Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Sets nd opertions over them 1

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024

1. Sets and operations over them

1. If A = {x: -4 < x < 1},  B = {x: 0 < x < 4}, find AB=

 a) {x: -4 < x < 4}; b) {x: 0 < x < 1};  c) {x: -4 < x  0};

d)   {x: 1  x < 4}; e) {x: -1 < x < 4};q

2. If A = {x: -4 < x < 1}, B = {x: 0 < x < 4}, find AB=

a) {x: -4 < x < 4}; b) {x: 0 < x < 1};  c) {x: -4 < x  0};

d)   {x: 1  x < 4}; e) {x: -1 < x < 4};

3. If A = {x: -4 < x < 1}, B = {x: 0 < x < 4}, find A\B=

a) {x: -4 < x < 4}; b) {x: 0 < x < 1};  c) {x: -4 < x  0};

d)   {x: 1  x < 4}; e) {x: -1 < x < 4};

4. If A = {x: -4 < x < 1}, B = {x: 0 < x < 4}, find B\A=

a) {x: -4 < x < 4}; b) {x: 0 < x < 1};  c) {x: -4 < x  0};

 d)   {x: 1  x < 4}; e) {x: -1 < x < 4};

5. If A = {x: x2 - x - 2 > 0}, B = {x: 6xx2 0}, find AB=

 a) {x: -1 < x   6}; b) {x: 0  x < 2};  c) {x: -1 < x < 0};

d)   {x: 2  x  6}; e) {x: -1 < x < 6};

6. If A = {x: x2 - x - 2 > 0}, B = {x: 6xx2 0}, find AB=

a) {x: -1 < x   6}; b) {x: 0  x < 2};  c) {x: -1 < x < 0};

d)   {x: 2  x  6}; e) {x: -1 < x < 6};

7. If A = {x: x2 - x - 2 > 0}, B = {x: 6xx2 0}, find A\B=

a) {x: -1 < x   6}; b) {x: 0  x < 2};  c) {x: -1 < x < 0};

d)   {x: 2  x  6}; e) {x: -1 < x < 6};

8. If A = {x: x2 - x - 2 > 0}, B = {x: 6xx2 0}, find B\A=

a) {x: -1 < x   6}; b) {x: 0  x < 2};  c) {x: -1 < x < 0};

 d)   {x: 2  x  6}; e) {x: -1 < x < 6};

9. If A = {x: sin x = 0}, B = {x: cos x/2 =0}, find AB=

 a) A; b) B;  c) {x:  x =2n, nZ};  d)   ;  e) {x:  x = n, nZ };

10. If A = {x: sin x = 0}, B = {x: cos x/2 =0}, find AB=

a) A; b) B;  c) {x:  x =2n, nZ};  d)   ;  e) {x:  x = n, nZ };

11. If A = {x: sin x = 0}, B = {x: cos x/2 =0}, find A\B=

a) A; b) B;  c) {x:  x =2n, nZ}; d)   ;  e) {x:  x = n, nZ };

12. If A = {x: sin x = 0}, B = {x: cos x/2 =0}, find B\A=

a) A; b) B;  c) {x:  x =2n, nZ};  d)   ; e) {x:  x = n, nZ };

13. If A = {(x, y): x2 + y2 1}, B = {(x, y): |x|+|y|  1}, find AB=

 a) A; b) B;  c) {x:  -1<x <1};  d)   ;  e) {x:  x = n, nZ };

14. If A = {(x, y): x2 + y2 1}, B = {(x, y): |x|+|y|  1}, find AB=

a) A; b) B;  c) {x:  -1<x <1};  d)   ;  e) {x:  x = n, nZ };

15. If A = {(x, y): x2 + y2 1}, B = {(x, y): |x|+|y|  1}, find A\B=

a) A; b) B;  c) {x:  -1<x <1};  d)   ;  e) {x:  x = n, nZ };

16. If A = {(x, y): max{| x|, |y|}   1}, B = {(x, y): |x|+|y|  1}, find AB=

 a) A; b) B;  c) {x:  -1<x <1};  d)   ;  e) {x:  x = n, nZ };

17. If A = {(x, y): max{| x|, |y|}   1}, B = {(x, y): |x|+|y|  1}, find AB=

a) A; b) B;  c) {x:  -1<x <1};  d)   ;  e) {x:  x = n, nZ };

18. If A = {(x, y): max{| x|, |y|}   1}, B = {(x, y): |x|+|y|  1}, find B\A=

a) A; b) B;  c) {x:  x =2n, nZ};  d)   ; e) {x:  x = n, nZ };

 

2. Functions and their types

19. Rule f: EF is called as a function, if

 a) xD(f)  E: y!F, y = f(x); b) xD(f)  E: y!F, y = f(x);

 c) xD(f)  E: yF, y = f(x); d) xD(f)  E: yF, y = f(x);

 e) yR(f) F: !xE, y = f(x);

20. Function f: EF is surjection, if

a) f(x1) = f(x2)   x1=x2; b) xD(f)  E: y!F, y = f(x);

 c) xD(f)  E: yF, y = f(x); d) xD(f)  E: yF, y = f(x);

 e) yF: xD(f), y = f(x);

21. Function f: EF is injection, if

 a) f(x1) = f(x2)   x1=x2, x1, x2D(f); b) xD(f)  E: y!F, y = f(x);

 c) xD(f)  E: yF, y = f(x); d) xD(f)  E: yF, y = f(x);

 e) yF: xD(f), y = f(x);

