Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

ядерные реакторы Рождение звезд Эволюция звезд Конец звезды Белые карлики Черные карл

Работа добавлена на сайт samzan.net:


Звезды

   

  Содержание

  Качественные характеристики звезд

  Светимость

   Температура

  Спектры звезд

  Химический состав звезд

  Радиус звезд

  Масса звезд

  Диаграмма Герцшпрунга — Ресселла

  Звезды - ядерные реакторы

  Рождение звезд

  Эволюция звезд

  Конец звезды

  Белые карлики

  Черные карлики

  Нейтронные звезды

  Пульсары

  Сверхновые

  Черные дыры *

  Качественные характеристики звезд

  Светимость

  Светимость звезды L часто выражается в единицах светимости Солнца, которая равна 4*1^33 эрг/с. По своей светимости звезды очень сильно различаются. Есть звезды

белые и голубые сверхгиганты (их, правда, сравнительно немного) , светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Но большинство

звезд составляют "карлики", светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая "абсолютная

величина" звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой - от расстояния до нее. Звезды высокой светимость имеют

отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например +8, +10.

  Температура

  Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3-4тыс. К., то ее цвет красноватый, 6-7 тыс. К. -

желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К. имеют белый или голубоватый цвет. В астрономии существуют вполне объективные методы

измерения цвета звезд. Последний определяется так называемым "показателем цвета", равным разности фотографической и визуальной и визуальной звездной величины.

Каждому значению показателя цвета соответствует определенный тип спектра.

  У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например,

CN, СП, Н20 и др.) . По мер увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также

линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются

преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных

слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на

границе видимой и ультрафиолетовой части спектра. Заметим, что такой вид I имеет спектр нашего Солнца.

  Спектры звезд

  Исключительно богатую информацию дает изучение спектров звезд. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность

спектральных классов обозначается буквами O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с

точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1... В9, А0 и так далее. Спектр звезд в

первом приближении похож на спектр излучающего "черного" тела с некоторой температурой Т. Эти температуры плавно меняются от 40-50 тысяч градусов у звезд

спектрального класса О до 3000 градусов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на

ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли.

  Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий

анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.

  Химический состав звезд

  Химический состав наружных слоев звезд, откуда к нам "непосредственно" приходит их излучение, характеризуется полным преобладанием водорода. На втором месте

находится гелий, а обилие остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходиться тысячи атомов гелия, около 10

атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать,

что наружные слои звезд - это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов.

  Хотя по числу атомов так называемые "тяжелые металлы" (т.е. элементы с атомной массой, большей, чем у гелия) занимают во Вселенной весьма скромное место, их

роль очень велика. Прежде всего, они определяют характер эволюции звезд, т.к. непрозрачность звездных недр для излучений существенно зависит от ее непрозрачности.

  Наличие во Вселенной (в частности в звездах) тяжелых элементов имеет важное значение. Совершенно очевидно, что живая субстанция может быть построена только

при наличии тяжелых элементов и их соединений. Общеизвестна роль углерода в структуре живой материи. Не менее важны и другие элементы, например железо, фосфор.

Царство живого - это сложнейшие сцепления тяжелых элементов. Мы можем, поэтому со всей определенностью сформулировать следующее положение: если бы не было

тяжелых металлов, не было бы и жизни. Поэтому проблема химического состава космических объектов (звезд, туманностей, планет) имеет первостепенное значение для

анализа условий возникновения жизни в тех или иных слоях Вселенной.

  Радиус звезд

  Энергия, испускаемая элементом поверхности звезды единичной площади в единицу времени, определяется законом Стефана-Больцмана. Поверхность звезды равна 4

R2. Отсюда светимость равна: Таким образом, если известны температура и светимость звезды, то мы можем вычислить ее радиус.

  Масса звезд

  В сущности говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (то есть не входящей в состав

кратных систем) изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы

значительно более быстрым. Массы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. В такой

ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем.

Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в состав двойной системы, всегда следует принимать с

некоторой осторожностью.

  Считается, что объекты с массами меньшими 0,02 М уже не являются звездами. Они лишены внутренних источников энергии, и их светимость близка к нулю. Обычно

эти объекты относят к планетам. Наибольшие непосредственно измеренные массы не превышают 60 М.

  Диаграмма Герцшпрунга — Ресселла

  Для понимания природы звезд важно выявить зависимости между их отдельными характеристиками. Такие связи находятся путем сопоставления соответствующих

величин. Так, в начале XX в. датский астроном Э. Герцшпрунг и американский астрофизик Г. Ресселл установили одну из таких зависимостей и представили ее в виде

диаграммы, носящей теперь их имена.

  На горизонтальной оси диаграммы Герцшпрунга — Ресселла (диаграммы Г. — Р) откладывают температуру звезды, а на вертикальной — ее светимость в

относительных единицах (по отношению к светимости Солнца) . Каждой звезде на диаграмме отвечает вполне определенная точка. Обычно говорят, что место на диаграмме

занимает звезда, а не соответствующая ей точка, и при обсуждении эволюции звезд пишут: “звезда движется по диаграмме” , подразумевая при этом, что в процессе эволюции

звезды из-за изменения температуры и светимости звезды соответствующая ей точка на диаграмме Г. — Р. меняет свое положение.

  Из этой диаграммы следует, что светимость звезды и ее спектральный класс связаны между собой определенной, хотя и не однозначной зависимостью. Большинство

звезд расположено вдоль линии, идущей от горячих и ярких звезд к холодным и слабым (“тусклым” ) звездам. Это и есть известная главная последовательность, а

принадлежащие ей звезды - звездами главной последовательности. К этой последовательности принадлежит подавляющее большинство звезд, в том числе и наше Солнце

(спектральный класс G2) . Главная последовательность в месте, отмеченном вертикальной чертой, делится на верхнюю и нижнюю части. Звезды нижней части главной

последовательности называются желтыми или красными карликами (в зависимости от их температуры) . Солнце — типичный желтый карлик.

  Выше главной последовательности в области температур ниже 6000 К расположены звезды, образующие группу красных гигантов (их светимость порядка 102—103 и

радиус порядка 10—60 R) и группу красных сверхгигантов (L 10 L, R 200—300 R) . Звезды горячие (T ЗОООО К) и яркие (L 104 — 106 L, R 40 R) называются белыми

сверхгигантами. Заметьте, что холодных и слабых звезд гораздо больше, чем горячих и ярких.

  В левом нижнем углу диаграммы находятся белые карлики (T 10000 К, L 10-4 L, R O, Ol R) .

  Итак, мы видим, что светимость звезды и спектральный класс взаимосвязаны. Одна из первых задач теории — объяснить эту зависимость, найти физические явления,

лежащие в ее основе. Как это сделала современная астрофизика, мы увидим позже. Здесь же только отметим, что сразу после построения этой диаграммы ей приписали

эволюционное значение: предполагалось, что звезды эволюционируют вдоль главной последовательности от горячих и ярких звезд к холодным и слабым. Потом выяснилось,

что эволюция звезд имеет более сложный характер, и до сих пор звезды, изображения которых находятся в левой верхней части диаграммы, называют "ранними", а звезды

другого конца главной последовательности — "поздними".

  Звезды - ядерные реакторы

  В большинстве термоядерных реакций энергия освобождается при соединении четырех протонов в одно ядро гелия. Такое соединение протонов в ядро гелия может

идти разными путями, но конечный результат будет один и тот же.

  Опишем сначала протон-протонную реакцию.

  Эта реакция начинается с таких столкновений между протонами, в результате которых получается ядро тяжелого водорода — дейтерия. Даже в условиях звездных недр

это происходит очень редко. Как правило, столкновения между протонами являются упругими: после столкновения частицы просто разлетаются в разные стороны. Для того

чтобы в результате столкновения два протона слились в одно ядро дейтерия, необходимо, чтобы при таком столкновении выполнялось два независимых условия. Во-первых,

надо, чтобы у одного из сталкивающихся протонов кинетическая энергия раз в двадцать превосходила бы среднюю энергию тепловых движений при температуре звездных

недр. Как уже говорилось выше, только одна стомиллионная часть протонов имеет такую относительно высокую энергию, необходимую для преодоления “кулоновского

барьера” . Во-вторых, необходимо, чтобы за время столкновения один из двух протонов успел бы превратиться в нейтрон, испустив позитрон и нейтрино. Ибо только протон с

нейтроном могут образовать ядро дейтерия! Заметим, что длительность столкновения всего лишь около 10-21 секунды (оно порядка классического радиуса протона,

поделенного на его скорость) . Если все это учесть, то получается, что каждый протон имеет реальные шансы превратиться таким способом в дейтерий только раз в несколько

десятков миллиардов лет. Но так как протонов в недрах звезд достаточно много, такие реакции, и притом в нужном количестве, будут иметь место.

  По-другому складывается судьба вновь образовавшихся ядер дейтерия. Они "жадно", всего лишь через несколько секунд, "заглатывают" какой-нибудь близкий протон,

превращаясь в изотоп гелия 3Не. После этого возможны три пути (ветви) ядерных реакций. Чаще всего изотоп гелия будет взаимодействовать с подобным себе ядром, в

результате чего образуется ядро "обыкновенного" гелия и два протона. Так как концентрация изотопа Не чрезвычайно мала, это произойдет через несколько миллионов лет.

Напишем теперь последовательность этих реакций и выделяющуюся при них энергию.

  Здесь буква v означает нейтрино, а у — гамма-квант. Не вся освободившаяся в результате этой цепи реакций энергия передается звезде, так как часть энергии уносится

нейтрино. С учетом этого обстоятельства энергия, выделяемая при образовании одного ядра гелия, равна 26,2 МэВ или 4,2 •10-5 эрг.

  Вторая ветвь протон-протонной реакции начинается с соединения ядра Не с ядром "обыкновенного" гелия 4Не, после чего образуется ядро бериллия 7Be. Ядро бериллия

в свою очередь может захватить протон, после чего образуется ядро бора 8В, или захватить электрон и превратиться в ядро лития. В первом случае образовавшийся

радиоактивный изотоп 8В претерпевает бета-распад: Заметим, что нейтрино, образовавшиеся при этой реакции, как раз и обнаружили при помощи уникальной, дорогостоящей

установки. Радиоактивный бериллий Ве весьма неустойчив и быстро распадается на две альфа-частицы. Наконец, последняя, третья ветвь протон-протонной реакции

включает в себя следующие звенья: 7Ве после захвата электрона превращается в 7li, который, захватив протон, превращается в неустойчивый изотоп 8Be, распадающийся, как и

во второй цепи, на две альфа-частицы.

  Еще раз отметим, что подавляющее большинство реакций идет по первой цепи, но роль "побочных" цепей отнюдь не мала.

  Перейдем теперь к рассмотрению углеродно-азотного цикла. Этот цикл состоит из шести реакций.

  Поясним содержание этой таблицы. Протон, сталкиваясь с ядром углерода, превращается в радиоактивный изотоп азота 13N. При этой реакции излучается -квант.

Изотоп 13N, претерпевая - распад с испусканием позитрона и нейтрино, превращается в изотоп углерода 13С. Последний, сталкиваясь с протоном, превращается в обычное

ядро азота 14N. При этой реакции также испускается -квант. Далее, ядро азота сталкивается с протоном, после чего образуется радиоактивный изотоп кислорода 15О и -квант.

Затем этот изотоп путем -распада превращается в изотоп азота 15N. Наконец, последний, присоединив к себе во время столкновения протон, распадается на обычный углерод

и гелий. Вся цепь реакций представляет собой последовательное "утяжеление" ядра углерода путем присоединения протонов с последующими -распадами. Последним звеном

этой цепи является восстановление первоначального ядра углерода и образование нового ядра гелия за счет четырех протонов, которые в разное время один за другим

присоединились к 12С и образующимся из него изотопам. Как видно, никакого изменения числа ядер 12С в веществе, в котором протекает эта реакция, не происходит. Углерод

служит здесь "катализатором" реакции.

  Во втором столбце приводится энергия, выделяющаяся на каждом этапе углеродно-азотной реакции. Часть этой энергии выделяется в форме нейтрино, возникающих

при распаде радиоактивных изотопов 13N и 15О. Нейтрино свободно выходят из звездных недр наружу, следовательно, их энергия не идет на нагрев вещества звезды.

Например, при распаде 15О энергия образующегося нейтрино составляет в среднем около 1 МэВ. Окончательно при образовании одного ядра гелия путем углеродно-азотной

реакции выделяется (без учета нейтрино) 25 МэВ энергии, а нейтрино уносят около 5% этой величины.

  В третьем столбце таблицы II приведены значения скорости различных звеньев углеродно-азотной реакции. Для - процессов это просто период полураспада.

Значительно труднее определить скорость реакции, когда происходит утяжеление ядра путем присоединения протона. В этом случае надо знать вероятности проникновения

протона через кулоновский барьер, а также вероятности соответствующих ядерных взаимодействий, так как само по себе проникновение протона в ядро еще не обеспечивает

интересующего нас ядерного превращения. Вероятности ядерных реакций получаются из лабораторных экспериментов либо вычисляются теоретически. Для их надежного

определения потребовались годы напряженной работы физиков-ядерщиков, как теоретиков, так и экспериментаторов. Числа в третьем столбце дают "время жизни" различных

ядер для центральных областей звезды с температурой в 13 миллионов Кельвинов и плотностью водорода 100 г/см3. Например, для того чтобы при таких условиях ядро 12С,

захватив протон, превратилось в радиоактивный изотоп углерода, надо "подождать" 13 миллионов лет! Следовательно, для каждого "активного" (т.е. участвующего в цикле)

ядра реакции протекают чрезвычайно медленно, но все дело в том, что ядер достаточно.

  Основным источником энергии Солнца, температура центральных областей которого близка к 14 миллионам кельвинов, является протон- протонная реакция. Для

более массивных, а следовательно, и более горячих звезд существенна углеродно-азотная реакция, зависимость которой от температуры значительно более сильная.

  Непрерывно идущие в центральных областях звезд ядерные реакции “медленно, но верно” меняют химический состав звездных недр. Главная тенденция этой

химической эволюции—превращение водорода в гелий. Помимо этого в процессе углеродно-азотного цикла меняется относительная концентрация различных изотопов

углерода и азота до тех пор, пока не установится некоторое определенное равновесие. При таком равновесии количество реакций за единицу времени, приводящих к

образованию какого-нибудь изотопа, равно количеству реакций, которые его "разрушают". Однако время установления такого равновесия может быть очень большим. А пока

равновесие не установится, относительные концентрации различных изотопов могут меняться в самых широких пределах.

  Ядерные процессы играют, как мы видели в этом параграфе, фундаментальную роль в длительной, спокойной эволюции звезд, находящихся на главной

последовательности. Но, кроме того, их роль является определяющей при быстро протекающих нестационарных процессах взрывного характера, являющихся поворотными

этапами в эволюции звезд. Наконец, даже, казалось бы, для такой в высшей степени тривиальной и очень "спокойной" звезды, какой является наше Солнце, ядерные реакции

открывают возможность объяснения явлений, которые представляются очень далекими от ядерной физики.

   

  Рождение звезд

  Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газово-пылевой

межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений

современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических

представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие

наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.

  Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газово-пылевой среды, служит расположение групп заведомо молодых звезд (так

называемых “ассоциаций” ) в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется

преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных “радио изображений” некоторых близких к нам

галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит

естественное объяснение, на деталях которого мы здесь останавливаться не будем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии “зоны Н

Н” , т.е. облака ионизованного межзвездного газа. Причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд — объектов

заведомо молодых.

  Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В прошлом веке и в начале этого века предлагались различные гипотезы о

природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность

метеоров, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях” перейти

в излучение. Как мы увидим, ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца

в течение требуемого времени.

  Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются

термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов градусов) .

  В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно

"просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если

предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратится в гелий, то выделившееся

количество энергии составит примерно 1052 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце

"израсходовало" не свыше 10% своего первоначального запаса водорода.

  Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало

конденсироваться облако межзвездной газово-пылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого

облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура

недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому

он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие протозвезды наблюдаются в отдельных туманностях в виде очень темных компактных

образований, так называемых глобул. Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения. Обычно одновременно образуется не

одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными

астрономам. Весьма вероятно, (что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в

планеты.

