные для тех или иных тканей), то другие характеристики существующих векторных систем – стабильность интеграции, регулируемая экспрессия, безопасность – все еще нуждаются в серьезных доработках.

Прежде всего это касается стабильности интеграции. До настоящего времени интеграция в геном достигалась только при использовании ретровирусных либо аденоассоциированных векторов. Повысить эффективность стабильной интеграции можно путем совершенствования генных конструкций типа рецептор-опосредованных систем, либо путем создания достаточно стабильных эписомных векторов (то есть ДНК-структур, способных к длительной персистенции внутри ядер).

Рецептор-опосредованный перенос генов заключается в следующем. ДНК-последовательность нужного гена соединяют с определенным веществом (например, гликопротеином), который обладает высоким сродством к определенному мембранному рецептору трансформируемой клетки (например, гепатоцита). Полученный комплекс соединяют с аденовирусом, обеспечивающим проникновение генной конструкции в ядро клетки. Такой комбинированный вектор обеспечивает эффективную адресную доставку гена в определенные клетки.

http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD%D0%BE%D1%82%D0%B5%D1%80%D0%B0%D0%BF%D0%B8%D1%8F

Получение Инсулина

Препараты инсулина отличаются друг от друга по степени очистки; источнику получения (бычий, свиной, человеческий); веществам, добавляемым к раствору инсулина (удлиняющим его действие, бактериостатикам и т.д.); концентрации; величине рН; возможности смешивания ИКД с ИПД.

Препараты инсулина различаются по источнику получения. Инсулин свиньи и быка отличается от человеческого по аминокислотному составу: бычий - по трем аминокислотам, а свиной - по одной. Неудивительно, что при лечении бычьим инсулином побочные реакции развиваются гораздо чаще, чем при терапии свиным или человеческим инсулином. Эти реакции выражаются в иммунологической инсулинорезистентности, аллергии к инсулину, липодистрофиях (изменении подкожножировой клетчатки в месте инъекции).

Несмотря на явные недостатки бычьего инсулина, он все еще широко используется в мире. И все же недостатки бычьего инсулина в иммунологическом плане очевидны: его ни в коем случае не рекомендуется назначать больным впервые выявленным сахарным диабетом, беременным или для кратковременной инсулинотерапии, например в периоперационном периоде. Отрицательные качества бычьего инсулина сохраняются и при использовании его в смеси со свиным, поэтому смешанные (свиной+бычий) инсулины также не стоит использовать для терапии указанных категорий больных.

Препараты инсулина человека по химической структуре полностью идентичны человеческому инсулину.

Основной проблемой биосинтетическиго метода получения инсулина человека является полная очистка конечного продукта от малейших примесей использованных микроорганизмов и продуктов их жизнедеятельности. Новые методы контроля качества гарантируют, что биосинтетические инсулины человека вышеперечисленных производителей свободны от каких-либо вредных примесей; таким образом, их степень очистки и сахароснижающая эффективность отвечают самым высоким требованиям и являются практически одинаковыми. Каких-либо нежелательных побочных действий, зависящих от примесей, эти препараты инсулина не имеют.

Метод химического синтеза генов обеспечил также возможность получения штаммов бактерий продуцентов инсулина человека, важного лечебного препарата для больных диабетом.

«Ген инсулина синтезировали в виде более сорока в основном шестичленных олигонуклеотидов, которые затем объединяли в единую структуру с помощью ДНК-лигазы. Полученные двухцепочечные полинуклеотиды длиной 271 и 286 пар оснований были встроены в плазмидные векторы. Туда же были встроены и регуляторные участки ДНК, обеспечивающие экспрессию гибридных молекул. Клонированные гены кодировали синтез проинсулина, который путем несложной химической обработки можно превратить в активный инсулин, включающий две полипептидные цепи А и В из 21 и 30 аминокислотных остатков, соединенных между собой сульфгидрильными связями».

