У вас вопросы?
У нас ответы:) SamZan.net

5 Обобщенный метод наименьших квадратов ОМНК При нарушении гомоскедастичности и наличии автокорреляци

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 29.12.2024

2.5 Обобщенный метод наименьших квадратов (ОМНК)

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLSOrdinary Least Squares) заменять обобщенным методом, т.е. методом GLS (Generalized Least Squares).

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Остановимся на использовании ОМНК для корректировки гетероскедастичности.

Как и раньше, будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине , т.е.

,

где – дисперсия ошибки при конкретном -м значении фактора; – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; – коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.

При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде для уравнения   при модель примет вид: . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе -го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. .

Иными словами, от регрессии по мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид:


,

а исходные данные для данного уравнения будут иметь вид:

,  .

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные и взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида

.

Соответственно получим следующую систему нормальных уравнений:


Если преобразованные переменные и взять в отклонениях от средних уровней, то коэффициент регрессии можно определить как

.

При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии определяется по формуле:

.

Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии представляет собой взвешенную величину по отношению к обычному МНК с весом .

Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Предположим, что рассматривается модель вида

,


для которой дисперсия остаточных величин оказалась пропорциональна
. представляет собой коэффициент пропорциональности, принимающий различные значения для соответствующих значений факторов и . Ввиду того, что

,

рассматриваемая модель примет вид

,

где ошибки гетероскедастичны.

Для того чтобы получить уравнение, где остатки гомоскедастичны, перейдем к новым преобразованным переменным, разделив все члены исходного уравнения на коэффициент пропорциональности . Уравнение с преобразованными переменными составит

.

Это уравнение не содержит свободного члена. Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:

.


Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности
. В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки пропорциональны значениям фактора. Так, если в уравнении

предположить, что , т.е. и , то обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:

.

Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.

Пример. Пусть – издержки производства, – объем продукции, – основные производственные фонды, – численность работников, тогда уравнение


является моделью издержек производства с объемными факторами. Предполагая, что
пропорциональна квадрату численности работников , мы получим в качестве результативного признака затраты на одного работника , а в качестве факторов следующие показатели: производительность труда и фондовооруженность труда . Соответственно трансформированная модель примет вид

,

где параметры , , численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фовдовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.

Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида

.


В нем новые переменные: – затраты на единицу (или на 1 руб. продукции), – фондоемкость продукции, – трудоемкость продукции.

Гипотеза о пропорциональности остатков величине фактора может иметь реальное основание: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать большая дисперсия результативного признака и большая дисперсия остаточных величин.

При наличии одной объясняющей переменной гипотеза трансформирует линейное уравнение

в уравнение

,

в котором параметры и поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии – свободным членом.

Пример. Рассматривая зависимость сбережений от дохода , по первоначальным данным было получено уравнение регрессии

.


Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:

.

Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 – оценки параметра зависимости сбережений от дохода.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Процесс перехода к относительным величинам может быть осложнен выдвижением иных гипотез о пропорциональности ошибок относительно включенных в модель факторов. Использование той или иной гипотезы предполагает специальные исследования остаточных величин для соответствующих регрессионных моделей. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.

2.6 Регрессионные модели с переменной структурой (фиктивные переменные)

До сих пор в качестве факторов рассматривались экономические переменные, принимающие количественные значения в некотором интервале. Вместе с тем может оказаться необходимым включить в модель фактор, имеющий два или более качественных уровней. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т.е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными.

Рассмотрим применение фиктивных переменных для функции спроса. Предположим, что по группе лиц мужского и женского пола изучается линейная зависимость потребления кофе от цены. В общем виде для совокупности обследуемых уравнение регрессии имеет вид:

,

где – количество потребляемого кофе; – цена.

Аналогичные уравнения могут быть найдены отдельно для лиц мужского пола: и женского пола: .