  При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как

размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности

пропорционален четвертой степени температуры (закон Стефана — Больцмана) , температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость

почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр — светимость" такие звезды расположатся вправо от главной последовательности, т.е.

попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.

  В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет вследствие чего спектр становится все более

ранним. Таким образом, двигаясь по диаграмме "спектр — светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура

звездных недр уже оказывается достаточной для тою, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение

и газовый шар перестает сжиматься. Протозвезда становится звездой.

  Эволюция звезд

  Чтобы пройти самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной,

нужно всего лишь несколько миллионов лет, если меньше — несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю

фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются. Мы имеем в виду очень интересные звезды типа Т Тельца, обычно

погруженные в темные туманности.

  Б 5966 г. совершенно неожиданно выявилась возможность наблюдать протозвезды на ранних стадиях их эволюции. Велико же было удивление радиоастрономов, когда

при обзоре неба на волне 18 см, соответствующей радиолинии ОН, были обнаружены яркие, чрезвычайно компактные (т.е. имеющие малые угловые размеры) источники. Это

было настолько неожиданно, что первое время отказывались даже верить, что столь яркие радиолинии могут принадлежать молекуле гидроксила. Была высказана гипотеза, что

эти линии принадлежат какой-то неизвестной субстанции, которой сразу же дали "подходящее" имя "мистериум". Однако "мистериум" очень скоро разделил судьбу своих

оптических "братьев" — "небулия" и "короння". Дело в том, что многие десятилетия яркие линии туманностей и солнечной короны не поддавались отождествлению с какими

бы то ни было известными спектральными линиями. Поэтому их приписывали неким, неизвестным на земле, гипотетическим элементам — "небулию" и "коронию". В

1939—1941 гг. было убедительно показано, что загадочные линии "корония" принадлежат многократно ионизованным атомам железа, никеля и кальция.

  Если для "развенчания" "небулия" и "корония" потребовались десятилетия, то уже через несколько недель после открытия стало ясно, что линии "мистериума"

принадлежат обыкновенному гидроксилу, но только находящемуся в необыкновенных условиях.

  Итак, источники "мистериума" — это гигантские, природные космические мазеры, работающие на волне линии гидроксила, длина которой 18 см. Именно в мазерах (а

на оптических и инфракрасных частотах — в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях

благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом "активирована". Это означает, что некоторый "сторонний"

источник энергии (так называемая "накачка") делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей

"накачки" мазер или лазер невозможны. Вопрос о природе механизма "накачки" космических мазеров, пока еде окончательно не решен. Однако скорее всего "накачкой" служит

достаточно мощное инфракрасное излучение. Другим возможным механизмом “накачки” могут быть некоторые химические реакции.

  Механизм "накачки" этих мазеров пока еще не совсем ясен, все же можно составить себе грубое представление о физических условиях в облаках, излучающих мазерным

механизмом линию 18 см. Прежде всего, оказывается, что эти облака довольно плотны: в кубическом сантиметре там имеется по крайней мере 108—109 частиц, причем

существенная (а может быть и большая) часть их — молекулы. Температура вряд ли превышает две тысячи градусов, скорее всего она порядка 1000 градусов. Эти свойства

резко отличны от свойств даже самых плотных облаков межзвездного газа. Учитывая еще сравнительно небольшие размеры облаков, мы невольно приходим к выводу, что они

скорее напоминают протяженные, довольно холодные атмосферы звезд — сверхгигантов. Очень похоже, что эти облака есть не что иное, как ранняя стадия развития

протозвезд, следующая сразу за их конденсацией из межзвездной среды. В пользу этого утверждения (которое автор этой книги высказал еще в 1966 г.) говорят и другие факты.

В туманностях, где наблюдаются космические мазеры, видны молодые горячие звезды. Следовательно, там недавно закончился и, скорее всего, продолжается и в настоящее

время, процесс звездообразования. Пожалуй, самое любопытное это то, что, как показывают радиоастрономические наблюдения, космические мазеры этого типа как бы

"погружены" в небольшие, очень плотные облака ионизованного водорода. В этих облаках имеется много космической пыли, что делает их ненаблюдаемыми в оптическом

диапазоне. Такие "коконы" ионизуются молодой, горячей звездой, находящейся внутри них. При исследовании процессов звездообразования весьма полезной оказалась

инфракрасная астрономия. Ведь для инфракрасных лучей межзвездное поглощение света не так существенно.

  Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуются несколько сгустков разной массы,

эволюционирующих в протозвезды. Скорость эволюции различна: для более массивных сгустков она будет больше. Поэтому раньше всего превратится в горячую звезду

наиболее массивный сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды. Их-то мы и наблюдаем как источники мазерного

излучения в непосредственной близости от "новорожденной" горячей звезды, ионизующей не сконденсировавший в сгустки водород "кокона". Разумеется, эта грубая схема

будет в дальнейшем уточняться, причем, конечно, в нее будут внесены существенные изменения. Но факт остается фактом: неожиданно оказалось, что некоторое время (скорее

всего — сравнительно короткое) новорожденные протозвезды, образно выражаясь, "кричат" о своем появлении на свет, пользуясь новейшими методами квантовой

радиофизики (т.е. мазерами) .

  Оказавшись на главной последовательности и перестав сжигаться, звезда длительно излучает практически не меняя своего положения на диаграмме "спектр -

светимость". Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как

бы геометрическое место точек на диаграмме "спектр - светимость", где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным

реакциям. Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной

излучающей звезды на диаграмме "спектр- светимость". Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых

элементов уменьшится, звезда "ляжет" на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше,

относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности.

  Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность и

она довольно быстро расходует запасы своего водородного "горючего". Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько

десятков раз (это горячие голубые гиганты спектрального класса О) , могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то

время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10—15 млрд. лет.

  "Выгорание" водорода (т.е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное

вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слон сохраняют относительное содержание водорода

неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь "выгорит".

Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается на

диаграмме "спектр - светимость" вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд.

  Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре "выгорит"? Так как выделение энергии в центральных областях звезды прекращается,

температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а

температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых

элементов. Газ в таком состоянии носит название "вырожденного". Он обладает рядом интересных свойств. В этой плотной горячей области ядерные реакции происходить не

будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Звезда как бы "разбухает", и начнет "сходить" с главной

последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых

размерах более высокую светимость.

   

  Конец звезды

  Что произойдет со звездами, когда реакция "гелий — углерод" в центральных областях исчерпает себя, так же как и водородная реакция в тонком слое, окружающем

горячее плотное ядро? Какая стадия эволюции наступит вслед за стадией красного гиганта?

  Белые карлики

  Совокупность данных наблюдений, а также ряд теоретических соображений говорят о том, что на этом этапе эволюции звезды, масса которых меньше, чем 1,2 массы

Солнца, существенную часть своей массы, образующую их наружную оболочку, "сбрасывают". Такой процесс мы наблюдаем, по-видимому, как образование так называемых

"планетарных туманностей". После того как от звезды отделится со сравнительно небольшой скоростью наружная оболочка, "обнажатся" ее внутренние, очень горячие слои.

При этом отделившаяся оболочка будет расширяться, все дальше и дальше отходя от звезды.

  Мощное ультрафиолетовое излучение звезды — ядра планетарной туманности — будет ионизовать атомы в оболочке, возбуждая их свечение. Через несколько десятков

тысяч лет оболочка рассеется и останется только небольшая очень горячая плотная звезда. Постепенно, довольно медленно остывая, она превратится в белый карлик.

  Таким образом белые карлики как бы "вызревают" внутри звезд — красных гигантов — и "появляются на свет" после отделения наружных слоев гигантских звезд. В

других случаях сбрасывание наружных слоев может происходить не путем образования планетарных туманностей, а путем постепенного истечения атомов. Так или иначе

белые карлики, в которых весь водород "выгорел" и ядерные реакции прекратились, по-видимому, представляют собой заключительный этап эволюции большинства звезд.

Логическим выводом отсюда является признание генетической связи между самыми поздними этапами эволюции звезд и белыми карликами.

  Черные карлики

  Постепенно остывая, они все меньше и меньше излучают, переходя в невидимые "черные" карлики. Это мертвые, холодные звезды очень большой плотности, в

миллионы раз плотнее воды. Их размеры меньше размеров земного шара, хотя массы сравнимы с солнечной. Процесс остывания белых карликов длится много сотен

миллионов лет. Так кончает свое существование большинство звезд. Однако финал жизни сравнительно массивных звезд может быть значительно, более драматическим.

  Нейтронные звезды

  Если масса сжимающейся звезды превосходит массу Солнца более чем в 1,4 раза, то такая звезда, достигнув стадии белого карлика, на том не остановится.

Гравитационные силы в этом случае очень велики, что электроны вдавливаются внутрь атомных ядер. В результате изотопы превращаются в нейтроны способные прилетать

друг к другу без всяких промежутков. Плотность нейтронных звезд превосходит даже плотность белых карликов; но если масса материала не превосходит 3 солнечных масс,

нейтроны, как и электроны, способны сами предотвратить дальнейшее сжатие. Типичная нейтронная звезда имеет в поперечнике всего лишь от 10 до 15 км, а один кубический

сантиметр ее вещества весит около миллиарда тонн. Помимо неслыханно громадной плотности, нейтронные звезды обладают еще двумя особыми свойствами, которые

позволяют их обнаружить, невзирая на столь малые размеры: это быстрое вращение и сильное магнитное поле. В общем, вращаются все звезды, но когда звезда сжимается,

скорость ее вращения возрастает - точно так же, как фигурист на льду вращается гораздо быстрее, когда прижимает к себе руки. Нейтронная звезда совершает несколько

оборотов в секунду. Наряду с этим исключительно быстрым вращением, нейтронные звезды имеют магнитное поле, в миллионы раз более сильное, чем у Земли.

  Пульсары

  Первые пульсары были открыты в 1968 г., когда радиоастрономы обнаружили регулярные сигналы, идущие к нам из четырех точек Галактики. Ученые были поражены

тем фактом, что какие-то природные объекты могут излучать радиоимпульсы в таком правильном и быстром ритме. В начале правда, ненадолго астрономы заподозрили

участие неких мыслящих существ, обитающих в глубинах Галактики. Но вскоре было найдено естественное объяснение. В мощном магнитном поле нейтронной звезды

движущиеся по спирали электроны генерируют радиоволны, которые излучаются узким пучком, как луч прожектора. Звезда быстро вращается, и радиолуч пересекает линию

нашего наблюдения, словно маяк. Некоторые пульсары излучают не только радиоволны, но и световые, рентгеновские и гамма-лучи. Период самых медленных пульсаров

около четырех секунд, а самых быстрых - тысячные доли секунды. Вращение этих нейтронных звезд было по каким-то причинам еще более ускорено; возможно, они входят в двойные системы.

  Сверхновые

  Звезды, массы которых не достигают 1,4 солнечной, умирают тихо и безмятежно. А что происходит с более массивными звездами? Как возникают нейтронные звезды и черные дыры? Катастрофический взрыв, которым заканчивается жизнь массивной звезды, - это воистину впечатляющее событие. Это самое мощное из природных явлений, совершающихся в звездах. В мгновение высвобождается больше энергии, чем излучает ее наше Солнце за 10 миллиардов лет. Световой поток, посылаемый одной гибнущей

звездой, эквивалентен целой галактике, а ведь видимый свет составляет лишь малую долю полной энергии. Остатки взорвавшейся звезды разлетаются прочь со скоростями до 20 000 км в секунду.

  Такие грандиозные звездные взрывы называются сверхновыми. Сверхновые - довольно редкое явление. Каждый год и других галактиках обнаруживают от 20 до 30

сверхновых, главным образом в результате систематического поиска. За столетие в каждой галактике их может быть от одной до четырех. Однако в нашей собственной

Галактике сверхновых не наблюдали с 1604 г. Может быть, они и были, но остались невидимыми из-за большого количества пыли в Млечном Пути.

  Черные дыры

  ОТ звезды, имеющей массу больше, чем три солнечных, и радиус больше 8,85километра, свет уже не сможет уйти от нее в пространство. Уходящий от поверхности луч

искривляется в поле силы тяжести так сильно, что возвращается обратно на поверхность. Кванты света - фотоны - излучаемые телом, возвращаются обратно, как брошенные

вверх на земле камни. Никакое излучение не прорывается во внешний мир, чтобы донести весть о печальной судьбе звезды.

  Превратившись в черную дыру, небесное тело не исчезает из Вселенной. Оно дает о себе знать внешнему миру благодаря своей гравитации. Черная дыра поглощает

световые лучи, идущие от нее на более значительное расстояние. Черная дыра может вступать в гравитационное взаимодействие с другими телами: она может удерживать

около себя планеты или образовывать с другой звездой двойную систему.

  Мы неоднократно подчеркивали, что скорость эволюции звезд определяется их первоначальной массой. Так как по ряду признаков со времени образования нашей

звездной системы — Галактики — прошло около 15—20 млрд. лет, то за это конечное (хотя и огромное) время весь описанный эволюционный путь прошли только те звезды,

массы которых превышают некоторую величину. По-видимому, эта "критическая" масса всего лишь на 10—20% превышает массу Солнца. С другой стороны, как уже

подчеркивалось, процесс образования звезд из межзвездной газово-пылевой среды происходил в нашей Галактике непрерывно. Он происходит и сейчас. Именно поэтому мы

наблюдаем горячие массивные звезды в левой верхней части главной последовательности. Но даже звезды, образовавшиеся в самом начале формирования Галактики, если их

масса их меньше чем 1,2 солнечной, еще не успели сойти с главной последовательности. Заметим, кстати, что темп звездообразования в настоящее время значительно ниже, чем много миллиардов лет назад. Солнце образовалось около 5 млрд. лет назад, когда Галактика уже давно сформировалась и в основных чертах была сходна с "современной". Вот уже, по крайней мере, 4,5 млрд. лет оно "сидит" на главной последовательности, устойчиво излучая благодаря ядерным реакциям превращения водорода в гелий, протекающим в его центральных областях. Сколько еще времени это будет продолжаться? Расчеты показывают, что наше Солнце станет красным гигантом через 8 млрд. лет. При этом его светимость увеличится в сотни раз, а радиус — в десятки. Эта стадия эволюции нашего светила займет несколько сот миллионов лет. Наконец, тем или иным способом разбухшее Солнце сбросит свою оболочку и превратится в белый карлик. Вообще говоря, нам, конечно, небезразлична судьба Солнца, так как с нею тесно связано развитие жизни на Земле.

Космические объекты: Галактики

   

  В одном из выступлений А. Энштейн сказал (в 1929 г.) : "Если говорить честно, мы хотим не только узнать, как устроена,.. но и по возможности достичь цели утопической и дерзкой на вид - понять, почему природа является именно такой... В этом состоит прометеевский элемент научного творчества" Галактики стали предметом космогонических исследований с 20-х годов нашего века, когда была надежно установлена их действительная природа и, оказалось, что это не туманности, т.е. не облака газа и

пыли, находящиеся неподалеку от нас, а огромные звездные миры, лежащие от нас на очень больших расстояниях от нас. Открытия и исследования в области космологии

прояснили в последние десятилетия многое из того, что касается предыстории галактик и звезд, физического состояния разряженного вещества, из которого они

формировались в очень далекие времена. В основе всей современной космологии лежит одна фундаментальная идея - восходящая к Ньютону идея гравитационной

неустойчивости. Вещество не может оставаться однородно рассеянным в пространстве, ибо взаимное притяжение всех частиц вещества стремиться создать в нем сгущения тех

или иных масштабов и масс. В ранней Вселенной гравитационная неустойчивость усиливала первоначально очень слабые нерегулярности в распределении и движении

вещества и в определенную эпоху привела к возникновению сильных неоднородностей: "блинов" - протоскоплений. Границами этих слоев уплотнения служили ударные

волны, на фронтах которых первоначально невращательное, безвихревое движение вещества приобретало завихренность. Распад слоев на отдельные сгущения тоже

происходил, по-видимому, из-за гравитационной неустойчивости, и это дало начало протогалактикам.