22. Function f: EF is bijection, if

 a) f(x1) = f(x2)   x1=x2, x1, x2D(f); b) xD(f)  E: y!F, y = f(x);

 c) xD(f)  E: yF, y = f(x); d) xD(f)  E: yF, y = f(x);

 e) yF: x!D(f), y = f(x);

23. Function f(x) = 3 sin x/2, f: [0, 1][0, 3], is

a) injection; b) surjection;  c) bijection; d) composition; e) inverse

24. Function f(x) = tg x/4, f: [0, 1][0, 3], is

 a) injection; b) surjection;  c) bijection; d) composition; e) inverse

25. Function f(x) = 3x, f: [0, 1][0, 3], is

a) injection; b) surjection;  c) bijection; d) composition; e) inverse

26. Function f(x) = 12(x – ½)2, f: [0, 1][0, 3], is

a) injection; b) surjection;  c) bijection; d) composition; e) inverse

27. Function f(x) = 3 – (16/3) (x - ¼)2, f: [0, 1][0, 3], is

a) injection; b) surjection;  c) bijection; d) composition; e) inverse

28. Function f(x) = 2|x+2| - 3, f: [0, 1][0, 3], is

a) injection; b) surjection;  c) bijection; d) composition; e) inverse

29. Function f(x) = cos x/2, f: [-1, 1][0, 1], is

a) injection; b) surjection;  c) bijection; d) composition; e) inverse

30. Function f(x) = - x2 +1, f: [-1, 1][0, 1], is

a) infection; b) surjection;  c) bijection; d) composition; e) inverse

31. Function f(x) = |x|, f: [-1, 1][0, 1], is

a) injection; b) surjection;  c) bijection; d) composition; e) inverse

32. Function f(x) = (x+1)/2, f: [-1, 1][0, 1], is

a) injection; b) surjection;  c) bijection; d) composition; e) inverse

33. Function f(x) = (x+1)/3, f: [-1, 1][0, 1], is

a) injection; b) surjection;  c) bijection; d) composition; e) inverse

34. Function f(x) = 2x-1, f: [-1, 1][0, 1], is

a) infection; b) surjection;  c) bijection; d) composition; e) inverse

3. Domain and range of a function

35. Find domain D(f1)  if f1=lg (16 – x2)

 a) (-4; 4); b) {xR:  x/2+2n, nZ};  c) {x(-4; 4):  x/2};

d) [-4, 4];  e) (-; ).

36. Find domain D(f1)  if f1=1/ (1 – sin x)

a) (-4; 4); b) {xR:  x/2+2n, nZ};  c) { xR:  x/2};

d) [-4, 4];  e) (-; ).

37. Find domain D(f1+f2)  if f1=lg (16 – x2) and f2=1/ (1 – sin x)

a) (-4; 4); b) {xR:  x/2+2n, nZ};  c) {x(-4; 4):  x/2};

d) [-4, 4];  e) (-; ).

38. Find domain D(1/f1)  if f1=x2- x + 1

a) (-1; 1); b) {xR:  x2, x-2};  c) {xR:  x1, x-1};

d) [-2, 2];  e) (-; ).

39. Find domain D(1/f1)  if f1=|x| - 2;

a) (-1; 1); b) {xR:  x2, x-2}; c) {xR:  x1, x-1};

d) [-2, 2];  e) (-; ).

40. Find domain D(f1)  if f1=5x- 2x + 1

a) (-5; 5); b) {xR:  x2, x-2};  c) {xR:  x5, x-5};

d) [-2, 2];  e) (-; ).

41. Find range R(f), if f(x) = 2x – 5, x[-2; 2],

a) (-9; -1); b) [-9;9];  c) (-;-9)(0)(9; +);

d) [-9, +);  e) (-; ).

42. Find range R(f), if f(x) = |x – 1|, x[0; 5],

a) (-4; 0); b) [0;4];  c) (-;-4)(0)(4; +);

d) [-4, +);  e) (-; ).

43. Find range R(f), if f(x) = x +sign x, xR,

a) (-1; 1); b) [0; 1];  c) (-;-1)(0)(1; +);

d) [-1, +);  e) (-; ).

44. Find range R(f), if f(x) = x2 + 2x – 3, xR,

a) (-4; -1); b) [-4; 4];  c) (-;-4)(4; +);

 d) [-4, +);  e) (-; ).

45. Find range R(f), if f(x) = x +1/x, x[0; +],

a) (-2; 2); b) [0; 2];  c) (-;-2)(2; +);

 d) [2, +);  e) (-; ).

4. Composition and inverse function

46. f(x)=4/x-5, g(x)=2x+7. Find h(x)=(gоf)(x)=g(f(x))

a)  2/x2+7/5;  b) 8/x-3; c) 10;   d) 8x-35;  e) 2/x2-5/7

47. g(х)=х2 and f(х)=х+1, then g(f(х))=(gоf)(х)=

a) (х+1)2;  b) х+1;  c) х2+1;  d) х2;   e) (х-1)2

48. g(х)=х2 and f(х)=х+1, then  f(g(х))= (fоg)(х) =

a) х2+1  b) (х+1)2;  c) х+1   d) х2;   e) (х-1)2

49. f(x)=x5, g(x)=x+5. Find h(x)=(gоf)(x)=g(f(x))

a) (х+5)5, xR; b) х5+5, xR;   c) х+5, xR; d) х5, xR;  e) (х-5)5, xR.

