У вас вопросы?
У нас ответы:) SamZan.net

Лекция 14 Быстрые схемы дискретного преобразования Фурье

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 5.4.2025

2

Лекция 14. Быстрые схемы дискретного преобразования Фурье.

Обычные формулы для вычисления ДПФ требуют большого количества умножений: , где  - число точек в ДПФ. Существуют приемы, позволяющие уменьшить это количество. Они называются быстрыми схемами (БПФ). Простейшая относится к случаю .

Случай

 Любое число в интервале  однозначно представляется двоичным вектором длины . Если последовательность  задана, то положим

. В дальнейшем, что упростить изложение, введем обозначение , откуда . Имеем

. Основное замечание заключается в следующем: суммирование по индексу  равносильно суммированию по всем двоичным индексам .

, каждый из которых принимает два значения.

Для числа  существует аналогичное двоичное представление:. Рассмотрим самую внутреннюю сумму. . Нетрудно видеть, что это некоторая функция . Следующая сумма принимает вид . Этот процесс продолжается. Окончательно имеем . Количество сумм равняется , в каждой из которых лишь одно умножение. Для вычисления всех коэффициентов нужно  умножений. Другое преимущество этой схемы - экономный расход оперативной памяти.

Случай   с взаимно простыми сомножителями

Рассмотрим другой крайний случай, когда  и . В этом случае существуют целые , для которых . Отсюда следует, что

   (1)

При этом можно считать выполненными неравенства

.(2)

Если такое неравенство для , например, не имеет места, можно разделить на . Для

любого целого  из (1) вытекает

. При ограничениях типа (2)  находятся однозначно. Имеем

. Числа  - взаимно простые. Следовательно имеем для любого целого

. Теперь . Раскрывая скобки и отбрасывая члены кратные , получим показатель вида .

Из равенства  следует, что , поэтому весь показатель сравним с . Это означает, что . Вводя обозначения , окончательно получим  =

. Это означает, что преобразование Фурье для  точек свелось к последовательному выполнению преобразования Фурье по  точкам, а затем - по  точкам результатов предыдущего преобразования. При этом потребуется не более, чем  умножений. По сравнению с  выигрыш небольшой. Если же для какого-либо из промежуточных случаев есть своя быстрая схема, выигрыш может получиться значительным.




1. Біологія, лабораторний практикум
2. ТЕМА- ОСНОВНЫЕ ФОРМЫ КИСЛОТНООСНОВНОГО СОСТОЯНИЯ.
3. задание на разработку автоматизированной системы [4] Функциональная модель системы обработки заявок
4. политическими экономическими религиозными и др
5. Выдающиеся личности в истории вычислительной техники
6. 2014 г по 20032014 г при посещении аквапарка ldquo;Ривьераrdquo; ДЕТИ ДО 16 ЛЕТ включительно проходят в аквапарк БЕСП
7. Маркетинговое исследование компания Dirol-Cdbur
8. самые суетные дни для родителей школьников особенно будущих первоклашек
9. ЛЕКЦИЯ 1 ИНФОРМАЦИОННЫЕ РЕСУРСЫ 1
10. Три народных принципа и Три политические установки Сунь Ятсена