  Многие из них оказывались быстро вращающимися благодаря завихренному состоянию вещества, из которого они формировались. Фрагментация протогалактических

облаков в результате их гравитационной неустойчивости вела к возникновению первых звезд, и облака превращались в звездные системы галактики. Те из них, которые

обладали быстрым вращением, приобретали из-за этого двухкомпонентную структуру - в них формировались гало, более или менее сферической формы, и диск, в котором

возникали спиральные рукава, где и до сих пор продолжается рождение звезд. Протогалактики, у которых вращение было медленнее или вовсе отсутствовало, превращались в

эллиптические или неправильные галактики.

  Параллельно с этим процессом происходило формирование крупномасштабной структуры Вселенной - возникали сверхскопления галактик, которые, соединяясь своими

краями, образовывали подобие ячеек или пчелиных сот; их удалось распознать в последние годы.

  В 20-30 гг. XX века Хаббл разработал основы структурной классификации галактик - гигантских звездных систем, согласно которой различают три класса галактик:

  I. Спиральные галактики - характерны двумя сравнительно яркими ветвями, расположенными по спирали. Ветви выходят либо из яркого ядра (такие галактики

обозначаются S) , либо из концов светлой перемычки, пересекающей ядро (обозначаются - SB) .

  Представитель - галактика М82 в созвездии Б. Медведицы, не имеет четких очертаний, и состоят в основном из горячих голубых звезд и разогретых ими газовых

облаков. М82 находится от нас на расстоянии 6.5 миллионов световых лет. Возможно, около миллиона лет тому назад в центральной ее части произошел мощный взрыв, в

результате которого она приобрела сегодняшнюю форму.

  Спиральная галактика М51 в созвездии Гончих Псов - одна из самых удивительных спиральных звездных систем. Расстояние до них составляет около 8 миллионов

световых лет. Утолщение на конце спиральной ветви - это самостоятельная неправильная галактика. Отдельные яркие звезды находятся в нашей галактике.

  II. Эллиптические галактики (обозначаются Е) - имеющие форму эллипсоидов.

  Представитель - кольцевая туманность в созвездии Лиры находится на расстоянии 2100 световых лет от нас и состоит из светящегося газа, окружающего центральную

звезду. Эта оболочка образовалась, когда состарившаяся звезда сбросила газовые покровы, и они устремились в пространство. Звезда сжалась и перешла в состояние белого

карлика, по массе сравнимого с нашим солнцем, а по размеру с Землей.

  III. Иррегулярные (неправильные) галактики (обозначаются I) обладающие неправильными формами.

  Представители - Большое Магелланово Облако находится на расстоянии 165000 световых лет и, таким образом, является ближайшей к нам галактикой сравнительно

небольшого размера. Рядом с ней расположена галактика поменьше Малое Магелланово Облако. Обе они - спутники нашей галактики.

  По степени клочковатости ветвей спиральные галактики разделяются на подтипы а, в, с. У первых из них - ветви аморфны, у вторых - несколько клочковаты, у третьих -

очень клочковаты, а ядро всегда неярко и мало. Во второй половине 40-х годов ХХ века У. Бааде (США) установил, что клочковатость спиральных ветвей и их голубизна растут

с повышением содержания в них горячих голубых звезд, их скоплений и диффузных туманностей. Центральные части спиральных галактик желтее, чем ветви и содержит

старые звезды (население второго типа, по Бааде, или население сферической составляющей) , тогда как плоские спиральные ветви состоят из молодых звезд (население

первого типа, или население плоской составляющей) .

  Плотность распределения звезд в пространстве растет с приближением к экваториальной плоскости спиральных галактик. Эта плоскость является плоскостью

симметрии системы, и большинство звезд при своем вращении вокруг центра галактики остается вблизи нее; периоды обращения составляют 10^7 - 10^9 лет. При этом

внутренние части вращаются как твердое тело, а на периферии угловая и линейная скорости обращения убывают с удалением от центра. Однако в некоторых случаях

находящееся внутри ядра еще меньшее ядрышко ("керн") вращается быстрее всего. Аналогично вращаются и неправильные галактики, являющиеся также плоскими звездными

системами.

  Эллиптические галактики состоят из звезд второго типа населения. Вращение обнаружено лишь у наиболее сжатых из них. Космической пыли в них, как правило, нет,

чем они отличаются от неправильных и особенно спиральных галактик, в которых поглощающее свет пылевое вещество имеется в большом количестве.

  В спиральных галактиках поглощающее свет пылевое вещество имеется в большем количестве. Оно составляет от нескольких тысячных до сотой доли полной их массы.

Вследствие концентрации пылевого вещества к экваториальной плоскости, оно образует темную полосу у галактик, повернутых к нам ребром и имеющих вид веретена.

  Радиоастрономические наблюдения позволили обнаружить в галактиках скопления нейтрального водорода. Масса его относительно мала в спиральных галактиках типа

Sa, достигает нескольких процентов в Sb и доходит до 10% от массы звезд в галактиках Sc, а также в неправильных галактиках.

  В основном, нейтральный водород - главная часть газовой составляющей галактик - расположен в узком экваториальном слое, но отдельные облака наблюдаются и

далеко от него, где нет весьма горячих звезд, способных ионизировать его и привести в состояние свечения.

  Последующие наблюдения показали, что описанная классификация недостаточна, чтобы систематизировать все многообразие форм и свойств галактик. Так, были

обнаружены галактики, занимающие в некотором смысле промежуточное положение между спиральными и эллиптическими галактиками (обозначаются So) . Эти галактики

имеют огромное центральное сгущение и окружающий его плоский диск, но спиральные ветви отсутствуют. В 60-х годах ХХ века были открыты многочисленные

пальцеобразные и дисковидные галактики со всеми градациями обилия горячих звезд и пыли. Еще в 30-х годах ХХ века были открыты эллиптические карликовые галактики в

созвездиях Печи и Скульптора с крайне низкой поверхностной яркостью, настолько малой, что эти, одни из ближайших к нам, галактик даже в центральной своей части с

трудом видны на фоне неба. С другой стороны, в начале 60-х годов ХХ века было открыто множество далеких компактных галактик, из которых наиболее далекие по своему

виду неотличимы от звезд даже в сильнейшие телескопы. От звезд они отличаются спектром, в котором видны яркие линии излучения с огромными красными смещениями,

соответствующими таким большим расстояниям, на которых даже самые яркие одиночные звезды не могут быть видны. В отличие от обычных далеких галактик, в которые, из-

за сочетания истинного распределения энергии в их спектре и красного смещения выглядят красноватыми, наиболее компактные галактики (называющиеся также

квазозвездными галактиками) имеют голубоватый цвет. Как правило, эти объекты в сотни раз ярче обычных сверхгиганских галактик, но есть и более слабые. У многих

галактик обнаружено радиоизлучение нетепловой природы, возникающее, согласно теории русского астронома И. С. Шкловского, при торможении в магнитном поле

электронов и более тяжелых заряженных частиц, движущихся со скоростями, близкими к скорости света (так называемое синхротронное излучение) . Такие скорости частицы

получают в результате грандиозных взрывов внутри галактик.

  Компактные далекие галактики, обладающие мощным нетепловым радиоизлучением, называются N-галактиками.

  Звездообразные источники с таким радиоизлучением, называются квазарами (квазозвездными радиоисточниками) , а галактики, обладающие мощным радиоизлучением

и имеющие заметные угловые размеры, - радиогалактиками.

  Все эти объекты чрезвычайно далеки от нас, что затрудняет их изучение.

  Радиогалактики, имеющие особенно мощное нетепловое радиоизлучение, обладают преимущественно эллиптической формой, встречаются и спиральные.

  Большой интерес представляют так называемые галактики Сейферта. В спектрах их небольших ядер имеется много очень широких ярких полос, свидетельствующих о

мощных выбросах газа из их центра со скоростями, достигающими несколько тысяч км/сек. У некоторых галактиках Сейферта обнаружено очень слабое нетепловое

радиоизлучение. Не исключено, что и оптическое излучение таких ядер, как и в квазарах, обусловлено не звездами, а также имеет нетепловую природу. Возможно, что мощное

нетепловое радиоизлучение - временный этап в развитии квазозвездных галактик.

  Близкие к нам радиогалактики изучены полнее, в частности методами оптической астрономии. В некоторых из них обнаружены пока еще не объясненные до конца

особенности. Так, в эллиптической галактике Цента А обнаружена необычайно мощная темная полоса вдоль ее диаметра. Еще одна радиогалактика состоит из двух

эллиптических галактик, близких друг к другу и соединенных перемычкой, состоящей из звезд.

  При изучении неправильной галактики М82 в созвездии Большой Медведицы американские астрономы А. Сандж и Ц. Линдс в 1963 году пришли к заключению, что в

ее центре около 1,5 миллионов лет назад произошел грандиозный взрыв, в результате которого во все стороны со скоростью около 1000 км/сек были выброшены струи

горячего водорода. Сопротивление межзвездной среды помешало распространению струй газа в экваториальной плоскости, и они потекли преимущественно в двух

противоположенных направлениях вдоль оси вращения галактики. Этот взрыв, по-видимому, породил и множество электронов со скоростями, близкими к скорости света,

которые явились причиной нетеплового радиоизлучения.

  Задолго до обнаружения взрыва в М82 для объяснения других многочисленных фактов советский астроном В. А. Амбарцумян выдвинул гипотезу о возможности

взрывов в ядрах галактик. По его мнению, такое вещество и сейчас находится в центре некоторых галактик, и оно может делиться на части при взрывах, которые сопровождаются сильным радиоизлучением.

  Таким образом, радиогалактики - это галактики, у которых ядра находятся в процессе распада. Выброшенные плотные части, продолжают дробиться, возможно, образуют новые галактики - сестры, или спутники галактик меньшей массы. При этом скорости разлета осколков могут достигать огромных значений. Исследования показали, что многие группы и даже скопления галактик распадаются: их члены неограниченно удаляются друг от друга, как если бы они все были порождены взрывом.

  Не объяснены еще также причины образования так называемых взаимодействующих галактик, обнаруженных в 1957-58 годах советским астрономом Б. А. Воронцовым Вильяминовым. Это пары или тесные группы галактик, в которых один или несколько членов имеют явные искажения формы, придатки; иногда они погружены в общий светящийся туман.

  Наблюдаются такие тонкие перемычки, соединяющие пару галактик, и "хвосты", направленные прочь от соседней галактики, как бы отталкиваемые ею. Перемычки иногда бывают двойными, что свидетельствуют о том, что искажения форм взаимодействующих галактик не могут быть объяснены приливными явлениями. Часто большая галактика одной из своих ветвей, иногда деформированной, соединяется со спутником. Все эти детали, подобно самим галактикам, состоят из звезд и иногда диффузной материи.

  Часто галактики встречаются в пространстве парами и более крупными группами, иногда в виде скоплений, содержащих сотни галактик.

  Наша галактика с Магеллановыми Облаками и с другими ближайшими галактиками составляют, вероятно, также отдельное местное скопление галактик. Магеллановы

облака и наша галактика, по-видимому, погружены в общее для них водородное облако. Группы и скопления разнообразны по типам входящих в них галактик. Иногда в них

входят только спиральные и неправильные, иногда - только эллиптические галактики, иногда же - и те, и другие. Ближайшими к нам являются разряженное облако галактик в

Большой Медведице и неправильные скопления в созвездии Девы. Оба содержат галактики всех типов. Очень богатое и компактное скопление галактик Е и So, находящиеся в

созвездии Волос Вероники, насчитывает тысячи членов. Светимости и размеры галактик весьма разнообразны.

  Галактики - сверхгиганты имеют светимости, в 10 раз превышающие светимость Солнца, квазары в среднем еще в 100 раз ярче; слабейшая же из известных галактик -

карликов сравнимы с обычными шаровыми звездными скоплениями в нашей галактике. Их светимость составляет около 10 светимости солнца.

  Размеры галактик весьма разнообразны и колеблются от десятков парсек до десятков тысяч парсек.

  Пространство между галактиками, особенно внутри скоплений галактик, по-видимому, содержит иногда космическую пыль. Радиотелескопы не обнаруживают в них

ощутимого количества нейтрального водорода, но космические лучи, пронизывают его насквозь так же, как и в электромагнитное излучение.

  Известно около 1.5 тысяч ярких галактик (до 13-ой звездной величины) . В "Морфологическом каталоге галактик" (который состоит из четырех томов) , составленном

еще в СССР (публикация окончена в 1968 году) , содержатся сведения о 30 тысячах галактик ярче 15 звездной величины. Они охватывают 3/4 всего неба. 5 - метровому

телескопу доступно несколько миллиардов галактик до 21 - звездной величины. Такие галактики отличаются от слабейших звезд лишь легкой размытостью изображения.

  Галактика состоит из множества звезд различных типов, а также звездных скоплений и ассоциаций, газовых и пылевых туманностей и отдельных атомов и частиц,

рассеянных в межзвездном пространстве. Большая часть их занимает объем линзообразной формы поперечником около 30 и толщиной около 4 килопарсек (соответственно

около 100 тысяч и 12 тысяч световых лет) . Меньшая часть заполняет почти сферический объем с радиусом около 15 килопарсек (около 50 тысяч световых лет) .

  Все компоненты галактики связаны в единую динамическую систему, вращающуюся вокруг малой оси симметрии. Земному наблюдателю, находящемуся внутри

галактики, она представляется в виде Млечного Пути (отсюда и ее название - "Галактика") и всего множества отдельных звезд, видимых на небе.

  Звезды и межзвездная газопылевая материя заполняют объем галактики неравномерно: наиболее сосредоточены они около плоскости, перпендикулярной оси вращения

галактики и составляющейся плоскостью ее симметрии (так называемой галактической плоскостью) . Вблизи линии пересечения этой плоскости с небесной сферой

(галактического экватора) и виден Млечный Путь, средняя линия которого представляет собой почти большой круг, так как Солнечная система находится недалеко от этой

плоскости. Млечный Путь представляет собой скопление огромного количества звезд, сливающихся в широкую белесую полосу; однако, звезды, проектирующиеся на небе

рядом, удалены друг от друга в пространстве на огромные расстояния, исключающие их столкновения, несмотря на то, что они движутся с большими скоростями (десятки и

сотни км/сек) в направлении полюсов галактики (ее северный полюс находится в созвездии Волос Вероники) . Общее количество звезд в галактике оценивается в 100

миллиардов.

  Межзвездное вещество рассеяно в пространстве также не равномерно, концентрируясь преимущественно вблизи галактической плоскости в виде глобул, отдельных

облаков и туманностей (от 5 до 20 - 30 парсек в поперечнике) , их комплексов или аморфных диффузных образований. Особенно мощные, относительно близкие к нам темные

туманности представляются невооруженному глазу в виде темных прогалин неправильных форм на фоне полосы Млечного Пути; дефицит звезд в них является результатом

поглощения света этими несветящимися пылевыми облаками. Многие межзвездные облака освещены близкими к ним звездами большой светимости и представляются в виде

светлых туманностей, так как светятся либо отраженным светом (если состоят из космических пылинок) либо в результате возбуждения атомов и последующего испускания

ими энергии (если туманности газовые) .

  Наши дни с полным основанием называют золотым веком астрофизики замечательные и чаще всего неожиданные открытия в мире звезд следуют сейчас одно за

другим. Солнечная система стала последнее время предметом прямых экспериментальных, а не только наблюдательных исследований. Полеты межпланетных космических

станций, орбитальных лабораторий, экспедиции на Луну принесли множество новых конкретных знаний о Земле, околоземном пространстве, планетах, Солнце. Мы живем в

эпоху поразительных научных открытий и великих свершений. Самые невероятные фантазии неожиданно быстро реализуются. С давних пор люди мечтали разгадать тайны

Галактик, разбросанных в беспредельных просторах Вселенной. Приходится только поражаться, как быстро наука выдвигает различные гипотезы и тут же их опровергает.

Однако астрономия не стоит на месте: появляются новые способы наблюдения, модернизируются старые. С изобретением радиотелескопов, например, астрономы могут

заглянуть на расстояния, которые еще в 40-x. годах ХХ столетия казались недоступными. Однако надо себе ясно представить огромную величину этого пути и те колоссальные

трудности, с которыми еще предстоит встретится на пути к звездам.

Космические объекты: Звезды

  3везды бывают новорожденными, молодыми, среднего возраста и старыми. Новые звезды постоянно образуются, а старые постоянно умирают.