50. f(x)=x5, g(x)=x+5, then  f(g(х))= (fоg)(х) =

a) (х+5)5, xR; b) х5+5, xR;   c) х+5, xR; d) х5, xR;  e) (х-5)5, xR.

51. For the function f(x) = tg x, 3/2 < x < 5/2, find inverse function:

 a) f -1(x) = 2 + arctg x, xR;    b) f -1(x) = arctg x, xR; c) f -1(x) = arcctg x, xR;

a) f -1(x) = 2 + arcctg x, xR; a) f -1(x) = ctg x, xR;

52. , then =

a) x/4 -0,2; b)  4/(x+5); c) 4x+5;  d) x/(5x-4);  e) 5/x – 4.

53. f(x) =5x, then =

 a) x; b) 1/(5x); c) 1/x;  d)1/(1+5x);  e) (1+5x).

54. f(x) =2x - 1, then =

 a) (x+1)/2; b) 1/(2x - 1); c)|x|1/2 sign x;  d)1/(1 - 2x);  e) (1+2x).

55. f(x) =(x – 1)1/2, then =

a) (x+1)2; b)1/(1- x)1/2; c)|x|1/2 sign x;  d)1/(x - 1)1/2;  e) (1+x).

5. Inf and sup of a set. Bounded sets

56. sup X = a 

a)   b)  

c) d)  

e)  

57. inf X = a 

a)   b)  

c) d)  

e)  

58. Let X={½   n/(2n + 1)}, nN. Find inf X=

a) 1;  b) 0;   c) -1;  d) -;   e) ½

59. Let X={½   n/(2n + 1)}, nN. Find sup X=

 a) 1;  b) 0;   c) -1;  d) ;   e) ½

60. Let X={1/n}, nN. Find sup X=

a) 1;  b) 0;   c) -1;  d) ;   e) ½

61. Let X={1/n}, nN. Find inf X=

a) 1;  b) 0;   c) -1;  d) ;   e) ½

62. Let X={1+(-1)n/n}, nN. Find sup X=

 a) 3/2; b) 0;   c) -1;  d) ;   e) ½

63. Let X={1+(-1)n/n}, nN. Find inf X=

a) 1;  b) 0;   c) -1;  d) ;   e) ½

64. Set X is a set bounded below, if

 a)   b)  

c)   d)

e)

65. Set X is a set bounded above, if

a)   b)  

c)   d)

e)

66. Set X is a bounded set, if

a)   b)  

c)   d)

e)

67. If XY, then

a) sup X  sup Y and inf X  inf Y;  b) sup X  sup Y and inf X  inf Y

 c) sup X  sup Y and inf X  inf Y; d) sup X  sup Y and inf X  inf Y;

e) sup X  inf Y and inf X  sup Y.

6. Bounded and unbounded functions. Inf and sup of a function

68. Function f is bounded, if

a) C=const>0, xD(f): |f(x)|  C;  b) C=const>0, xD(f): |f(x)|  C;

c) C=const>0, xD(f): |f(x)|  C;  c) sup f = inf f;

e) inf f  sup f.

69. Which of the following functions is unbounded?

a)  y = x2x – 1, x[-1; 5]; b) y = 1/(x – 10), x[0; 5];  c) y = x3 /(x4 + 1), xR;

d) y = (x2 –1)/ |x3 – 1|, xR;  e) y = xx, x[0; +];

70. Which of the following functions is bounded?

a)  y = 0,4x, xR; b) y = log0,1 x, x[1; +);  c) y = x3 /(x4 + 1), xR;

d) y = logx 2, x[1; +);  e) y = xx, x[0; +];

71. Functions and are considered on (-; ). Bounded below function is  

A)  both of them;    B) neither of them;  С ) only ; D) only .

72.  Functions and are considered on (-; ). Bounded above function is

A) both of them; B) neither of them;  С ) only ;   D) only .

73. For the function f(x) = 2-|x+2| find inf f, if it exists:

a) 1;  b) 0; c) -;   d) -1;  e) 4.

74. For the function f(x) = 1 - 21/(x-1) find inf f, if it exists:

a) 1;  b) 0; c) -;   d) -1;  e) 4.

75. For the function f(x) = 8 - 2x+1- 4x find inf f, if it exists:

a) 1;  b) 0; c) -;   d) -1;  e) 4.

76. For the function f(x) = lg (x2 + x - 2) find inf f, if it exists:

a) 1;  b) 0; c) -;   d) -1;  e) 4.

77. For the function f(x) = log0,1 (4x - 3 - x2) find inf f, if it exists:

a) 1;  b) 0; c) -;   d) -1;  e) 4.

78. For the function f(x) = 2-|x+2| find sup f, if it exists:

a) 1;  b) 0; c) -;   d) -1;  e) 4.

79. For the functn f(x) = 1 - 21/(x-1) find sup f, if it exists:

a) 1;  b) 0; c) -;   d) -1;  e) 4.

80. For the function f(x) = 8 - 2x+1- 4x find sup f, if it exists:

a) 1;  b) 0; c) -;   d) 8;  e) 4.

81. For the function f(x) = lg (x2 + x - 2) find sup f, if it exists:

a) 1;  b) 0; c) +;   d) -1;  e) 4.