http://www.galaxy797.net/htech/nano/6/13.htm

Соматотропин

Одна из важных проблем здоровья человека связана с нарушением работы желез внутренней секреции, приводящим к выраженному замедлению роста детей и появлению так называемых лилипутов, карликов. Это заболевание вызвано недостаточной секрецией гормона роста - соматотропина, который вырабатывается гипофизом (железой, расположенной в нижней части мозга). До середины 1980-х годов эту болезнь пытались лечить путем введения в кровь пациентов препаратов гормона роста, выделенных из гипофиза умерших людей. Нет смысла объяснять, насколько сложно получить необходимое для терапии количество такого гормона. Помимо чисто технических (в гипофизе содержится очень небольшое количество гормона), финансовых (препарат немыслимо дорогой), этических и прочих проблем имеется риск переноса пациентам опаснейших заболеваний, например всем известного синдрома Кройцфельда-Якоби - коровьего бешенства. Для достижения положительного результата лечения соматотропин вводят внутримышечно три раза в неделю в дозах порядка 6- 10 мг на килограмм веса пациента с возраста 4-5 лет до половой зрелости и даже дольше. Из гипофиза одного умершего можно получить лишь 4- 6 мг препарата. Поэтому даже разработанные на государственном уровне специальные программы по производству соматотропина в таких странах, как США, Великобритания, Франция, не могли полностью удовлетворить спрос на этот препарат. Так, в США в 70-80-е годы прошлого века ежегодно выделяли гипофиз у 60000 трупов. Полученного соматотропина хватало для адекватного лечения лишь 1500 детей в год. Ген, кодирующий образование гормона роста человека, был синтезирован искусственно и встроен в генетический материал E. coli аналогично тому, как это сделали с геном инсулина. В настоящее время проблема производства высококачественного, безопасного для здоровья пациентов соматотропина в необходимых количествах и при минимальных затратах полностью решена. Более того, с помощью технологии рекомбинантных ДНК получены штаммы микроорганизмов, способные синтезировать и другие факторы роста человеческого организма. Для целей сельского хозяйства большое значение имела организация производства гормона роста крупного рогатого скота (впервые - американской фирмой Монсанто). Его применение позволяет значительно (до 15% и более) повысить удойность коров. Сам ген, кодирующий образование соматотропина, пытаются использовать в генетической инженерии животных для выведения ускоренно растущих пород. Так, получены обнадеживающие результаты на рыбах. Лососи с встроенным геном гормона роста способны достигать потребительских размеров за один год вместо двух в отличие от обычных рыб.

http://sportswiki.ru/%D0%A1%D0%BE%D0%BC%D0%B0%D1%82%D0%BE%D1%82%D1%80%D0%BE%D0%BF%D0%B8%D0%BD

Заключение

В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, транспортной и 5S РНК, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее.  Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности. На основе генетической инженерии возникла отрасль фармацевтической промышленности, названная «индустрией ДНК». Это одна из современных ветвей биотехнологии.  Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рекДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений.

 http://xreferat.ru/10/2029-1-geneticheskaya-inzheneriya-biotehnologiya.html

Литература

1. Биотехнология: Учебное пособие для ВУЗов /Под ред. Н.С. Егорова, В.Д. Самуилова.- М.: Высшая школа, 1987, стр. 15-25.

2. Генно-инженерный инсулин человека. Повышение эффективности хроматографического разделения при использовании принципа бифункциональности. / Романчиков А.Б., Якимов С.А., Клюшниченко В.Е., Арутунян А.М., Вульфсон А.Н. // Биоограническая Химия, 1997 - 23, № 2

3. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. М.: Мир, 2002.

4. Егоров Н. С., Самуилов В. Д. Современные методы создания промышленных штаммов микроорганизмов // Биотехнология. Кн. 2. М.: Высшая школа, 1988. 208 с.

5. Иммобилизация трипсина и карбоксипептидазы В на модифицированных кремнеземах и их применение в превращении рекомбинантного проинсулина человека в инсулин. / Кудрявцева Н.Е., Жигис Л.С., Зубов В.П., Вульфсон А.И., Мальцев К.В., Румш Л.Д. // Хим.-фармац. ж., 1995 - 29, № 1 стр. 61 - 64.

6. Молекулярная биология. Структура и функции белков./ Степанов В. М.// Москва, Высшая школа, 1996.

7. Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. - Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.

   8. Синтез фрагментов инсулина и изучение их физико-химических и иммунологических свойств. /    Панин Л.Е., Тузиков Ф.В., Потеряева О.Н., Максютов А.З., Тузикова Н.А., Сабиров А.Н. // Биоорганическая Химия, 1997 - 23, № 12 стр. 953 - 960.




1. Личностная готовность ребенка к школе
2. ориентированное действие.
3. Пояснительная записка Рабочая программа по английскому языку составлена на основе Федерального компонент
4. Муратова Софья Ивановна
5. тематической статистики
6. ЛАБОРАТОРНАЯ РАБОТА 4 Группа Студент Резонанс напряжений Цель работы ' изучение особенност
7. Парабола Параболой называется геометрическое место точек для каждой из которых расстояние до некотор
8. Прохождение амплитудно-модулированных колебаний и радиоимпульсов через одиночный контур и систему св
9. Государство как политическая форма организации общества
10. Страта
11. модуль Дать понятие хирургической инфекции виды возбудителей хирургической инфекции пути проник
12. УТВЕРЖДАЮ Генеральный директор ОАО Лужский ККЗ В.1
13. Предмет объект и сущность политической психологии
14. не верно. Театр Файясайн В этой части я хочу предложить несколько рабочих медитативных схем с помощью
15. тема маслоснабжения компрессорного цеха обеспечивает- прием хранение и контроль расхода турбинного масла;
16. Оценка рыночной стоимости 100% пакета акций ОАО
17. . Загальні передумови та економічні чинники необхідності кредиту Кредит iснував не завжди
18. на тему Психология общения
19. В 2; 3; 4 С 4; 3; 2 Найти объем треугольной пирамиды с вершинами А 2; 2; 2 В 4; 3; 3 С 4; 5
20. Сучасна українська державність