  Самые молодые, которые называются звездами типа Т Тельца (по одной из звезд в созвездии Тельца) , похожи на Солнце, но гораздо моложе его. Фактически они все

еще находятся в процессе формирования и являются примерами протозвезд (первичных звезд) .

  Это переменные звезды, их светимость меняется, поскольку они еще не вышли на стационарный режим существования. Вокруг многих звезд типа Т Тельца имеются

вращающиеся диски вещества; от таких звезд исходят мощные ветры. Энергия вещества, которое падает на протозвезду под действием силы тяготения, превращается в тепло. В

результате температура внутри протозвезды все время повышается. Когда центральная ее часть становится настолько горячей, что начинается ядерный синтез, протозвезда

превращается в нормальную звезду. Как только начинаются ядерные реакции, у звезды появляется источник энергии, способный поддерживать ее существование в течение

очень долгого времени. Насколько долгого — это зависит от размера звезды в начале этого процесса, но у звезды размером с наше Солнце топлива хватит па стабильное

существование в течение примерно 10 миллиардов лет.

  Однако случается, что звезды, гораздо более массивные, чем Солнце, существуют всего несколько миллионов лет; причина в том, что они сжимают свое ядерное

топливо с гораздо большей скоростью.

  Нормальные звезды

  Все звезды в основе своей похожи на наше Солнце: это огромные шары очень горячего светящегося газа, в самой глубине которых вырабатывается ядерная энергия. Но

не все звезды в точности такие, как Солнце. Самое явное различие — это цвет. Есть звезды красноватые или голубоватые, а не желтые.

  Кроме того, звезды различаются и по яркости, и по блеску. Насколько яркой выглядит звезда в небе, зависит не только от ее истинной светимости, но также и от

расстояния, отделяющего ее от нас. С учетом расстояний, яркость звезд меняется в широком диапазоне: от одной десятитысячной яркости Солнца до яркости более чем Е

миллиона Солнц. Подавляющее большинство звезд, как оказалось, располагается ближе к тусклому краю этой шкалы. Солнце, которое во многих отношениях является

типичной звездой, обладает гораздо большей светимостью, чем большинство других звезд. Невооруженным глазом можно увидеть очень небольшое количество слабых по

своей природе звезд. В созвездиях нашего неба главное внимание привлекают к себе “сигнальные огни” необычных звезд, тех, что обладают очень большой светимостью.

  Почему же звезды так сильно различаются по своей яркости? Оказывается, тут все зависит от массы звезды.

  Количество вещества, содержащееся в конкретной звезде, определяет ее цвет и блеск, а также то, как блеск меняется во времени.

  Гиганты и карлики

  Самые массивные звезды одновременно и самые горячие, и самые яркие. Выглядят они белыми или голубоватыми. Несмотря на свои огромные размеры, эти звезды

производят такое колоссальное количество энергии, что все их запасы ядерного топлива перегорают за какие-нибудь несколько миллионов лет.

  В противоположность им звезды, обладающие небольшой массой, всегда неярки, а цвет их — красноватый. Они могут существовать в течение долгих миллиардов лет.

  Однако среди очень ярких звезд в нашем небе есть красные и оранжевые. К ним относятся и Альдебаран — глаз быка в созвездии Телец, и Антарес в Скорпионе. Как же

могут эти холодные звезды со слабо светящимися поверхностями соперничать с раскаленными добела звездами типа Сириуса и Веги?

  Ответ состоит в том, что эти звезды очень сильно расширились и теперь по размеру намного превосходят нормальные красные звезды. По этой причине их называют

гигантами, или даже сверхгигантами.

  Благодаря огромной площади поверхности, гиганты излучают неизмеримо больше энергии, чем нормальные звезды вроде Солнца, несмотря на то, что температура их

поверхности значительно ниже. Диаметр красного сверхгиганта — например, Бетельгейзе в Орионе — в несколько сот раз превосходит диаметр Солнца. Напротив, размер

нормальной красной звезды, как правило, не превосходит одной десятой размера Солнца. По контрасту с гигантами их называют “карликами” . Гигантами и карликами звезды

бывают на разных стадиях своей жизни, и гигант может в конце концов превратиться в карлика, достигнув “пожилого возраста” .

  Жизненный цикл звезды

  Обычная звезда, такая, как Солнце, выделяет энергию за счет превращения водорода в гелий в ядерной печи, находящейся в самой ее сердцевине. Солнце содержит

огромное количество водорода, однако, запасы его не бесконечны. За последние 5 миллиардов лет Солнце уже израсходовало половину водородного топлива и сможет

поддерживать свое существование в течение еще 5 миллиардов лет, прежде чем запасы водорода в его ядре иссякнут. А что потом?

  После того как звезда израсходует водород, содержащийся в центральной ее части, внутри звезды происходят крупные перемены. Водород начинает перегорать не в

центре, а в оболочке, которая увеличивается в размере, разбухает. В результате размер самой звезды резко возрастает, а температура ее поверхности падает. Именно этот

процесс и рождает красных гигантов и сверх-гигантов. Он является частью той последовательности изменений, которая называется звездной эволюцией и которую проходят

все звезды. В конечном итоге все звезды стареют и умирают, но продолжительность каждой отдельной звезды определяется ее массой. Массивные звезды проносятся через

свой жизненный цикл, заканчивая его эффектным взрывом.

  Звезды более скромных размеров, включая и Солнце, наоборот, в конце жизни сжимаются, превращаясь в белые карлики. После чего они просто угасают.

  В процессе превращения из красного гиганта в белого карлика звезда может сбросить свои наружные слои, как легкую оболочку, обнажив при этом ядро. Газовая

оболочка ярко светится под действием мощного излучения звезды, температура которой на поверхности может достигать 100 000"С. Когда такие светящиеся газовые пузыри

были впервые обнаружены, они были названы планетарными туманностями, поскольку они часто выглядят как круги типа планетного диска, если пользоваться маленьким

телескопом. На самом же деле они, конечно, ничего общего с планетами не имеют!

  Звездные скопления

  По-видимому, почти все звезды рождаются группами, а не по отдельности. Поэтому нет ничего удивительного в том, что звездные скопления — вещь весьма

распространенная. Астрономы любят изучать звездные скопления, потому что им известно, что все звезды, входящие в скопление, образовались примерно в одно и то же

время и приблизительно на одинаковом расстоянии от нас. Любые заметные различия в блеске между такими звездами являются истинными различиями. Какие бы

колоссальные изменения не претерпели эти звезды с течением времени, начинали они все одновременно. Особенно полезно изучение звездных скоплений с точки зрения

зависимости их свойств от массы — ведь возраст этих звезд и их расстояние от Земли примерно одинаковы, так что отличаются они друг от друга только своей массой.

  Звездные скопления интересны не только для научного изучения — они исключительно красивы как объекты для фотографирования и для наблюдения астрономами-

любителями. Есть два типа звездных скоплений: открытые и шаровые. Эти названия связаны с их внешним видом. В открытом скоплении каждая звезда видна отдельно, они

распределены на некотором участке неба более или менее равномерно. А шаровые скопления, наоборот, представляют собой как бы сферу, столь плотно заполненную

звездами, что в ее центре отдельные звезды неразличимы.

  Открытые звездные скопления

  Наверное, самым знаменитым открытым звездным скоплением являются Плеяды, или Семь сестер, в созвездии Тельца. Несмотря на такое название, большинство

людей может разглядеть без помощи телескопа лишь шесть звезд. Общее количество звезд в этом скоплении — где-то между 300 и 500, и все они находятся на участке

размером в 30 световых лет в поперечнике и на расстоянии 400 световых лет от нас.

  Возраст этого скопления — всего 50 миллионов лет, что по астрономическим стандартам совсем немного, и содержит оно очень массивные светящиеся звезды, которые

не успели еще превратиться в гиганты. Плеяды — это типичное открытое звездное скопление; обычно в такое скопление входит от нескольких сотен до нескольких тысяч

звезд.

  Среди открытых звездных скоплений гораздо больше молодых, чем старых, а самые старые едва ли насчитывают более 100 миллионов лет. Считается, что скорость, с

которой они образуются, с течением времени не меняется.

  Дело в том, что в более старых скоплениях звезды постепенно отдаляются друг от друга, пока не мешаются с основным множеством звезд — тех самых, тысячи которых

предстают перед нами в ночном небе. Хотя тяготение до некоторой степени удерживает открытые скопления вместе, они все же довольно непрочны, и тяготение другого

объекта, например большого межзвездного облака, может их разорвать.

  Некоторые звездные группы на столько слабо удерживаются вместе, что их называют не скоплениями, а звездными ассоциациями. Они существуют не очень долго и

обычно состоят из очень молодых звезд вблизи межзвездных облаков, из которых они возникли. В звездную ассоциацию входит от 10 до 100 звезд, разбросанных в области

размером в несколько сотен световых лет.

  Облака, в которых образуются звезды, сконцентрированы в диске нашей Галактики, и именно там обнаруживают открытые звездные скопления. Если учесть, как много

облаков содержится в Млечном Пути и какое огромное количество пыли находится в межзвездном пространстве, то станет очевидным, что те 1200 открытых звездных

скоплений, о которых мы знаем, должны составлять лишь ничтожную часть всего их числа в Галактике. Возможно, их общее количество достигает 100 000.

  Шаровые звездные скопления

  В противоположность открытым, шаровые скопления представляют собой сферы, плотно заполненные звездами, которых там насчитываются сотни тысяч и даже

миллионы. Звезды в этих скоплениях расположены так густо, что, если бы наше Солнце принадлежало к какому-нибудь шаровому скоплению, мы могли бы видеть в ночном

небе невооруженным глазом более миллиона отдельных звезд. Размер типичного шарового скопления — от 20 до 400 световых лет.

  В плотно набитых центрах этих скоплений звезды находятся в такой близости одна к другой, что взаимное тяготение связывает их друг с другом, образуя компактные

двойные звезды.

  Иногда происходит даже полное слияние звезд; при тесном сближении наружные слои звезды могут разрушиться, выставляя на прямое обозрение центральное ядро. В

шаровых скоплениях двойные звезды встречаются в 100 раз чаще, чем где-либо еще. Некоторые из этих двойняшек являются источниками рентгеновского излучения.

  Вокруг нашей Галактики мы знаем около 200 шаровых звездных скоплений, которые распределены по всему огромному шарообразному гало, заключающему в себе

Галактику. Все эти скопления очень стары, и возникли они более или менее в то же время, что и сама Галактика: от 10 до 15 миллиардов лет назад. Похоже на то, что

скопления образовались, когда части облака, из которого была создана Галактика, разделились на более мелкие фрагменты. Шаровые скопления не расходятся, потому что

звезды в них сидят очень тесно, и их мощные взаимные силы тяготения связывают скопление в плотное единое целое.

  Шаровые звездные скопления наблюдаются не только вокруг нашей Галактики, но и вокруг других галактик любого сорта. Самое яркое шаровое скопление, легко

видимое невооруженным глазом, это Омега Кснтавра в южном созвездии Кентавр. Оно находится на расстоянии 16 500 световых лет от Солнца и является самым обширным

из всех известных скоплений: его диаметр — 620 световых лет. Самым ярким шаровым скоплением северного полушария является М13 в Геркулесе, его с трудом, но все же

можно различить невооруженным глазом.

  В 1596 г. голландский наблюдатель звезд, любитель, по имени Давид Фабрициус (1564-1617) , обнаружил довольно яркую звезду в созвездии Кита; звезда эта

постепенно стала тускнеть и через несколько недель вообще исчезла из виду. Фабрициус был первым, кто описал наблюдение переменной звезды.

  Эта звезда получила название Мира — чудесная. За период времени в 332 дня Мира изменяет свой блеск от приблизительно 2-й звездной величины (на уровне

Полярной звезды) до 10-й звездной величины, когда она становится гораздо более слабой, чем необходимо для наблюдения невооруженным глазом. В наши дни известны

многие тысячи переменных звезд, хотя большинство из них меняет свой блеск не столь драматично, как Мира.

  Существуют различные причины, по которым звезды меняют свой блеск. Причем блеск иногда изменяется на много световых величин, а иногда так незначительно, что

это изменение можно обнаружить лишь с помощью очень чувствительных приборов. Некоторые звезды меняются регулярно. Другие — неожиданно гаснут или внезапно

вспыхивают. Перемены могут происходить циклично, с периодом в несколько лет, а могут случаться в считанные секунды. Чтобы понять, почему та или иная звезда является

переменной, необходимо сначала точно проследить, каким образом она меняется. График изменения звездной величины переменной звезды называется кривой блеска. Чтобы

начертить кривую блеска, измерения блеска следует проводить регулярно. Для точного измерения звездных величин профессиональные астрономы используют прибор,

называемый фотометром, многочисленные наблюдения переменных звезд производятся астрономами-любителями. С помощью специально подготовленной карты и после

некоторой практики не так уж сложно судить о звездной величине переменной звезды прямо на глаз, если сравнивать ее с постоянными звездами, расположенными рядом.

  Графики блеска переменных звезд показывают, что некоторые звезды меняются регулярным (правильным) образом — участок их графика на отрезке времени

определенной длины (периоде) повторяется снова и снова. Другие же звезды меняются совершенно непредсказуемо. К правильным переменным звездам относят

пульсирующие звезды и двойные звезды. Количество света меняется оттого, что звезды пульсируют или выбрасывают облака вещества. Но есть другая группа переменных

звезд, которые являются двойными (бинарными) . Когда мы видим изменение блеска бинарных звезд, это означает, что произошло одно из нескольких возможных явлений.

Обе звезды могут оказаться на линии нашего зрения, так как, двигаясь по своим орбитам, они могут проходить прямо одна перед другой. Подобные системы называются

затменно-двойными звездами. Самый знаменитый пример такого рода — звезда Алголь в созвездии Персея. В тесно расположенной паре материал может устремляться с

одной звезды на другую, нередко вызывая драматические последствия.

  Пульсирующие переменные звезды

  Некоторые из наиболее правильных переменных звезд пульсируют, сжимаясь и снова увеличиваясь — как бы вибрируют с определенной частотой, примерно так, как

это происходит со струной музыкального инструмента. Наиболее известный тип подобных звезд — цефеиды, названные так по звезде Дельта Цефея, представляющей собой

типичный пример. Это звезды сверхгиганты, их масса превосходит массу Солнца в 3-10 раз, а светимость их в сотни и даже тысячи раз выше, чем у Солнца. Период пульсации

цефеид измеряется днями. В процессе пульсации цефеиды как площадь, так и температура ее поверхности изменяются, что вызывает общее изменение ее блеска.

  Мира, первая из описанных переменных звезд, и другие подобные ей звезды обязаны своей переменностью пульсациям. Это холодные красные гиганты в последней

стадии своего существования, они вот-вот полностью сбросят, как скорлупу, свои наружные слои и создадут планетарную туманность. Большинство красных сверхгигантов,

подобных Бетельгейзе в Орионе, изменяются лишь в некоторых пределах.

  Используя для наблюдений специальную технику, астрономы обнаружили на поверхности Бетельгейзе большие темные пятна.

  Звезды типа RR Лиры представляют другую важную группу пульсирующих звезд. Это старые звезды примерно такой же массы, как Солнце. Многие из них находятся в

шаровых звездных скоплениях. Как правило, они меняют свой блеск на одну звездную величину приблизительно за сутки. Их свойства, как и свойства цефеид, используют для

вычисления астрономических расстояний.

  Неправильные переменные звезды R Северной Короны и звезды, подобные ей, ведут себя совершенно непредсказуемым образом. Обычно эту звезду можно разглядеть

невооруженным глазом. Каждые несколько лет ее блеск падает примерно до восьмой звездной величины, а затем постепенно растет, возвращаясь к прежнему уровню. По-

видимому, причина тут в том, что эта звезда-сверхгигант сбрасывает с себя облака углерода, который конденсируется в крупинки, образуя нечто вроде сажи. Если одно из этих

густых черных облаков проходит между нами и звездой, оно заслоняет свет звезды, пока облако не рассеется в пространстве.

  Звезды этого типа производят густую пыль, что имеет немаловажное значение в областях, где образуются звезды.