82. For the function f(x) = log0,1 (4x - 3 - x2) find sup f, if it exists:

a) 1;  b) 0; c) +;   d) -1;  e) 4.

7. Sequence. The greatest and least member of the sequence

83.  - neighborhood of a point a 

a) {x: |x - | < a}; b) {x: |x a| < }; c) {x: |x - | > a};

d) {x: |x – |  a};  e) {x: |x a|  };

84. Define which of the numbers a,b is a member of the sequence {xn}, if a=1215, b=12555, xn=532n - 3, nN,

 a) a; b) b; c) both of them; d) neither of them

85. Define which of the numbers a,b is a member of the sequence {xn}, if a=6, b=8, xn=(n2+32n)½ - n, nN,

a) a; b) b; c) both of them; d) neither of them

86. Define which of the numbers a,b is a member of the sequence {xn}, if a=6, b=11, xn=(n2+11)/(n+1), nN,

a) a; b) b; c) both of them; d) neither of them

87. Define which of the numbers a,b is a member of the sequence {xn}, if a=248, b=2050, xn=2n -n, nN,

a) a; b) b; c) both of them; d) neither of them

88. Find the greatest member of the sequence {21/(3n2 – 14n - 17)}:

a) x6=3; b) x3 = 1/6;  c) x3=5/64;  d) x6 = 1/6; e) x2 = 6;

89. Find the greatest member of the sequence {n/(n2 + 9)}:

a) x6=3; b) x3 = 1/6;  c) x3=5/64;  d) x6 = 6/45; e) x2 = 6;

90. Find the greatest member of the sequence {2-n - 34-n}:

a) x6=3; b) x3 = 1/6;  c) x3=5/64;  d) x2 = 1/16; e) x6 = 1/6;

91. Find the least member of the sequence {(2n - 5)/(2n - 11)}:

 a) x5=-5; b) x4 = - 4;  c) x6=7;  d) x9 = 23/29; e) x5 = -10;

92. Find the least member of the sequence {n + 5/n}:

a) x4=-9; b) x2 = 4,5;  c) x5=-1;  d) x1 = 6; e) x4 = 5,2;

93. Find the least member of the sequence {1,4n/n}:

a) x4=19; b) x2 = 4,5;  c) x3=1,43/3;  d) x4=1,44/3; e) x1=1,4/3;

94. Domain of a sequence {xn} is

 a) the set of natural numbers – N;  b) the set of integers – Z;

c) the set of real numbers – R; d) the set of positive real numbers – R+;

e) (-; +);

95. {xn} is a Cauchy sequence

a) >0: N = N(): |xn - x|<, n>N;  b) >0: N = N(): |xn - xm|<, n, m>N;

c) >0: N = N(): |xn - x|<, n>N;  c) >0: N = N(): |xn - xm|<, n, m>N;

d) >0: N = N(): |xn - a|>, n>N;

8. Bounded and unbounded sequence

96. {xn} is a bounded sequence

a) C=const>0: |xn|  C, nN; b) C=const<0: |xn|  C, nN;

c) C>0: |xn|  C, nN; d) C>0: |xn|  C, nN;  e) C>0: |xn|  C, nN;

97. Let {xn}= {n/3n} and {yn}= {n2/2n}. Point out bounded sequence:

a) only {xn};  b) only {yn};  c) both of them; d) neither of them.

98.  Let {xn}= {n/3n} and {yn}= {5n- 4n}. Point out bounded sequence:

a) only {xn};  b) only {yn};  c) both of them; d) neither of them.

99. Let {xn}= {n/3n} and {yn}= {5n- 4n}. Point out unbounded sequence:

a) only {xn};  b) only {yn};  c) both of them; d) neither of them.

100. Let {xn}= {n/3n} and {yn}= {5n- 4n}. Point out bounded below sequence:

a) only {xn};  b) only {yn};  c) both of them; d) neither of them.

101. Which of the following statements is correct?

a) Any convergent sequence is bounded; b) Any bounded sequence converges;

c) Any divergent sequence is bounded; d) Any divergent sequence is bounded below;

e) If {xn} converges to 0 and {yn} is unbounded, then {xnyn}converges to 0;

102. Which of the following statements is correct?

a) If {xn} converges to 0 and {yn} is unbounded, then {xnyn}converges to 0;

b) If {xn} converges to 0 and {yn} is bounded, then {xnyn}converges to 0;

c) Any bounded sequence converges; d) Any divergent sequence is bounded below;

e) If {xn} diverges and {yn} is bounded, then {xnyn}converges;

9. Monotone sequence

103. Sequence {xn} is strictly increasing, if

 a) xn < xm as n<m, n, mN; b) xn  xm as n<m, n, mN; c) xn < xm as n>m, n, mN;

d) xn  xm as n>m, n, mN; e) xn > xm as n<m, n, mN.