Различия в потреблении кофе проявятся в различии средних и . Вместе с тем сила влияния на может быть одинаковой, т.е. . В этом случае возможно построение общего уравнения регрессии с включением в него фактора «пол» в виде фиктивной переменной. Объединяя уравнения и и, вводя фиктивные переменные, можно прийти к следующему выражению:

,

где и – фиктивные переменные, принимающие значения:


 

В общем уравнении регрессии зависимая переменная рассматривается как функция не только цены но и пола . Переменная рассматривается как дихотомическая переменная, принимающая всего два значения: 1 и 0. При этом когда , то , и наоборот.

Для лиц мужского пола, когда и , объединенное уравнение регрессии составит: , а для лиц женского пола, когда и : . Иными словами, различия в потреблении для лиц мужского и женского пола вызваны различиями свободных членов уравнения регрессии: . Параметр является общим для всей совокупности лиц, как для мужчин, так и для женщин.

Однако при введении двух фиктивных переменных и в модель применение МНК для оценивания параметров и приведет к вырожденной матрице исходных данных, а следовательно, и к невозможности получения их оценок. Объясняется это тем, что при использовании МНК в данном уравнении появляется свободный член, т.е. уравнение примет вид

.

Предполагая при параметре независимую переменную, равную 1, имеем следующую матрицу исходных данных:


.

В рассматриваемой матрице существует линейная зависимость между первым, вторым и третьим столбцами: первый равен сумме второго и третьего столбцов. Поэтому матрица исходных факторов вырождена. Выходом из создавшегося затруднения может явиться переход к уравнениям

или

,

т.е. каждое уравнение включает только одну фиктивную переменную или .

Предположим, что определено уравнение

,

где принимает значения 1 для мужчин и 0 для женщин.

Теоретические значения размера потребления кофе для мужчин будут получены из уравнения

.


Для женщин соответствующие значения получим из уравнения

.

Сопоставляя эти результаты, видим, что различия в уровне потребления мужчин и женщин состоят в различии свободных членов данных уравнений: – для женщин и – для мужчин.

Теперь качественный фактор принимает только два состояния, которым соответствуют значения 1 и 0. Если же число градаций качественного признака-фактора превышает два, то в модель вводится несколько фиктивных переменных, число которых должно быть меньше числа качественных градаций. Только при соблюдении этого положения матрица исходных фиктивных переменных не будет линейно зависима и возможна оценка параметров модели.

Пример. Проанализируем зависимость цены двухкомнатной квартиры от ее полезной площади. При этом в модель могут быть введены фиктивные переменные, отражающие тип дома: «хрущевка», панельный, кирпичный.

При использовании трех категорий домов вводятся две фиктивные переменные: и . Пусть переменная принимает значение 1 для панельного дома и 0 для всех остальных типов домов; переменная принимает значение 1 для кирпичных домов и 0 для остальных; тогда переменные и принимают значения 0 для домов типа «хрущевки».

Предположим, что уравнение регрессии с фиктивными переменными составило:

.


Частные уравнения регрессии для отдельных типов домов, свидетельствуя о наиболее высоких ценах квартир в панельных домах, будут иметь следующий вид: «хрущевки» –
; панельные – ; кирпичные – .

Параметры при фиктивных переменных и представляют собой разность между средним уровнем результативного признака для соответствующей группы и базовой группы. В рассматриваемом примере за базу сравнения цены взяты дома «хрущевки», для которых . Параметр при , равный 2200, означает, что при одной и той же полезной площади квартиры цена ее в панельных домах в среднем на 2200 долл. США выше, чем в «хрущевках». Соответственно параметр при показывает, что в кирпичных домах цена выше в среднем на 1600 долл. при неизменной величине полезной площади по сравнению с указанным типом домов.

В отдельных случаях может оказаться необходимым введение двух и более групп фиктивных переменных, т.е. двух и более качественных факторов, каждый из которых может иметь несколько градаций. Например, при изучении потребления некоторого товара наряду с факторами, имеющими количественное выражение (цена, доход на одного члена семьи, цена на взаимозаменяемые товары и др.), учитываются и качественные факторы. С их помощью оцениваются различия в потреблении отдельных социальных групп населения, дифференциация в потреблении по полу, национальному составу и др. При построении такой модели из каждой группы фиктивных переменных следует исключить по одной переменной. Так, если модель будет включать три социальные группы, три возрастные категории и ряд экономических переменных, то она примет вид:

,


где
– потребление;

– экономические (количественные) переменные.