  Вспыхивающие звезды

  Магнитные явления на Солнце являются причиной солнечных пятен и солнечных вспышек, но они не могут существенно повлиять на яркость Солнца. Для некоторых

звезд — красных карликов — это не так: на них подобные вспышки достигают громадных масштабов, и в результате световое излучение может возрастать на целую звездную

величину, а то и больше. Ближайшая к Солнцу звезда, Проксима Кентавра, является одной из таких вспыхивающих звезд. Эти световые выбросы нельзя предсказать заранее, а

продолжаются они всего несколько минут.

  Двойные звезды

  Примерно половина всех звезд нашей Галактики принадлежит к двойным системам, так что двойные звезды, вращающиеся по орбитам одна вокруг другой, явление

весьма распространенное.

  Принадлежность к двойной системе очень сильно влияет на всю жизнь звезды, особенно когда напарники находятся близко друг к другу. Потоки вещества,

устремляющиеся от одной звезды на другую, приводят к драматическим вспышкам, таким, как взрывы новых и сверхновых звезд.

  Двойные звезды удерживаются вместе взаимным тяготением. Обе звезды двойной системы вращаются по эллиптическим орбитам вокруг некоторой точки, лежащей

между ними и называемой центром гравитации этих звезд. Это можно представить себе как точкой опоры, если вообразить звезды сидящими на детских качелях: каждая на

своем конце доски, положенной на бревно. Чем дальше звезды друг от друга, тем дольше длятся их пути по орбитам. Большинство двойных звезд (или просто — двойных)

слишком близки друг к другу, чтобы их можно было различить по отдельности даже в самые мощные телескопы. Если расстояние между партнерами достаточно велико,

орбитальный период может измеряться годами, а иногда целым столетием или даже больше. Двойные звезды, которые можно увидеть раздельно, называются видимыми

двойными.

  Открытие двойных звезд

  Чаще всего двойные звезды определяются либо по необычному движению более яркой из двух, либо по их совместному спектру. Если какая-нибудь звезда совершает на

небе регулярные колебания, это означает, что у нее есть невидимый партнер. Тогда говорят, что это астрометрическая двойная звезда, обнаруженная с помощью измерений ее

положения. Спектроскопические двойные звезды обнаруживают по изменениям и особым характеристикам их спектров. Спектр обыкновенной звезды, вроде Солнца, подобен

непрерывной радуге, пересеченной так называемыми линиями поглощения. Точные цвета, на которых расположены эти линии, изменяются, если звезда движется к нам или

от нас. Это явление называется эффектом Допплера. Когда звезды двойной системы движутся по своим орбитам, они попеременно то приближаются к нам, то удаляются. В

результате линии их спектров перемещаются на некотором участке радуги. Такие подвижные линии спектра говорят о том, что звезда двойная. Если оба участника двойной

системы имеют примерно одинаковый блеск, в спектре можно увидеть два набора линий. Если одна из звезд гораздо ярче другой, ее свет будет доминировать, но регулярное

смещение спектральных линий все равно выдаст ее истинную двойную природу.

  Измерение скоростей звезд двойной системы и применение законного тяготения представляют собой важный метод определения масс звезд. Изучение двойных звезд

— это единственный прямой способ вычисления звездных масс. Тем не менее, в каждом конкретном случае не так просто получить точный ответ.

  Тесные двойные звезды

  В системе близко расположенных двойных звезд взаимные силы тяготения стремятся растянуть каждую из них, придать ей форму груши. Если тяготение достаточно

сильно, наступает критический момент, когда вещество начинает утекать с одной звезды и падать на другую. Вокруг этих двух звезд имеется некоторая область в форме

трехмерной восьмерки, поверхность которой представляет собой критическую границу. Эти две грушеобразные фигуры, каждая вокруг своей звезды, называются полостями

Роша. Если одна из звезд вырастает настолько, что заполняет свою полость Роша, то вещество с нее устремляется на другую звезду в той точке, где полости соприкасаются.

Часто звездный материал не опускается прямо на звезду, а сначала закручивается вихрем, образуя так называемый аккреционный диск. Если обе звезды настолько расширились,

что заполнили свои полости Роша, то возникает контактная двойная звезда. Материал обеих звезд перемешивается и сливается в шар вокруг двух звездных ядер. Поскольку в

конечном счете все звезды разбухают, превращаясь в гиганты, а многие звезды являются двойными, то взаимодействующие двойные систем — явление нередкое.

  Звезда переливается через край

  Одним из поразительных результатов переноса массы в двойных звездах является так называемая вспышка новой.

  Одна звезда расширяется так, что заполняет свою полость Роша; это означает раздувание наружных слоев звезды до того момента, когда ее материал начнет

захватываться другой звездой, подчиняясь ее тяготению. Эта вторая звезда — белый карлик. Внезапно блеск увеличивается примерно на десять звездных величин —

вспыхивает новая. Происходит не что иное, как гигантский выброс энергии за очень короткое время, мощный ядерный взрыв на поверхности белого карлика. Когда материал с

раздувшейся звезды устремляется к карлику, давление в низвергающемся потоке материи резко возрастает, а температура под новым слоем увеличивается до миллиона

градусов. Наблюдались случаи, когда через десятки или сотни лет вспышки новых повторялись. Другие взрывы наблюдались лишь однажды, но они могут повториться через

тысячи лет. На звездах иного типа происходят менее драматические вспышки — карликовые новые, — повторяющиеся через дни и месяцы.

  Когда ядерное топливо звезды оказывается израсходованным и в ее глубинах прекращается выработка энергии, звезда начинает сжиматься к центру. Сила тяготения,

направленная внутрь, больше не уравновешивается выталкивающей силой горячего газа.

  Дальнейшее развитие событий зависит от массы сжимающегося материала. Если эта масса не превосходит солнечную более чем в 1,4 раза, звезда стабилизируется,

становясь белым карликом. Катастрофического сжатия не происходит благодаря основному свойству электронов. Существует такая степень сжатия, при которой они начинают

отталкиваться, хотя никакого источника тепловой энергии уже нет. Правда, это происходит лишь тогда, когда электроны и атомные ядра сжаты невероятно сильно, образуя

чрезвычайно плотную материю.

  Белый карлик с массой Солнца по объему приблизительно равен Земле. Всего лишь чашка вещества белого карлика весила бы на Земле сотню тонн. Любопытно, что

чем массивнее белые карлики, тем меньше их объем. Что представляет собой внутренность белого карлика, вообразить очень трудно. Скорее всего, это нечто вроде единого

гигантского кристалла, который постепенно остывает, становясь все более тусклым и красным. В действительности, хотя астрономы белыми карликами называют целую

группу звезд, лишь самые горячие из них, с температурой поверхности около 10 000 С, на самом деле белые. В конечном итоге каждый белый карлик превратится в темный

шар радиоактивного пепла. Белые карлики настолько малы, что даже наиболее горячие из них испускают совсем немного света, и обнаружить их бывает нелегко. Тем не менее,

количество известных белых карликов сейчас исчисляется сотнями; по оценкам астрономов, не менее десятой части всех звезд Галактики — белые карлики. Сириус, самая

яркая звезда нашего неба, является членом двойной системы, и его напарник — белый карлик под названием Сириус В.

  Нейтронные звезды

  Если масса сжимающейся звезды превосходит массу Солнца более чем в 1,4 раза, то такая звезда, достигнув стадии белого карлика, на атом не остановится.

Гравитационные силы в этом случае столь велики, что электроны вдавливаются внутрь атомных ядер. В результате протоны превращаются в нейтроны, способные прилегать

друг к другу без всяких промежутков. Плотность нейтронных звезд превосходит даже плотность белых карликов; но если масса материала не превосходит 3 солнечных масс,

нейтроны, как и электроны, способны сами предотвратить дальнейшее сжатие. Типичная нейтронная звезда имеет в поперечнике всего лишь от 10 до 15 км, а один кубический

сантиметр ее вещества весит около миллиарда тонн. Помимо неслыханно громадной плотности, нейтронные звезды обладают еще двумя особыми свойствами, которые

позволяют их обнаружить, невзирая на столь малые размеры: это быстрое вращение и сильное магнитное поле. В общем, вращаются все звезды, но когда звезда сжимается,

скорость ее вращения возрастает — точно так же, как фигурист на льду вращается гораздо быстрее, когда прижимает к себе руки. Нейтронная звезда совершает несколько

оборотов в секунду. Наряду с этим исключительно быстрым вращением, нейтронные звезды имеют магнитное поле, в миллионы раз более сильное, чем у Земли.

  Пульсары

  Первые пульсары были открыты в 1968 г., когда радиоастрономы обнаружили регулярные сигналы, идущие к нам из четырех точек Галактики. Ученые были поражены

тем фактом, что какие-то природные объекты могут излучать радиоимпульсы в таком правильном и быстром ритме. Вначале (правда, ненадолго) астрономы даже заподозрили

участие неких мыслящих существ, обитающих в глубинах Галактики. Но вскоре было найдено естественное объяснение. В мощном магнитном поле нейтронной звезды

движущиеся по спирали электроны генерируют радиоволны, которые излучаются узким пучком, как луч прожектора. Звезда быстро вращается, и радиолуч пересекает линию

нашего наблюдения, словно маяк. Некоторые пульсары излучают не только радиоволны, но и световые, рентгеновские и гамма-лучи. Период самых медленных пульсаров

около четырех секунд, а самых быстрых — тысячные доли секунды. Вращение этих нейтронных звезд было по каким-то причинам еще более ускорено; возможно, они входят в

двойные системы.

  Рентгеновские двойные звезды

  В Галактике найдено, по крайней мере, 100 мощных источников рентгеновского излучения. Рентгеновские лучи обладают настолько большой энергией, что для

возникновения их источника должно произойти нечто из ряда вон выходящее. По мнению астрономов, причиной рентгеновского излучения могла бы служить материя,

падающая на поверхность маленькой нейтронной звезды.

  Возможно, рентгеновские источники представляют собой двойные звезды, одна из которых очень маленькая, но массивная; это может быть нейтронная звезда, белый

карлик или черная дыра. Звезда-компаньон может быть либо массивной звездой, масса которой превосходит солнечную в 10-20 раз, либо иметь массу, превосходящую массу

Солнца не боле, чем вдвое. Промежуточные варианты представляются крайне маловероятными. К таким ситуациям приводит сложная история эволюции и обмен массами в

двойных системах, Финальный результат зависит от начальных масс и начального расстояния между звездами.

  В двойных системах с небольшими массами вокруг нейтронной звезды образуется газовый диск. В случае же систем с большими массами материал устремляется прямо

на нейтронную звезду — ее магнитное поле засасывает его, как в воронку. Именно такие системы часто оказываются рентгеновскими пульсарами.

  Черные дыры

  В одной из рентгеновских двойных систем, называемой А0620-00, удалось очень точно измерить массу компактной звезды (для этого использовались данные разных

видов наблюдений) . Она оказалась равной 16 массам Солнца, что намного превышает возможности нейтронных звезд. Кроме черных дыр с массами, типичными для звезд,

почти наверняка существуют и сверхмассивные черные дыры, расположенные в центрах галактик. Лишь падение вещества в черную дыру может быть источником

колоссальной энергии, исходящей из ядер активных галактик.

  Сверхновые Звезды

  Их массы не достигают 1,4 солнечной, умирают тихо и безмятежно. А что происходит с более массивными звездами? Как возникают нейтронные звезды и черные

дыры? Катастрофический взрыв, которым заканчивается жизнь массивной звезды, — это воистину впечатляющее событие. Это самое мощное из природных явлений,

совершающихся в звездах. В мгновение ока высвобождается больше энергии, чем излучает ее наше Солнце за 10 миллиардов лет. Световой поток, посылаемый одной

гибнущей звездой, эквивалентен целой галактике, а ведь видимый свет составляет лишь малую долю полной энергии. Остатки взорвавшейся звезды разлетаются прочь со

скоростями до 20 000 км в секунду.

  Такие грандиозные звездные взрывы называются сверхновыми. Сверхновые — довольно редкое явление. Каждый год и других галактиках обнаруживают от 20 до 30

сверхновых, главным образом в результате систематического поиска. За столетие в каждой галактике их может быть от одной до четырех. Однако в нашей собственной

Галактике сверхновых не наблюдали с 1604 г. Может быть, они и были, но остались невидимыми из-за большого количества пыли в Млечном Пути. Радиоастрономы

обнаружили кольцо газа, оставшегося от сверхновой в созвездии Кассиопеи, и вычислили дату взрыва — 1658 г. В то время никто не зарегистрировал необычно яркой звезды,

хотя одна довольно скромная звездочка, которую впоследствии уже не видели, была отмечена в этом же месте на звездной карте 1680 г.

  Сверхновая — смерть звезды

  Чтобы разобраться в том, что приводит к взрыву сверхновой, нам придется рассмотреть последние стадии эволюции массивной звезды. Когда весь водород в

центральном ядре превращается в гелий, начинаются новые ядерные процессы, преобразующие гелий в углерод. Но дальше от центра, в оболочке, водород все еще

соединяется, образуя гелий. Когда гелий использован, горючим становится углерод. В слоях, расположенных вокруг ядра, протекает весь ряд последовательных ядерных

реакций, так что звезда приобретает структуру, напоминающую луковицу.

  В последней стадии ядро звезды состоит уже из железа и никеля, а вокруг идет ядерное горение кремния, неона, кислорода углерода и это ведет к образованию в центре

звезды белого карлика. Менее чем за секунду ядро уменьшается от размеров Земли до 100 км в поперечнике. Его плотность становится такой как у атомного а (примерно в 100

миллионов раз больше, чем плотность воды) . Вещество сливается в нечто подобное гигантскому атомному ядру — образуется нейтронная звезда. В тот момент, когда

нейтроны во внутренней части ядра оказываются способными предотвратить дальнейшее сжатие, процесс внезапно останавливается. Немедленно на еще падающий к центру

материал обрушиваются встречные ударные волны, и в звезду вливается энергия огромного количества частиц, называемых нейтрино. В результате звезда сбрасывает свои

наружные слои, открывая взгляду скрывавшееся под ними нейтронное ядро. По мнению астрономов, большая часть нейтронных звезд, если не все они, родились во взрывах

сверхновых. При определенных условиях ядро может оказаться достаточно массивным, чтобы вместо нейтронной звезды образовалась черная дыра. У нас есть ясная картина

того, как массивные звезды заканчивают свое существование взрывами сверхновых. Но это не единственный способ запуска подобных взрывов. Лишь около четверти всех

сверхновых появляется таким путем. Они отличаются своими спектрами и специфической картиной возгорания и затухания. Как действуют другие сверхновые, пока не вполне

ясно. Наиболее достоверная теория предполагает, что они начинаются с белых карликов в двойных системах. Вещество перетекает на белый карлик с его партнера до тех пор,

пока масса карлика не превысит 1,4 солнечной. Затем следует взрыв сверхновой, и вся звезда, по-видимому, навсегда разрушается. Сверхновая сохраняет свою максимальную

яркость лишь около месяца, а затем непрерывно угасает. В это время источником световой энергии является радиоактивный распад вещества, образовавшегося при взрыве. Еще

долгое время после взрыва можно наблюдать вещество сброшенной оболочки, постепенно расходящееся в окружающем пространстве. Такие туманности называют остатками

сверхновых. В созвездии Тельца имеется Крабовидная туманность, представляющая собой остаток сверхновой, вспыхнувшей в 1054 г. Обширное тонкое кольцо вещества в

Лебеде, так называемая Петля Лебедя, осталась от вспышки сверхновой, произошедшей около 30 000 лет назад. Остатки сверхновых — одни из сильнейших источников

радиоволн в нашем небе.