104. Sequence {xn} is increasing, if

a) xn < xm as n<m, n, mN; b) xn  xm as n<m, n, mN; c) xn < xm as n>m, n, mN;

d) xn  xm as n>m, n, mN;  e) xn > xm as n<m, n, mN;

105. Sequence {xn} is strictly decreasing, if

a) xn < xm as n<m, n, mN; b) xn  xm as n<m, n, mN; c) xn < xm as n>m, n, mN;

d) xn  xm as n>m, n, mN; e) xn > xm as n>m, n, mN;

106. Sequence {xn} is decreasing, if

a) xn < xm as n<m, n, mN; b) xn  xm as n<m, n, mN; c) xn < xm as n>m, n, mN;

 d) xn  xm as n>m, n, mN;  e) xn > xm as n<m, n, mN;

107. Let {xn} be an increasing real sequence. Which of the following statements is true?

a) {xn} is bounded above, then xn converges as n;

b) {xn} is bounded above, then xn diverges as n;

c) {xn} is bounded sequence, then xn diverges as n;

d) {xn} is bounded below, then xn converges as n;

 e) {xn} is unbounded above, then xn converges as n;

108. Let {xn} be a decreasing real sequence. Which of the following statements is true?

a) {xn} is bounded below, then xn converges as n;

b) {xn} is bounded below, then xn diverges as n;

c) {xn} is bounded sequence, then xn diverges as n;

d) {xn} is bounded above, then xn converges as n;

 e) {xn} is unbounded below, then xn converges as n;

109. Suppose that {xn} satisfies |xn+1/xn|a as n. Then

a) a<1, then  xn converges to 1 as n;  b) a<1, then xn converges to 0 as n;

c) a<1, then xn diverges as n; d) a>1, then xn converges to 0 as n;

e) a>1, then xn converges to 1 as n;

110.  Let {xn}= {(n+1)/(2n-1)} and {yn}= {n3 - 6n 2}. Point out monotone sequence:

a) only {xn};  b) only {yn};  c) both of them; d) neither of them.

111. Let {xn}= {sin n} and {yn}= {n3 - 6n 2}. Point out monotone sequence:

a) only {xn};  b) only {yn};  c) both of them; d) neither of them.

112. Let {xn}= {sin n} and {yn}= {(-1)n}. Point out monotone sequence:

a) only {xn};  b) only {yn};  c) both of them; d) neither of them.

113. Let {xn}= {(n+1)/(2n-1)} and {yn}= {n3 - 6n 2}. Point out increasing sequence:

a) only {xn};  b) only {yn};  c) both of them; d) neither of them.

114. Let {xn}= {(n+1)/(2n-1)} and {yn}= {n3 - 6n 2}. Point out decreasing sequence:

a) only {xn};  b) only {yn};  c) both of them; d) neither of them.

10. Converging sequence

115. =

a) 1/9; b) 1  c) 0;  d) 1/3;  e) 9.

116. =

 a) 3;  b) 0;  c) 1;  d) 2/3;  e) .

117. =

 a) ;  b) 0;  c) 1;   d) -1;  e) 2.

118. =

a) 1;   b) 0;   c) -1;  d) ;   e) -.sdez otveta netu pr.1/2

119. =

a) -7/4;  b) 0;   c) ;   d) ¾.  E) - sdez otveta netu pr.-5/4

120. =

 a) 1;   b) 0;   c) ;   d) -1;   e) -.

121. =

 а) ;         в) ;       с)-5;      d)0;    e) .

122.   =

 а) ;         в) 10;       с) 1;      d) 0;    e) -10.

123. =

 а) ;         в) 10;       с) 1;      d)0;    e) -10.

124. =

 а) ;         в) 2;       с) 1;      d) 0;    e) -10

125. =

 а) ;         в) e3;       с) 1;      d) 0;    e) –e3

126. =

 а) ;         в) 2;       с) 1;      d) 0;    e) -10

127.  

 a) 3;   b) 1;   c) 2/3;   d) ;   c) 9.

128.

 a) 3;   b) 1;   c) 0;   d) ;   c) 2.

129.

a) 3/2;   b) 1;   c) 2/3;   d) ;   c) 0.

130. What does   mean?

A)   B)

C)   D)

E)

131.   

A) ;

B) ;

C) ;

D) ;

E) .

 

 11. Limit of a function

141. =   а)1;          в) ;       с) ;       d)2;     e) .

142.        =         

 A) 4 ;            B) 3 ;                    C)  1;                  D) –1;                 E) 0,4.

143.      =        

A) 2 ;             B) 0,6 ;                 C)  1,2;                D) 1,4;                E) 1,6.

144.     =       

 A) 1,5;           B) 3;                     C)  2;                   D)  0,5;               E) 1.

145.   =          A) ;            B) ;         C) 10 ;            D ) 0,1 ;         E) 1.

146. =                A) e-10 ;         B) 1;          C)  e10 ;          D) ;          E) .

147.   =        А) 0,6;      B)  3;        C)  2;           D)  ;       Е) –1.

148.  =     А) 2;        B) -;      C)  -;           D) ;              E) -2.

149. =         А) ;    B) ;     C) - ;          D) -4;               E) 1.

150. =         А) 5;         B) ;    C)  3; D);             E)  .

151. =        А) e;      В)  e3;            C) 1;          D)  2;               E)  4.

152. =    A) 0;      B) 1;      C) -1;       D) 2;       E) 3.

153.    = A)        B) 1;              C) 0;             D) 5;             E)

154. =   A) –2;        B) 0;             C) 5;             D) ;       E)

155. =  A) ;  B) 1;  C) 0;  D) 2;  E) -1.

156.    =    A) 0;             B) ;          C) 3;                    D) 1;                    E) 5.

157. =  A) 0  B) 1  C)  D)   E) 2

158. =  A) ln5 B) -  C)  D) ln2  E) 0

159.  =   A)  B) -2  C)-25/2 D) -5/1  E) 25/2.