До сих пор мы рассматривали фиктивные переменные как факторы, которые используются в регрессионной модели наряду с количественными переменными. Вместе с тем возможна регрессия только на фиктивных переменных. Например, изучается дифференциация заработной платы рабочих высокой квалификации по регионам страны. Модель заработной платы может иметь вид:

,

где – средняя заработная плата рабочих высокой квалификации по отдельным предприятиям;

………………………………………………………………………..


Поскольку последний район, указанный в модели, обозначен
, то в исследование включено район.

Мы рассмотрели модели с фиктивными переменными, в которых последние выступают факторами. Может возникнуть необходимость построить модель, в которой дихотомический признак, т.е. признак, который может принимать только два значения, играет роль результата. Подобного вида модели применяются, например, при обработке данных социологических опросов. В качестве зависимой переменной рассматриваются ответы на вопросы, данные в альтернативной форме: «да» или «нет». Поэтому зависимая переменная имеет два значения: 1, когда имеет место ответ «да», и 0 – во всех остальных случаях. Модель такой зависимой переменной имеет вид:

.

Модель является вероятностной линейной моделью. В ней  принимает значения 1 и 0, которым соответствуют вероятности и . Поэтому при решении модели находят оценку условной вероятности события при фиксированных значениях . Для оценки параметров линейно-вероятностной модели применяются методы Logit-, Probit- и Tobit-анализа. Такого рода модели используют при работе с неколичественными переменными. Как правило, это модели выбора из заданного набора альтернатив. Зависимая переменная представлена дискретными значениями (набор альтернатив), объясняющие переменные – характеристики альтернатив (время, цена), – характеристики индивидов (возраст, доход, уровень образования). Модель такого рода позволяет предсказать долю индивидов в генеральной совокупности, которые выбирают данную альтернативу.

Среди моделей с фиктивными переменными наибольшими прогностическими возможностями обладают модели, в которых зависимая переменная рассматривается как функция ряда экономических факторов и фиктивных переменных . Последние обычно отражают различия в формировании результативного признака по отдельным группам единиц совокупности, т.е. в результате неоднородной структуры пространственного или временного характера.




1. Конспект лекций по курсу
2. Распространенность факторов риска сердечно-сосудистых заболеваний у пациентов, находящихся на диспансерном учете по поводу артериальной гипертензии
3. Верифікація 3d зображень на основі фотографій
4. тема и ее альтернативы КУ система зародилась в 16 веке в школах Белоруссии и Украины теоретически обоснован
5. Принцип надлежащего исполнения
6. Гарантии и компенсации
7. Измерение набухания слабосшитых гидрогелей
8. Задание Составьте бухгалтерские проводки ЗАО Лиана в журнале хозяйственных операций за март 2013 г
9. Тема Основы конституционного строя РФ Выполнил Студент 2 курса 4 семестра
10. Реферат- Женская преступность
11. Белогрудка ребятишки сгубили выводок белогрудой куницы и она обезумев от горя мстит всему окружающему с
12. При рассмотрении споров и решении вопроса о правомерности формирования себестоимости арбитражный суд исхо
13. Функции и технологии библиотечного менеджмента
14.  одна из важнейших функций управления персоналом и состоит из количественном качественном временном и прос
15. Фирменный стиль корпораци
16. з курсу Еволюція житла Написання реферату передбачає- набуття навиків самостійного ви
17. Пояснительная записка3
18. ..4 Специфическая терапия.
19. Пищевые и биологически активные стабилизаторы
20. Вариант 1 ~ 1Говорят что самые непримиримые недруги ~ это бывшие друзья ~ сказала нам однажды наша дочь Ол