  Происхождение элементов

  Наш обычный мир — скалистая Земля с ее океанами, атмосферой, растительной и животной жизнью — состоит примерно из 100 различных химических элементов. Во

Вселенной некоторые из них гораздо более распространены, чем другие. Сочетаясь между собой, элементы образуют бесчисленное множество различных веществ. Но откуда

взялись сами элементы, эти основные строительные кирпичики мироздания? Сегодня астрономы в состоянии дать полную картину того, как образовались и как

распределились по Вселенной различные элементы. Простейший из всех элементов — водород. Ядро атома водорода состоит из единственного протона, а добавление к нему

одного электрона завершает конструкцию атома. Ядра других элементов содержат различные количества протонов, а также нейтронов, которые входят в состав всех элементов,

кроме водорода. В ходе ядерных реакций отдельные ядра могут сливаться с элементарными частицами, вроде нейтрона, и образовывать новые элементы. Для протекания

ядерных реакций нужны очень высокие температуры. Такие температуры существовали на ранних стадиях развития Вселенной, а сейчас они встречаются внутри звезд, во

взрывах сверхновых, а также при падении вещества на очень плотные звезды типа белых карликов. Весь водород во Вселенной, да и значительная часть гелия, появились на

свет в течение нескольких первых минут после начала мира. Первые из сформировавшихся звезд состояли почти целиком из водорода и гелия. Но мы уже видели, как звезды

получают свою энергию путем слияния ядер водорода, приводящего к образованию гелия, а затем — слияния гелия с более тяжелыми элементами, когда получается все

остальное, включая углерод, кислород, кремний, железо и так далее. Когда звезда сбрасывает оболочку, как сверхновая, большая часть материала выносится в космическое

пространство. Тепловая энергия взрыва способствует созданию еще большего числа элементов. После того как произошло достаточно много вспышек сверхновых, межзвездное

вещество уже содержит значительное количество веществ, произведенных в звездах — наряду с водородом и гелием, которые были здесь с самого начала. Звезды, которые

обходятся без взрыва, также вносят свою лепту, когда они постепенно освобождаются от своих внешних слоев, вызывая появление звездных ветров или планетарной

туманности.

  Теперь самое время напомнить, что звезды формируются из облаков межзвездного материала. Звезды, которые сегодня рождаются в нашей Галактике, образуются из

гораздо более разнообразной смеси химических элементов, чем самые первые звезды. Даже наше Солнце уже не принадлежит к первому звездному поколению. Оно

сформировалось из облака, в котором было немало углерода, кислорода, кремния, железа и др., — по крайней мере, этих элементов оказалось достаточно, чтобы собрать их

воедино во вращающейся туманности, ставшей затем Солнечной системой, и образовать нашу планету. Это может показаться странным, но большинство атомов в нашем

собственном теле было создано в недрах давно умерших звезд.

  Когда 24 февраля 1987 г. была открыта 5М 1987А, астрономы были очень взволнованы: ведь это была самая яркая сверхновая с 1604 г. Хотя на этот раз сверхновая

вспыхнула не в нашей Галактике, а в соседней Большом Магеллановом облаке, ее звездная величина в максимуме блеска достигла 2,9, что позволяло легко наблюдать

сверхновую в южном полушарии невооруженным глазом.

  Впервые развитие сверхновой стало доступно наблюдению с помощью современной аппаратуры. Это голубой сверхгигант с массой примерно в 17 солнечных; согласно

расчетам, его возраст составлял около 20 миллионов лет. ВАЯ 1987А На самом деле взрыв произошел примерно за день до его обнаружения. Это было установлено по 6олее

ранней фотографии, а исследователи, изучающие потоки космических нейтрино, 23 февраля зарегистрировали неожиданно большое их количество. Нейтрино — это

элементарные частицы, вряд ли имеющие массу. Их очень трудно регистрировать, Но такая работа чрезвычайно важна, так как нейтрино уносят большое количество энергии в

целом ряде ядерных реакций. Обнаружение нейтрино показало, что наша теория возникновения сверхновой в основном верна. Однако на месте вспышки сверхновой не

удалось обнаружить пульсар или нейтронную звезду.

  Крабовидная туманность

  Один из самых известных остатков сверхновой, Крабовидная туманность, обязана своим названием Уильяму Парсонсу, третьему графу Россу, который первым

наблюдал ее в 1844 г. Ее впечатляющее имя не совсем соответствует этому странному объекту. Теперь мы знаем, что эта туманность — остаток сверхновой, которую

наблюдали и описали в 1054 г. китайские астрономы. Ее возраст был установлен в 1928 г. Эдвином Хабблом, измерившим скорость ее расширения и обратившим внимание на

совпадение ее положения на небе со старинными китайскими записями. Она имеет форму овала с неровными краями; красноватые и зеленоватые нити светящегося газа видны

на фоне тусклого белого пятна. Нити светящегося газа напоминают сеть, наброшенную на отверстие. Белый свет исходит от электронов, несущихся по спиралям в сильном

магнитном иоле. Туманность является также интенсивным источником радиоволн и рентгеновских лучей. Когда астрономы осознали, что пульсары — это нейтрон

сверхновых, им стало ясно, что искать пульсары надо именно в таких остатках типа Крабовидной туманности. В 1969 г. 6ыло обнаружено, что одна из звезд вблизи центра

туманности периодически излучает радиоимпульсы, а также световые и рентгеновские сигналы через каждые 33 тысячных доли секунды. Это очень высокая частота даже для

пульсара, но она постепенно понижается. Те пульсары, которые вращаются гораздо медленнее, намного старее пульсара Крабовидной туманности.

  Наименование сверхновых

  Хотя современные астрономы не были свидетелями сверхновой в нашей Галактике, им удалось наблюдать по крайней мере второе по интересу событие — сверхновую в 1987 г. в Большом Магеллановом облаке, ближней галактике, видимой в южном полушарии. Сверхновой дали имя ЯХ 1987А. Сверхновые именуются годом открытия, за которым следует заглавная латинская буква в алфавитном порядке, соответственно последовательности находок, БХ это сокращение от сверхновая. (Если их открыто более 26,

следуют обозначения АА, ВВ и т.д.)

Космические объекты: Звезды. Размеры, плотность

  Рассмотрим на простом примере как можно сравнить размеры звезд одинаковой температуры, например Солнца и Капеллы. Эти звезды имеют одинаковые спектры, цвет и температуру, о светимость Капеллы в 120 раз превышает светимость Солнца. Так как при одинаковой температуре яркость единицы поверхности звезд тоже одинакова, то, значит, поверхность Капеллы больше, чем Солнца в 120 раз, а диаметр и радиус ее больше солнечных в корень квадратный из 120, что приближенно равно 11 раз. Определить размеры других звезд позволяет знание законов излучения. Результаты таких вычислений полностью подтвердились, когда стало возможным измерять угловые диаметра звезд при помощи оптического прибора звездного интерферометра. Звезды очень большой светимости называются сверхгигантами. Красные сверхгиганты называются такими и по размерам. Бетельгейзе и Антарес в сотни раз больше Солнца по диаметру. Более далекая от нас Цефея настолько велика, что в ней поместилась бы Солнечная система с орбитами планет до орбиты Юпитера включительно!!! Между тем массы сверхгигантов больше солнечной всего лишь в 30-40 раз. В результате даже средняя плотность сверхгигантов в тысячи раз меньше чем плотность комнатного воздуха. При одинаковой светимости размеры звезд тем меньше, чем эти звезды горячее. Самыми малыми среди обычных звезд являются красные карлики. Массы их и радиусы - десятые доли солнечных, а средние плотности в 10-100 раз выше плотности воды. Еще меньше красных белые карлики – но это уже необычные звезды. У близкого к нам и яркого Сириуса (имеющего радиус вдвое больше солнечного) есть спутник, обращающийся вокруг него с периодом 50 лет. Для этой двойной звезды расстояние, орбита и массы хорошо известны. Обе звезды белые, почти одинаково горячие. Следовательно, поверхности одинаковой площади излучают у этих звезд одинаковое кол-во энергии, но по светимости спутник в 10 000 раз слабее, чем Сириус. Значит, его радиус меньше в 100 раз, т.е. он почти такой же, как Земля. Между тем масса у него почти такая же, как и у Солнца. Следовательно, белый карлик имеет огромную плотность около 1059 кг/м. Существование газа такой плотности было объяснено таким образом: обычно предел плотности ставит размер атомов, являющихся системами, состоящими из ядра и электронной оболочки. При очень высокой температуре в недрах звезд и при полной ионизации атомов их ядра и электроны становятся независимыми друг от друга. При колоссальном давление вышележащих слоев это "крошево" из частиц может быть сжато гораздо сильнее, чем нейтральный газ. Теоретически допускается возможность существования при некоторых условиях звезд с плотностью, равной плотности атомных ядер. На примере белых карликов мы видим как астрофизические исследования расширяют представление о строении вещества ; пока такие условия в лаборатории создать невозможно. Поэтому астрономические наблюдения помогают развитию важнейших физических представлений.

Космические объекты: Пульсары

   

  С О Д Е Р Ж А Н И Е.

  1. Новый радиотелескоп в Кембридже.

  2. Открытие первого пульсара (рассказывает Джоселин Белл) .

  3. Пульсары имеет малые размеры.

  4. Можно ли увидеть пульсары?

  5. Пульсар в Крабовидной туманности - видимая звезда.

  6. Что такое пульсары?

  7. Томас Голд объясняет пульсары.

  8. Вопросы на которые нет ответов.

  а) действительно ли пульсары нетронные звезды.

  б) есть ли у пульсаров планеты.

  в) как образуются пульсары.

  Сообщение, опубликованное в феврале 1968 года в английском журнале "Nature", было столь удивительно, что его тут же подхватила вся мировая пресса. Группа ученых

Кембриджа, руководимая Энтони Хьюишем, извещала о том, что ей удалось принять радиосигналы из глубин вселенной.

  После второй мировой войны начался расцвет радиоастрономии. Космический газ - межзвездное вещество - обладает способностью испускать и поглощать излучения в

области радиочастот.

  Подобно свету, это излучение проходит сквозь земную атмосферу и может служить дополнительным источником информации о Вселенной.

  Исследуя космическое радиоизлучение, можно получать сведения о свойствах межзвездного вещества в нашей Галактике; удается также принимать и анализировать

радиоизлучение межзвездного газа в других звездных системах. Галактики, дающие особенно интенсивное радиоизлучение, получили название радиогалактик.

  Приходящее к нам радиоизлучение испытывает влияние вещества, выбрасываемого Солнцем и движущегося в межпланетном пространстве к границам Солнечной

системы. Наблюдаемые из-за этого временные флуктуации радиоизлучения во многом подобны мерцанию света звезд, обусловленному движениями воздушных масс в

атмосфере.

  Именно для исследования подобных флуктуаций, обусловленных межпланетным веществом, и был предназначен радиотелескоп, строительство которого было начато в

Кембридже в 60-е годы. На площади в два гектара было установлено более двух тысяч отдельных антенных элементов. Поскольку с помощью этого антенного поля пред

полагалось исследовать флуктуации излучения радиоисточников, вызванные солнечным ветром, приемное устройство было рассчитано на регистрацию быстрых изменений

приходящего радиоизлучения.

  Прежние радиотелескопы не давали такой возможности, и по этому кембриджский радиотелескоп как будто специально был приспособлен для открытия

быстропеременных сигналов от пульсаров - открытие, которое отодвинуло на второй план ту задачу, ради которой радио телескоп был построен: исследования флуктуаций

радиоизлучений, обусловленных солнечным ветром.

  Поскольку поворачивать гигантскую антенну невозможно, подобный радиотелескоп принимает радиоизлучение из узкой полосы небесной сферы, которая проходит над

антенной радиотелескопа, пока Земля совершает свое суточное вращение. В июле 1967 года строительство было закончено и начались наблюдения. Круглые сутки

регистрировалась интенсивность приходящего радиоизлучения с длиной волны 3.7 метра. За неделю на 210 метрах диаграммной ленты само писец рисовал кривые

интенсивности излучения от 7 участков неба.

  Усилия были направлены на поиск стабильных радиоисточников, из лучения которых "мерцают", взаимодействуя с солнечным ветром.

  Наблюдениями на телескопе и трудоемкой обработкой результатов занималась аспирантка Джоселин Белл. Ее интересовали быстрые флуктуации радиоизлучений от

космических источников, попадающих в поле зрения телескопа при суточном вращении Земли.

  Девять лет спустя Джоселин Белл в своей речи на одном из приемов вспоминала о том времени, когда она под руководством Хьюиша работала в Кембридже над

диссертацией. Она рассказывала о выходящей из-под пера самописца нескончаемой ленте, которую ей приходилось просматривать. После первых трех десятков метров она

научилась распознавать радиоисточники, мерцающие из-за солнечно го ветра, и отличать их от радиопомех земного происхождения.

  "Через шесть или восемь недель после начала исследований я обратила внимание на какие-то отклонения сигнала, зарегистрированного самописцем. Эти отклонения не

очень походили на мерцания радиоисточника; не были они похожи и на земные радиопомехи. Кроме того, мне вспомнилось, что подобные отклонения мне однажды

встречались и раньше, когда регистрировалось излучение от этого же участка неба. " Дж. Белл хотела вернуться к этой записи, но ее задержали другие дела. Только в конце

октября 1967 года она вновь занялась этим явлением и попыталась записать сигнал с бо лее высоким временным разрешением. Однако источник на этот раз найти не удалось:

он вновь дал о себе знать лишь к концу ноября.

  "На ленте, выходящей из-под пера самописца, я видела, что сигнал состоит из ряда импульсов. Мое предположение о том, что импульсы следуют один за другим через

одинаковые промежутки времени, подтвердилось сразу же, как только лента была вынута из прибора. Импульсы были разделены интервалом в одну и одну треть секунды. Я

тотчас же связалась с Тони Хьюишем, который читал в Кембридже лекцию для первокурсников. Первой реакцией его было заявить, что импульсы - дело рук человеческих. Это

было естественно при данных обстоятельствах. Однако мне почему-то казалось возможным, что сигнал может идти и от какой-нибудь звезды. Все-таки Хьюиш

заинтересовался происходящим и на другой день пришел на телескоп как раз в то время, когда источник входил в поле зрения антенны - и сигнал, к счастью, появился снова. "

Источник со всей очевидностью имел неземное происхождение, поскольку сигнал появлялся каждый раз когда телескоп оказывался на этот участок неба. С другой стороны,

импульсы выглядели так, как будто их посылают люди. Быть может, это представители неземной цивилизации? Едва ли, в прочем, сигнал шел от планеты, обращающейся

вокруг звезды. В этом случае расстояние между соседними импульсами изменялось бы сообразно с периодом обращения планеты, поскольку расстояние до радиоисточника

было бы непостоянно. "Незадолго до Рождества я предложила Тони Хьюишу выступить на конференции и на самом высоком научном уровне поставить вопрос о том, каким

образом следует истолковать эти результаты. Мы не верили, что сигналы посылает какая-то чужая цивилизация, однако такое предположение однажды высказывалось, и у нас

не было доказательств, что мы имеем дело с радиоизлучением естественного происхождения. Если же допустить, что где-то во вселенной нами были обнаружены живые

существа, то возникала любопытная проблема: как следует обнародовать эти результаты, что бы это было сделано со всей ответственностью? Кому первому сообщить об этом?

В тот день мы так и не решили эту проблему: я отправилась до мой в полной растерянности. Мне нужно было писать свою диссертацию, а тут откуда-то взялись эти окаянные

"зеленые человечки", которые выбрали именно мою антенну и рабочую частоту телескопа, чтобы установить связь с землянами. Подкрепившись ужином, я вновь отправилась

в лабораторию, чтобы проанализировать еще несколько лент. Незадолго до закрытия лаборатории я просматривала запись, относящуюся к совершенно к другому участку неба и

на фоне сигнала от мощного радиоисточника Кассиопея А заметила знакомые возмущения. Лаборатория закрывалась, и мне пришлось идти, однако я знала, что именно этот

участок неба рано утром будет в поле зрения телескопа. Из-за холода что-то испортилось в приемном устройстве нашего телескопа. Конечно, так всегда и бывает!

  Однако я пощелкала выключателем, побранилась, посокрушалась, и минут пять установка работала нормально. И это были те самые пять минут, когда появились

возмущения. На этот раз возмущения имели вид импульсов, следующих через 1,2 секунды. Я положила ленты на стол Тони и отправилась праздновать Рождество. Какая удача!

Было совершенно невероятно, чтобы "зеленые человечки" из двух разных цивилизаций выбрали одну и ту же волну и то же время для посылки сигналов на нашу планету".

  Вскоре Джоселин Белл обнаружила еще два пульсара, а в конце января 1968 года было послано сообщение в журнал "Nature". В нем шла речь о первом пульсаре.