160. =  A) ln2   B)  C) e   D) -1   E) 1

161. =  a) 7/3; b) ;  c) 1/5;   d) 0;   e) 7/5.

162. = a) -2;  b) 2;  c) 0;   d) ;  e) e.

163. =  a) 1;   b) 3/10; c) 0;   d) ;   e) e2

164. =  a) -1;   b) 0;  c) ; d) -;   e) 1

165. = a) 2;   b) 22  c) 0;  d) ; e) -;

166. =  a) 1/3;   b) 0;   c) 3;  d) ;  e) -;

167. = a) e-1;   b) e;   c) 0;   d) ;  e) -;

168. = a) 2;   b) 1;   c) 0;   d) ;  e) e;

169. = a) -1/2; b) 1/2;  c) 1;  d) 0;  e) 3.

170. =  a) m; b) 1;  c) 0;  d) –m;  e) .

171. = a) 12/5; b) 1;   c) 0;   d) ;  e) 8.

172.  

A) ;

B) ;

C)  ;

D)  ;

E)   .

173.

A) ;

B) ;

C) ;

D) ;

E) .

174. (x) is called as an infinitesimal function as xx0, if

a)  

b)  

c)

d)  

e)  

175. Infinitesimal functions (x) and (x) are equivalent as xx0, if

a)  b)   c)  

d) e)

12. Continuity and uniformly continuity of a function

176. Function f  is continuous at a point a, if  

A)  B) and  

C) ant and their equal.

D)  E)

177. Let function f be defined and continuous on [a,b]. If f(a)>0 and f(b)<0 at the same time, then

a) (c(a, b)) :  f(c)=0;  b) (c(a, b)) :  f’(c)=0;  c) (c(a, b)) :  f(c)=0;

d) (c(a, b)) :  f’(c)=0;  e) ( [f(a), f(b)] (x [a, b])  (f(x) = ).

178. Let f be a continuous function on [a, b]R. Suppose that f(a) < f(b). Then 

a) (c(a, b)) :  f(c)=0;  b)  (c(a, b)) :  f’(c)=0;

c) ( [f(a), f(b)] (x [a, b])  (f(x) = );

d)  ( [f(a), f(b)] (x [a, b])  (f(x) = );

e) ( [f(a), f(b)] (x [a, b])  (f(x) = );

179. Let f be continuous on [a, b]. Then

a) m, M = const  such that m  f(x)  M  when    a  x b.

b) (c(a, b)) :  f(c)=0;  c) b) (c(a, b)) :  f’(c)=0;

d) ( [f(a), f(b)] (x [a, b])  (f(x) = );

e)  ( [f(a), f(b)] (x [a, b])  (f(x) = );

180. Let f be a function defined on a set A  R.  f is uniformly continuous on A if

a) ( > 0) ( > 0) (x1, x2A) [(|x1 - x2|< ) => (|f(x1) - f(x2)|> .

b) ( > 0) ( > 0) (x1, x2A) [(|x1 - x2|< ) => (|f(x1) - f(x2)|< .

c) ( > 0) ( > 0) (xA) [(|x x0|< ) => (|f(x) - f(x0)|< .

d) ( > 0) ( > 0) (xA) [(|x x0|< ) => (|f(x) - f(x0)|> .

13. Differentiable functions

181.  f  is continuous on [a; b] and differentiable on (a; b).

Which of the following statements is correct:

І. .

      ІІ. ?

A)  both of them ;    B) neither of them;    С) only І;     D) only ІІ.

182.  f  is continuous on [a; b] and differentiable on (a; b).

Which of the following statements is correct:

І.

      ІІ.

A) both of them;    B) neither of them;    С ) only І;     D) only ІІ.

183. Graph of   is tangent to axes Ox at a point А (1; 0), then =

        A) -2 ;          B)  1 ;          C)  -1 ;            D)  2;            E)  0.

184. Graph of   is tangent to axes Ox at a point А (1; 0), then=

        A)  2  ;         B) –1;           C) 1  ;             D) -4 ;           E)  0.

13. Derivative of a function

185.  ,    

A) ;  B) ;  C)  ;  D)  ;  E) .

186.  ,  

       А) ;  B)  ;  C) ;  D) ;   E) .

187.  =  

 A) ; B);  C);  D) ;   E) .

188. ,   

A) ;  B) ;  C) ;  D) ;  E) .

189. ,        

A) 5/2;  B) ;  C );  D) ;  E) .

190.

  а) ;  в) ;  с) ;      

 d) ;     e) .

191.      y= cos4x;     y'=

  А) 4cos3x;            B) 4sin3x;        C)  cos3xsinx;          D)  -4cos3xsinx;           E) sin4x.

192.  Find derivative of at the point  

А) ;          В) ;         С) ;        D) ;      E) .

193.  Find derivative of at х= 0

         А)  0;                  В) -3;                С) ;            D) -6;            E) 3.

194.  ,  = 

A) ;   B) ;   C) ;  

D) ; E) .

195. Find , if  

A) 1  B) 1/3 C) 2  D) 0  E) 3

196.  Find differential of

A)  B)  C)  D) E)

197. , =

A)  B)   C) D) 3  E)

198.  y’=

 a) 3/(2+3x);  b) 1/(2+3x);  c)3x/(2+3x);  d) 3x/(2+3x)2;  e) 3/(2+3x)2 

199. , y’=

a) 1/sin x; b) sin x; c) 1/cos x; d) cos x; e) 1/tg x.

200. , f’(x)=

 a) –e-x/cos2e-x;  b) –ex/cos2e-x;  c) e-x/cos2e-x;  d) ex/cos2e-x;  e) –e-x/sin2e-x;

201. , f’(x) =

 a) –e-x,  b) e-x,  c) ex,  d) –ex,  e) e2x.

202.  , =

A)  B)   C) - D) - E)

 

14. Basic theorems about theorems

203. Find a point which satisfies Lagrange’s Theorem 

a) 2;  b) 2,5;  c) 3;  d) 4;  e) 4,5.

204.  Using L’Hospital’s rule, find  

A) 1;        B) ;         C) 1;      D) ;       E) 0.

205.  If; ;        a<b, then

  1.   a<2;        В)  a<1;     С)  a>2;    Д) a>1;     Е)  a>3.

15. Monotone functions

206. Function f is increasing, if

 a) f(x)  f(y) as x < y;  b) f(x)  f(y) as x > y;  c) f(x) < f(y) as x < y;

d) f(x) > f(y) as x < y;  e) f(x) > f(y) as x > y;

207. Function f is decreasing, if

a) f(x)  f(y) as x < y;  b) f(x)  f(y) as x > y; c) f(x) < f(y) as x < y;

d) f(x) > f(y) as x < y;  e) f(x) > f(y) as x > y;

208. Functions  and are considered on R. Monotone increasing function is

A) both of them;   B) neither of them; С ) only ;        D) only .

209.  Functions  and are considered on R. Monotone increasing function is

 A) both of them;   B) neither of them; С ) only ;        D) only .

210. Define increasing domain of

 а) ;  в) ;  с) ;  d) ;

e) .

211. Define increasing domain of y=2x2 - ln x:

a) (0; 0,5); b) (0,5; +);   c) (-; 0);  d) (0; +);  e) (-; 0,5)

212. Define decreasing domain of y=2x2-ln x:

 a) (0; 0,5); b) (0,5; +);   c) (-; 0);  d) (0; +);  e) (-; 0,5)

213. Define decreasing domain of y=x2e-x

a) (0; 2);   b) (-; 0)(2; +);  c) (-; 0);  d) (2; +);  e) (0; e-2)

214. y=x2e-x is

 a) increasing on (0, 2);  b) decreasing on (0, 2);  c) increasing on (-, 2);

d) c) increasing on (-, 0); e) increasing on (2, +);    

16. Max and min of a function

215.  y=x2e-x

 a) ymin = 0, ymax=4e-2; b) ymax = 0, ymin=4e-2;  c) ymin = 1, ymax=4e-2;

d) ymax = 1, ymin=4e-2; e) ymin = 0, ymax=2;

216. y=2x2 - ln x

a) ymin = 0, ymax=0,5; b) ymax doesn’t exist, ymin=0,5;  

c) ymin = ½ +ln 2, ymax doesn’t exist;  d) ymax = ½ +ln 2, ymin doesn’t exist;   e) ymin = 0, ymax=2;

217. y=(x+1)3

a)  ymin = 0, ymax=2; b) ymin and ymax doesn’t exist;  c) ymin = 0, ymax doesn’t exist;

d) ymin  doesn’t exist, ymax=2;  e) ymin = -1, ymax=2;

218. y= x/(x2-6x-16)

 a) ymin = -2, ymax=8; b) ymin and ymax doesn’t exist;  c) ymin = -2, ymax doesn’t exist;

d) ymin  doesn’t exist, ymax=8;  e) ymin = 0, ymax=2;

219. y =  x4 - 2x2 - 5

a)  ymin = -1, ymax=0; b) ymin and ymax doesn’t exist;  c) ymin = -6, ymax doesn’t exist;

d) ymin doesn’t exist, ymax=0;  e) ymin = -6, ymax=-5;

220. y = x – ln (1+x)

a)  ymin = -1, ymax=0; b) ymin and ymax doesn’t exist;  c) ymin = 0, ymax doesn’t exist;

d) ymin doesn’t exist, ymax=0;  e) ymin = -6, ymax=-5;

17. Inflection points

221. Find inflection point of  

a) it does not exist;  b) M1(-1; e-1/2) and M2(1; e-1/2); c) M(1; e-1/2);

d) M1(-1; - ½ ) and M2(1; ½ ); e) M(-1; e-1/2)

222. Find inflection point of f(x) = ln (1+x2)

a) it does not exist;  b) M1(-1; -ln 2) and M2(1; ln2); c) M(1; ln 2);

 d) M1(1; ln 2) and M2(-1; ln 2); e) M(-1; -ln 2)

223. Find inflection point of f(x) = arctg x - x

a) it does not exist;  b) M1(0; 2) and M2(/2; );  c) O(0; 0);

d) O(0; 0) and M2(/2; );  e) M(/2; )

224. Find inflection point of  

 a) it does not exist;  b) M1(-3; 0) ;  c) O(0; 0);

 d) M1(-3; 0) and O(0; 0 ); e) M(-1; 1)

225. Find inflection point of f(x) = x3 / (3 - x2):

a) it does not exist;  b) M1(1; 1/2) and M2(2; -8);  c) O(0; 0);

d) O(0; 0) and M2(1; ½ );  e) M(2; -8)