  Более всего пульсары поразили астрономов тем, что интенсивность их излучения изменялась чрезвычайно быстро. У наиболее быстрых переменных звезд период, с

которым изменяется их блеск, может составлять один час или того меньше. Блеск белого карлика в двойной звездной системе Новой 1934 года в созвездии Геркулеса

изменяется с периодом 70 секунд - но пульсары оставили этот ре корд далеко позади. На это указывали и исследования, проведенные в последующие месяцы: с чем более

высоким временным разрешением регистрировались импульсы, тем яснее просматривалось их тонкая структура, показывавшая, что интенсивности радиоизлучений

изменяется за десятитысячные доли секунды.

  По скорости изменения интенсивности излучения можно оценить размеры той области пространства, из которой оно исходит. Рассмотрим для простоты полусферу,

удаленную от наблюдателя на столь большое расстояние, что и невооруженным глазом, и в телескоп оно выглядит просто точкой. Пусть на поверхности сферы происходит

очень короткая вспышка света. Что же видит удаленный наблюдатель? Излучение распространяется от сферы со скоростью света. Поскольку расстояние от наблюдателя до

различных точек сферы не одинаково, излучение, одновременно испущенное всеми точками сферы, приходит к наблюдателю в различные моменты времени: вначале

поступает сигнал от центра "видимого диска", который ближе всего к наблюдателю, затем от окружающей его области, и, наконец, от краев. Таким образом, регистрируемый

наблюдателем импульс "размазывается" он имеет большую длительность, чем исходный короткий импульс света. Продолжительность импульса увеличивается на то время, за

которое свет проходит расстояние, равное радиусу сферы. Сказанное можно распространить не только на короткие световые импульсы, но и на любые изменения яркости

свечения сферы, поскольку сигнал, соответствующий, как уменьшению, так и увеличению яркости, доходит до наблюдателя от различных точек сферы за неодинаковое время.

"Размазывание" сигнала будет наблюдаться и в том случае, когда форма излучающего объекта отличается от сферической.

  Таким образом, если регистрируемые изменения яркости источника происходят, скажем, за десятитысячные доли секунды, то из этого следует, что размеры источника

не могут быть существенно больше того расстояния, которое свет проходит за это время, то есть 30 км. Если бы источник имел большие размеры, то изменения яркости

"размазывались" бы на более длительное время. В пределах одного импульса интенсивность изменяется в течение одной десяти тысячной доли секунды; это видно по крутым

фронтам зубцов. Поскольку радиоизлучение распространяется со скоростью света, из этого можно заключить, что объект, от которого исходит импульс, имеет в поперечнике не

больше нескольких сотен километров. Подобные размеры чрезвычайно малы по сравнению с теми, с которыми мы привыкли иметь дело во Вселенной. Диаметр белых кар

ликов составляет несколько десятков тысяч километров; диаметр Земли равен примерно 13 тыс. км. Таким образом, сигналы пульса ров несут сведения о том, насколько малы

те области пространства во вселенной, из которых исходит это чрезвычайно интенсивное радиоизлучение.

  Вскоре из разных мест земного шара стали поступать сообщения о вновь открываемых пульсарах. Сегодня их известно более трех сот. Периоды их лежат в пределах от 0,

0016 секунд (у PSR 1937+21) до 4,3 секунды (у PSR 1845-19) . Буквы PSR обозначают слово "пульсар", далее даются прямое восхождение в часах (195h 0) и минутах (375m0) и

склонение в градусах (-195о0) . Известно шестнадцать пульсаров, периоды которых менее 12 миллисекунд.

  Самый далекий пульсар находится на расстоянии 1,3 кпк. Самый близкий пульсар отдален от Земли примерно на 60 пк (в десятки раз дальше, чем ближайшие звезды) , а

самый далекий зафиксирован на расстоянии около 25 кпк, т.е. далеко за центром Галактики.

  Естественно предположить, что пульсары образуются и в других галактиках. Пока открыли по одному короткопериодическому пульсару в Большом и Малом

Магеллановых Облаках. Девятнадцать пульсаров найдено в шаровых скоплениях.

  Хотя по форме отдельные импульсы не вполне повторяют друг друга, период пульсара отличается высоким постоянством. Иногда импульсы пропадают, но после

возобновления приема следуют в точности в прежнем ритме.

  Впоследствии удалось записать отдельные импульсы с более высоким разрешением. При этом выяснилось, что они обладают еще более тонкой структурой, чем

показано на рисунке 2. Рекордная быстрота изменения интенсивности составляет 0.8*105-60 секунды.

  Это означает, что излучение исходит из области, не превышающей 250 метров в поперечнике.

  Уже в первый год после открытия пульсаров обнаружилось, что период многих из них постепенно увеличивается: со временем пульсары становятся "медленнее".

Однако частота следования импульсов изменяется очень незначительно: чтобы период пульсара удвоился должно пройти примерно 10 млн. лет.

  Что же представляют собой пульсары? Находятся ли они вблизи Солнечной системы или также далеки от нас, как другие галактики? Легко видеть, что пульсары

располагаются среди звезд нашего Млечного Пути. Мы уже знаем, что светлая полоса Млечного Пути, которую мы видим на небе, это множество звезд, расположенных в

нашей Галактике. Особенно много звезд удается различить, если смотреть по направлению к центру Галактики. Если нанести на кар ту звездного неба все известные пульсары,

то они окажутся распределенными среди звезд нашей галактики, преимущественно в районе Млечного Пути.

  Таким образом, пульсары распределены в пространстве так же, как и звезды: они равномерно размещаются среди звезд. Это значит, что проходит не одна тысяча лет,

пока сигналы от нескольких пульсаров достигнут земных радиотелескопов. Соответственно, из лучения пульсаров должно иметь невероятную интенсивность, чтобы его,

несмотря на гигантские расстояния, можно было зарегистрировать на Земле. И эта энергия исходит из области, диаметр которой не превышает 250 метров! Как только был

открыт первый пульсар и его местонахождения на небесной сфере было точно определено, этот участок неба стали исследовать оптическими телескопами.

  Звезда, координаты которой попали в область, указанную радиоастрономами, оказалась самой обыкновенной. По всей видимости, она не имела ничего общего с

приходящим по этому направлению радиоизлучением. Сам же пульсар оставался невидимым.

  Осенью 1968 года были обнаружены сигналы с периодом всего лишь 0.03 секунды от пульсара в Крабовидной туманности. Сигналы пульсара шли из облака,

образованного остатками Сверхновой 1054 года, отмеченной в китайских и японских летописях. Нельзя ли отождествить с пульсаром какой-либо из звездноподобных объектов

Крабовидной туманности?

  Как же определить, является ли невидимая звезда источником пульсирующего радиоизлучения или нет? Быть может, оптическое излучение от звезды тоже пульсирует?

Однако человеческий глаз неспособен заметить пульсации света от столь слабого источника.

  Не особенно выручает и фотографические методы: в том месте, где на фотопластинку попадает свет звезды она засвечивается вне зависимости от того, пульсирует

попадающий на нее свет или нет.

  Поэтому, чтобы выявить пульсации видимого излучения звезды, приходится применят специальные методы. С телескопом соединяют телевизионную камеру, и

оптическое изображение передается на два телеэкрана. Период импульсов радиоизлучения нам уже известен; в течение одной половины периода изображение поступает на

экран А, а в течение другой половины - на экран В. Если видимое излучение объекта пульсирует в том же ритме, что и радиоизлучение, то может в принципе получиться так,

что импульс будет всегда наблюдаться на экране А, а на экране В изображение поступает в те промежутки, когда импульса нет. Те источники, свет которых пульсирует с иной

периодичностью, будут иметь на обоих эк ранах одинаковую яркость. Остается, таким образом, только сравнить изображения на двух экранах, чтобы выяснить, не изменяется

ли видимая яркость какой-либо звезды с тем же периодом, что радиоизлучение.

  То, что пульсар в Крабовидной туманности видимая звезда удалось обнаружить описанным выше методом. Используемая аппаратура работала по аналогичному

принципу, только исследовался не весь участок неба сразу, а каждая звезда по отдельности. Вместо того чтобы наблюдать звезду на нескольких телеэкранах, ее свет направляли

поочередно на счетчики фотонов в соответствии с периодом пульсара Крабовидной туманности. Схема подобного измерения иллюстрируется на рис. 6. Если свет звезды не

пульсирует, то все счетчики отмечают примерно одинаковое число световых квантов.

  Если же от звезды идут вспышки с той же периодичностью, что и у сигналов пульсара, то будут срабатывать те счетчики, которые задействованы в момент прихода

светового импульса; остальные же датчики ничего не регистрируют. Таким образом, за достаточно долгое время показания счетчиков, на которые приходится "активная" доля

периода, будут большими, а показания остальных счетчиков, в которые попадает лишь фоновый свет от темного ночного не ба, остаются почти на нуле. Как говорят, подобная

система счетчиков "накапливает" импульс.

  В ноябре 1968 года два молодых астронома, Уильям Джон Кок и Майкл Дисней, решили провести три ночных дежурства на 90-санти метровом телескопе обсерватории

Стюарда в Тусоне (штат Аризона) . Ни тот ни другой не имели еще опыта астрономических наблюдений, и они хотели воспользоваться ночными дежурствами, чтобы

познакомиться с работой на телескопе. Они еще размышляли о том, что именно будут наблюдать, когда в начале декабря в журнале "Science" появилось сообщение об открытии

пульсара в Крабовидной туманности. Это натолкнуло молодых астрономов на мысль попытаться обнаружить видимое излучение пульсара, тем более, что необходимая для

этого электронная аппаратура уже имелась в институте.

  Дональд Тейлор построил эту аппаратуру для совершенно других целей и воспользовался ею как "приданым", чтобы быть включенным в группу наблюдателей. Итак, в

отношении техники все было в порядке. И хотя никаких гарантий успеха не было - никому ведь еще не удавалось отождествить пульсар с видимой звездой, - Кок и Дисней

имели возможность познакомиться с работой на телескопе, а Тейлор - испытать свои приборы.

  К началу января измерительная аппаратура была смонтирована на горе Китт-Пик (в 70 км от города Тусона) , и 11 января те лескоп был впервые направлен на

Крабовидную туманность. Для каж дой звезды измерения проводились в течение 5000 периодов пульсара, причем за каждый период световой сигнал распределялся

последовательно между несколькими счетчиками. Но ни одна звезда в исследованной области не давала накопления импульса на счетчиках, и 12 января Тейлор вернулся в

Тусон. Помогать Коку и Диснею остался Роберт Мак-Каллистер, обслуживающий электронную аппаратуру. 12 января погода начала портиться, а результатов все не было. Еще

две ночи, отведенные на это исследование, пропали из-за плохой погоды, и все предприятие, казалось, было обречено на неудачу.

  Как часто все решает случай! Уильям Тиффт - наблюдатель, чье дежурство начиналось с 15 января, уступил незадачливым новичкам ночи 15 и 16 января, чтобы они

смогли вновь попытать счастья. Здесь предоставим слово самому Диснею.

  "Пятнадцатого днем было облачно, но к вечеру небо проясни лось. Мы начали ровно в 20 часов. Тейлор был еще в Тусоне; Кок и я сменяли друг друга у телескопа, а

Мак-Каллистер работал с аппаратурой Тейлора. Для начала мы сделали замер от темного неба, в стороне от звезд. Для следующего измерения мы выбрали звезду, которую

Вальтер Бааде обозначил как центральную звезду Крабовидной туманности. Всего тридцать секунд потребовалось для того, чтобы прибор показал нарастающее накопление

импульса на счетчиках. Заметен был и слабый вторичный импульс, отстоящий от главного примерно на половину периода; он был значительно шире и не такой высокий. В то

время как Мак-Каллистер продолжал спокойно обслуживать аппаратуру, мы с Коком поминутно переходили от истерического возбуждения к глубочайшей депрессии.

Действительно ли это пульсар или просто какие-то ложные аппаратурные эффекты?

  Ведь частота пульсара была в точности равна половине промышленной частоты переменного тока в США. Но при повторном измерении импульс вновь появился во

всей своей красе, и настроение под куполом обсерватории поднялось.

  В 20.30, через полчаса после начала наблюдений, позвонил Тейлору. Он отнесся к моему сообщению скептически и предложил изменить кое-что в аппаратуре, чтобы

устранить возможные ошибки.

  Лишь на следующую ночь, наблюдая своими глазами за накоплением импульса, он перестал сомневаться.

  В 1.22 появились облака. Наблюдения были окончены. У трех наблюдателей в обсерватории не было ни малейшего сомнения в том, что им посчастливилось открыть

первый оптический пульсар".

  Теперь и другие астрономы стали искать подтверждения открытия.

  После открытия пульсара в Крабовидной туманности стало ясно, что пульсары каким-то образом связаны со взрывами сверхновых.

  По-видимому, сигналы пульсары идут от того объекта, который ос тается на месте взрыва сверхновой. Это предположение подтверждается и другим пульсаром,

излучение которого исходит из области, где наличие газовых масс указывает на происшедший ранее взрыв сверхновой. Этот взрыв, по всей вероятности, произошел очень

давно, задолго до аналогичного события в Крабовидной туманности.

  В созвездии Паруса разлетающиеся газовые массы выглядят уже не как компактное пятно, а как отдельные "нити", имеющие большую протяженность. Период этого

пульсара на 0,09 секунды больше периода пульсара в Крабовидной туманности. Это третий из самых быстрых известных пульсаров. (После открытия миллисекундных

радиопульсаров его место 5-6) . С самого начала велся поиск этого объекта в видимой области спектра. Но успеха удалось добиться лишь в 1977 году: письмо, полученное 9

февраля редакцией журнала "Nature", в котором говорилось об отождествлении пульсара в созвездии Паруса с видимой звездой, было подписано двенадцатью авторами.

Отметим, что наряду с этими двенадцатью учеными, работающими в Англии и Австралии, в предшествующие восемь лет многие астрономы на лучших телескопах мира

занимались поисками видимой звезды, "мигающей" в том же ритме, что и пульсар в созвездии Па руса. Так что становится ясно, сколь масштабному всемирному бдению был

объявлен отбой этой заметкой. Между прочим, Майкл Дисней, участвовавший в открытии оптического пульсара в Крабовидной туманности, входил и в эту группу ученых.

  У всех остальных пульсаров нет и следа излучения в видимой области. Это наводит на следующую мысль. Что бы ни представляли собой пульсары, они возникают в

результате взрыва сверхновой.

  Вначале период пульсара мал - еще меньше, чем у пульсара в Крабовидной туманности. Такой пульсар излучает не только в радиодиапазоне, но и в видимой области

спектра. С течением времени частота импульсов уменьшается. Не более чем за тысячу лет период пульсара становится равным периоду пульсара в Крабовидной туманности, а

затем достигает и периода пульсара в созвездии Паруса.

  Наряду с увеличением периода ослабевает и интенсивность излучения в видимой области. Когда период пульсара превышает одну секунду, его оптическое излучение

давно уже исчезло, и его удается обнаружить лишь по импульсам в радиодиапазоне. Поэтому с видимыми источниками отождествлены лишь два пульсара с самыми коротки

ми периодами. Они относятся к самым молодым пульсарам, и вокруг них удается даже различить газовые облака - останки сверхновых.

  Более старые пульсары давно уже растратили свою способность излучать в видимой области.

  Но что же такое пульсары? Что остается, когда жизнь звезды заканчивается гигантским взрывом? Мы уже знаем, что пространственная область, из которой исходит

излучение пульсара, должна быть очень малой. Какие же процессы могут происходить в столь малой области так быстро и с такой регулярностью, чтобы можно было привлечь

их к объяснению феномена пульсара? Быть может, это звезды которые, подобно цефеидам, периодически "раздуваются" и вновь сжимаются? Но в таком случае плотность

звездного вещества должна быть очень высокой, так как лишь тогда период осцилляций может быть достаточно мало (вспомним, что период изменения блеска цефеид

составляет несколько суток) . Нас же интересуют объекты, которые способны осциллировать с периодом сотые доли секунды. Даже самые плотные из звезд, белые карлики, не

способны совершать столь быстрые колебания. Возникает вопрос: могут ли звезды иметь еще более высокую плотность, оставляющие по плотности далеко позади белые

карлики с их тонными на кубический сантиметр?

  Первое соображение на этот счет высказали советский физик и два астронома из Пасадены задолго до обнаружения пульсаров. Лев Ландау (1908-1968) в 1932 году

доказал, что вещество с еще более высокой плотностью может находиться в равновесии с гравитационными силами. Тогда же в Пасадене на самом большом по тем временам

телескопе в мире работал выходец из Германии Вальтер Бааде.