226. is

 a) convex on (-1; 1); b) concave on (-1; 1);  c) concave on (-; -1);

d) convex on (1; +);  e) convex on (-;-1)(1; +)

227. is

a) concave on (1; +);  b) concave on (-1; 1);  c)  convex on (-; -1);

d) convex on (1; +);  e) concave on (-;-1)(1; +)

228. f(x) = ln (1+x2)

 a) concave on (1; +);  b) convex on (-1; 1);  c) convex on (-; -1);

d) concave on (1; +);  e) convex on (-;-1)(1; +)

229. f(x) = ln (1+x2)  

 a) concave on (1; +);  b) concave on (-1; 1); c) convex on (-; -1);

d) convex on (1; +);  e) concave on (-;-1)(1; +)

230. y = arctg xx

 a) concave on (-; 0);  b) convex on (-; 0) and concave on (0; +);  

c) convex on (0; +); d) convex on (-; -1);  

 e) concave on (-; 0) and convex on (0; +);  

18. Asymptotes

231. Sloping asymptote of y=x3/(x2-1) is

 a) y = x;  b) x = 1;  c) y = 0;  d) y = x+1; e) doesn’t exist;

232. Vertical asymptote of y=x3/(x2-1) is

a) y = x;  b) x = 1;  c) y = 0;  d) y = x+1; e) doesn’t exist;

233. Horizontal asymptote of y=x3/(x2-1) is

a) y = x;  b) x = 1;  c) y = 0;  d) y = x+1; e) doesn’t exist;

234. Sloping asymptote of y=x2/(x2-1)1/2 is

 a) y = x;  b) x = 1;  c) y = 0;  d) y = x+1; e) doesn’t exist;

235. Vertical asymptote of y=x2/(x2-1)1/2 is

a) y = x;  b) x = 1;  c) y = 0;  d) y = x+1; e) doesn’t exist;

236. Sloping asymptote of y=x3/(2(x+1)2) is

a) y = x;  b) x = 1;  c) y = ½ x + 1;   d) x = - 1; e) doesn’t exist;

237. Vertical asymptote of y=x2/(x2-1)1/2 is

a) y = x;  b) x = 1;  c) y = ½ x + 1;   d) x = - 1; e) doesn’t exist;

238. Sloping asymptote of is

  a) y = x; b) x = 1;  c) y = 0;  d) y = x+1; e) doesn’t exist;

239. Horizontal asymptote of  is

a) y = x;  b) x = 1;  c) y = 0;  d) y = x+1; e) doesn’t exist;

240. Asymptotes of y = x3 / (3 - x2) are

 a) y = x, y = 3 and x = 3;  b) y = x and y = 3;  c) y = x and x =3;   

 d) y = -x and x = 3; e) don’t exist;

Let M be a set and M’ be complement of M, then

MM’=

MM’=M

MM’=M’

MM’

If X=A(B\C), Y=(AB)\(AC), then

XY

X=Y

XY

X=Y’

If X=(AB)\C, Y=(A\C)(B\C), then

XY

XY

X=Y’

X=Y

If X=(AB)\C, Y=(A\C)(B\C), then

X=Y

XY

XY

X=Y’

A\(B\C)=(A\B) C if and only if

AC

AC

A=C

A=B

A\(A\B)=

AB

AB

A=B

A=B’

(AB)’=

A’B’

A’\B’

A’B’

A\B’

(AB)’=

A’B’

A’B’

A’\B’

A\B’

Let A and B be any subsets of the set U. Then (A\B)’=

AB

A’B

A’B

AB

Let A and B be any subsets of the set U. Then (AB’) (A’B)=

A’B

AB

AB

A’B

Let A and B be any subsets of the set U. Then (AB)(A’B’)=

A’B

AB

AB

A’B

Equalities AB=B and AB=A are correct if and only if

AB

A=B

AB

A=B’




1. Всемирная торговая организация
2. Особенности индивидуального предпринимательства
3. обходить странное и неудобное чуткий детский ум надолго пленяется немыслимыми мыслями
4. тематичний виклад основних питань науки інформатики й інформаційних технологій в елементарній формі а тако
5. Самарский муниципальный институт управления Кафедра Государственного и муниципального управления
6. техническую и гуманитарную культуры
7. How to make your child gifted
8. тематичних моделей багатополюсників адаптованих до вхідної мови сучасних програм аналізу електронних схем
9. Алтайский государственный технический университет им
10. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата наук з державного управління.html
11. Движение гравитационных подземных вод осуществляется под действием силы тяжести и или градиента давления
12. Концепція управління персоналом в організації Для всіх організацій управління персоналом найважливі
13. реферату- Організація та діяльність Острозької академіїРозділ- Історія України Організація та діяльність
14. Анализ макросреды
15. теневая экономика
16. Лабораторна робота 3 ВИПРОБУВАННЯ ПАРОВОЇ КОМПРЕСІЙНОЇ ХОЛОДИЛЬНОЇ УСТАНОВКИ 3
17. Ликвидация последствий стихийных бедствий, аварий, катастроф
18. ПЕДАГОГІЧНІ ОСОБЛИВОСТІ ФІЗИЧНОГО ВИХОВАННЯ СТАРШОКЛАСНИКІВ У СУЧАСНИХ МОЛОДІЖНИХ ОРГАНІЗАЦІ
19. тематике Семинар 12 20
20. экономического расслоения вызывает необходимость поновому подойти к вопросам формирования объемнопланир