  Он был, несомненно, одним из лучших астрономов-наблюдателей на шего столетия. Там же работал и швейцарец Фриц Цвикки, человек столь же напористый, сколь и

неистощимый на выдумки. Еще в 1934 году эти два ученых утверждали, что смогут существовать звезды с исключительно высокой плотностью - как предсказывал и Ландау,

звезды, состоящие почти полностью из одних нейтронов. В 1939 году физики Роберт Оппенгеймер и Джордж Волков поместили в американском физическом журнале "Physical

Review" статью о нейтронных звездах. Имя одного из авторов этой статьи стало известно во всем мире задолго до того, как астрономы всерьез занялись нейтронными звездами:

Оппенгеймер сыграл ведущую роль в создании американской атомной бомбы.

  Оппенгеймер и Волков доказали, что звездное вещество, в ко тором электроны и протоны соединились в нейтроны, может удерживаться в виде шара с собственными

гравитационными силами. Зная свойства нейтронного вещества, можно осуществить теоретические расчеты нейтронных звезд. Анализ математической модели нейтрон ной

звезды показывает, что плотность ее должна быть очень велика: масса, равная солнечной, заключена в объеме шара с поперечником 30 км. - в кубическом сантиметре

содержится миллиарды тонн нейтронной материи. Но нейтронные звезды, если заставить их осциллировать, будут делать это гораздо быстрее, чем пульсары. Поэтому в

качестве объяснения периода пульсаров объемная осцилляция нейтронных звезд не происходит.

  Итак, мы вновь вернулись к тому, с чего начали. Мы искали плотные звездоподобные объекты, которые могли бы совершать достаточно быстрые колебания, - и белые

карлики оказались слишком медленными, а гипотетические нейтронные звезды слишком быстрыми.

  Об открытии пульсаров Томас Голд узнал, будучи преподавателем Корнельского университета в городе Итака (штат Нью-Йорк) .

  И вот, в то время как в научных журналах одна за другой публиковались скороспелые попытки объяснить существование пульсаров (сводившиеся, главным образом, к

попыткам спасти гипотезу пульсирующих звезд) , мысль Томаса Голда пошла в совершенно ином направлении.

  К регулярным периодическим движениям небесных тел относятся и собственное вращение объекта. Солнце, например, совершает полный оборот вокруг своей оси за

27 суток; существуют звезды, которые вращаются гораздо быстрее. Не связано ли строгая периодичность пульсаров с какими-либо вращательным движением? Тогда объект

должен был бы совершать полный оборот менее чем за секунду - в случае пульсара в Крабовидной туманности тридцать оборотов в секунду! Звезда, однако не может

вращаться сколь угодно быстро, поскольку при слишком высокой скорости она будет разрушена центробежными силами. Предельная скорость вращения звезды определяется

величиной гравитации на поверхности звезды; для белого карлика этот предел равен примерно одному обороту в секунду. Если бы скорость вращения белого карлика

соответствовала периоду пульсара в Крабовидной туманности, то он не выдержал бы действия центробежных сил. С большей скоростью могла бы вращаться лишь более

плотная звезда.

  Это возвращает нас к нейтронным звездам: вероятно, периодические "вспышки" пульсара объясняются вращением нейтронной звезды. Для этого нейтронная звезда

должна совершать оборот вокруг своей оси за доли секунды, и это вполне возможно: сила тяжести на поверхности нейтронной звезды достаточно велика. Нейтронная звезда

может вращаться гораздо быстрее.

  Гипотезу Томаса Голда, согласно которой пульсары являются вращающимися нейтронными звездами, астрофизики сразу же приняли как наиболее правдоподобную.

Вековое увеличение периода пульсара объяснялось бы тогда постепенным замедлением вращения нейтронной звезды. Это вполне естественно: можно предположить, что

энергия, посылаемая пульсаром в виде электромагнитного излучения, черпается за счет энергии вращения нейтронной звезды. Вращение могло бы постепенно замедляться

только из-за потерь энергии на излучение, хотя в действительности торможение сильнее.

  Ученые пришли к выводу, что энергия, высвобожденная в результате замедления вращения пульсара Крабовидной туманности, расходуется не только на излучение

самого пульсара, но и на из лучение всей туманности. Этим разрешается еще одно затруднение.

  В то время как свечение обычных туманностей - например, планетарной туманности или туманности Ориона - обусловлена излучением атомов, свечение Крабовидной

туманности имеет совершенно иное происхождение. Электроны, обладающие в результате взрыва сверхновой огромной энергией, движутся здесь со скоростью, близ кой к

скорости света. В магнитном поле туманности электроны движутся по круговым орбитам, излучая при этом свет. Оставался не решенным вопрос, почему эти электроны с 1054

года движутся все также быстро, почему они не замедлились, теряя свою энергию на излучение. Со временем интенсивность излучения должна ослабевать, и свечение

Крабовидной туманности меркнуть. По-видимому, электроны пополняют свою энергию за счет какого-то внешнего источника. Теперь этот источник был найден. Если Томас

Голд прав, то в Крабовидной туманности находится вращающаяся нейтронная звезда, которая, возможно, через свое магнитное поле передает энергию окружающему газу. Как

гигантский пропеллер, вращается нейтронная звезда в туманности, обеспечивая электронам высокую скорость, а Крабовидной туманности - большую яркость. Запаса энергии

вращения нейтронной звезды хватит еще на много тысячелетий.

  Итак, мы нашли механизм, объясняющий регулярность посылаемых пульсарами импульсов. Однако нужно еще понять, как именно возникает радиоизлучение. Поскольку

речь идет не о непрерывной волне, а об импульсе, при котором в течение большей части периода энергия равна нулю и лишь кратковременно энергия очень велика, можно

предположить, что звезда посылает излучение в определенном направлении и мы регистрируем его в тот момент, когда луч вращающейся звезды-прожектора "чиркает" по

Земле - точно так же, как с корабля видят луч вращающегося фонаря на маяке.

  По всей видимости, нейтронная звезда обладает магнитным полем, подобно Земле, но значительно более сильным. Предположим, что магнитная ось звезды не

совпадает, как и у Земли, с ее осью вращения. При вращении нейтронной звезды магнитное поле так же вращается, и поучается картина, показанная на рисунке 8: на

поверхности вращающейся нейтронной звезды, обладающей магнитным полем, где нейтроны вновь превращаются в протоны и электроны, господствуют мощные

электрические силы, под действием которых заряженные частицы уносятся прочь от звезды. Частицы движутся вдоль магнитных силовых линий в пространстве. Их энергии

достаточно для того, чтобы Крабовидная туманность и сегодня, через тысячу лет после своего возникновения, могла светиться. Движение заряженных частиц поперек

магнитных силовых линий затруднено, поэтому они покидают нейтронную звезды, главным образом в области ее магнитных полюсов, уходя вдоль искривленных силовых

линий.

  Электроны, как самые легкие частицы покидают звезду с самой большой скоростью, близ кой, по всей видимости, к скорости света. двигаясь со столь высокой

скоростью по искривленной траектории, электрон излучает энергию, причем не во все стороны, а преимущественно в направлении своего движения. Таким образом,

излучение звезды в целом направлено вдоль выходящих из звезды силовых линий магнитного поля. А так как магнитное поле вращается вместе со звездой, вращаются и

конические пучки выходящего излучения. Удаленный наблюдатель видит их в тот момент, когда он попадает в один из этих двух конусов; для него нейтронная звезда будет

вспыхивать с частотой, соответствующей скорости ее вращения. Многие астрофизики сегодня считают, что эта модель, напоминающая вращающийся прожектор морского

маяка, во многом верна.

  Весной 1969 года две обсерватории независимо одна от другой обнаружили, что медленное, но неуклонное нарастание периода пульсара нарушилось и интервал между

двумя соседними импульсами сократился (рисунок 9) . Затем период вновь стал увеличиваться с прежней скоростью. Мы приняли, что пульсар является вращающейся

нейтронной звездой, вращение которой постепенно замедляется из-за передачи энергии в окружающею среду. Что же могло заставить звезду ускорить свое вращение?

  Изменение периода происходит скачкообразно. Физики-ядерщики, лучше знакомые с нейтронами, чем астрофизики, высказали такое предположение. На поверхности

нейтронной звезды образовались прочные корки - "плиты", которые при охлаждении нейтронной звезды, оставшейся после взрыва сверхновой, отрываются одна за другой. В

результате подобных сдвигов и оползней скорость вращения нейтронной звезды может увеличиваться. Объясняет ли это резкое сокращение периода, которое с тех пор

наблюдалось уже неодноднократно? Глобальные движения земной коры действительно сказываются на скорости вращения Земли и, следовательно, на продолжительности

суток. Наблюдается ли нечто подобное и у пульсаров?

  Не являются ли наблюдаемые скачки их периода свидетельством происходящих в них катаклизмов?

  В последнее десятилетие значительные успехи достигнуты в но вой области наблюдательной астрономии - так называемой гамма-астрономии. Гамма-излучение можно

рассматривать как свет с очень малой длиной волны, еще более короткой, чем у рентгеновского излучения. Гамма-излучение обладает очень высокой энергией: отдельный

гамма-квант несет примерно в миллион раз больше энергии, чем квант видимого света. Однако гамма-излучение, как и рентгеновское, почти не проходит сквозь атмосферу

Земли, поэтому исследование приходящих из Вселенной гамма-лучей началось лишь после того, как с помощью ракет и спутников наблюдения стали осуществляться из

космоса. К наиболее впечатляющим открытиям в области гамма-астрономии относится тот факт, что многие пульсары посылают импульсы и в гамма-диапазоне. Благодаря

огромной энергии гамма-квантов складывается впечатление, что именно гамма-излучение является для пульсаров основным, в то время как радиоизлучение, по которому

пульсары были впервые обнаружены, оказывается скорее побочным эффектом, который можно уподобить звуку, сопровождающему разрыв снаряда. Гамма-импульсы идут в

том же ритме, что и радиоимпульсы, но не совпадают с ними. Явления, связанные с гамма-излучением пульсаров, до сих пор не поняты.

  С точки зрения астрономов пульсары представляют еще одну сложность. В настоящее время уже известно такое количество пульсаров, что можно предположить

существование в одной только нашей Галактике около миллиона активно действующих пульсаров. С другой стороны, несколько последних десятилетий ведутся наблюдения

уда ленных галактик с целью установить, какое количество взрывов сверхновых происходит в среднем за столетие. Это позволяет сделать вывод о том, сколько нейтронных

звезд возникло с древнейших времен в нашем Млечном Пути. Оказывается, что число пульсаров значительно превосходит то количество нейтронных звезд, которое могло

образоваться в результате взрывов сверхновых. Значит ли это, что пульсары могут возникать и иным путем? Быть может, не которые пульсары образуются не в результате

взрывов звезд, а в ходе менее эффектных, но более упорядоченных и мирных процессов?

  В ноябре 1982 года астрономическая общественность была взбудоражена сообщением о том, что пять астрономов с помощью радио телескопа в Пуэрто-Рико открыли

пульсар, который побил рекорд пульсара в Крабовидной туманности. каждую секунду он посылает 642 импульса. Это означает, что нейтронная звезда вращается со скоростью

600 оборотов в секунду. Соответственно гравитация на поверхности должна быть очень велика, чтобы звезду не разорвали центробежные силы. Позднее были открыты и

другие миллисекундные пульсары.

  Группа астрономов, возглавляемая Э. Дж. Лайном (Великобритания) , обнаружила вблизи центра Млечного Пути быстровращающуюся нейтронную звезду. Ее

пульсирующее радиоизлучение достигает Землю 86 раз в секунду. Пульсару, находящемуся в пределах шарового скопления Терциан 5, присвоено наименование PSR 1744-24 А.

По несколько раз в неделю радиосигнал из этого источника исчезает на шесть часов. Это второй, ставший известным науке двойной пульсар. Первый из них, открытый двумя

годами ранее, находится примерно в трех тысячах световых лет от нас. Его период равен около 1,6 мс. Отличительная особенность этих двух пульсаров: оба они, по-видимому,

"пожирают" своих невидимых для нас спутников.

  Очевидно, пульсары излучают такое количество энергии, что ее хватает на разогрев поверхности звезды-спутника. При этом образуется вихрь, способный вызывать

"затмение" радиоизлучения быстровращающегося пульсара. Масса же спутника при этом уменьшается.

  Период колебания излучения "новичка" указывает на то, что он находится на иной (вероятно, более ранней) стадии своего развития, чем первый двойной пульсар.

Скорее всего, спутник достаточно велик, чтобы пульсар мог временами "выхватывать" из него большое количество газов, которое за тем в виде облака начинает независимо

обращаться вокруг пульсара и временами перекрывать собой его излучение. Такое газовое облако, подходя близко к пульсару, вторгается в его магнитное поле, вызывая

вспышки рент геновского излучения.

  Большой интерес среди астрономов вызвало сообщение о том, что А. Вольщан и Д. Фрейл, работая на гигантском радиотелескопе обсерватории Арисибо (Пуэрто-Рико) , в конце 1991 года обнару жили две планеты, которые обращаются вокруг пульсара PSR 1257+12. Пульсар расположен на расстоянии 1600 световых лет от нас (в созвездии Девы) . Это нейтронная звезда, обращающаяся со скоростью 1 оборот за 6,2 мс. Постепенное изменение периода говорит о том, что пульсар входит в систему, включающую два не больших тела, вероятно, планеты. Их масса примерно втрое превышают массу Земли, а период обращения вокруг пульсара у одной из них составляет 67, а у другой - 95 суток. Сотрудники Астрономического института в Кембридже (Великобритания) И. Стивенс, М. Рис и Ф. Подсядловский пришли к следующему выводу: пульсар PSR 1257+12 разрушил своего компаньона, а две планеты возникли в ре зультате этого процесса. Ученые разработали модель, где исчезнувший компаньон - обычная звезда, сходная с нашим Солнцем, но вдвое менее массивная. Он обращался вокруг пульсара со скоростью 1 оборот в сутки. Часть массы этой звезды обрушилась на пульсар, уменьшив его период обращения всего на несколько миллисекунд.

  При токам быстром вращении пульсар превратился в мощный источник излучения, причем внешние слои звезды начали бурно расширяться и покидать звезду. Еще в 1988 году астрономы обсерватории Арисибо открыли пульсар (он получил прозвище "Черная вдова") , который также "поедает" своего компаньона. Теряя один внешний слой за другим, звезда постепенно уменьшается в массе. Силы тяготения ее ослабевают, пока, наконец, звезда не разорвется на части за какие-нибудь несколько часов. Ее вещество распределяется по орбите и образует вокруг пульсара узкое газовое кольцо. Затем это кольцо превращается в плоский тонкий газовый диск, очень сходный с тем, что окружал Солнце во время образования планет. По мнению кембриджских исследователей, диск нового пульсара должен породить свои планеты. Другие теории, объясняющие возникновение планет у пульсаров, исходят из осуществления довольно редкого события - столкновения "бродячего" пульсара со звездой, уже обладав шей планетами, или же слияние двух белых карликов, которое при водит к рождению пульсара, окруженного газовым диском. Теперь дело за радиоастрономами. Они могут проверить предположение о том, что "припульсарные" планеты - совсем не редкость во Вселенной.

  За открытие пульсаров Энтони Хьюишу в 1974 году была присуждена Нобелевская премия по физике. Открытие действительно было выдающемся, и лишь название оказалось не точным. Пульсары вовсе не пульсируют. Это название дали им тогда, когда еще полагали, что это звезды, которые, подобно цефеидам, периодически расширяются и сжимаются. Теперь мы знаем, что пульсары - это вращающие ся нейтронные звезды. Однако название прижилось. Но можем ли мы быть полностью уверены в том, что Томас Голд прав? Действительно ли пульсары - это нейтронные звезды? Тень сомнения оставалась у астрофизиков до тех пор, пока не были обнаружены рентгеновские звезды. Но это уже другая тема для реферата.

Космические объекты: Физическая природа комет

  Маленькое ядро диаметром в доли километра является единственной твердой частью кометы, и в нем практически сосредоточена вся ее масса.

  Масса комет очень мала и никак не влияет на движение планет. Планеты же производят большие возмущения в движении комет. Ядро кометы, по-видимому, состоит из смеси пылинок, твердых кусочков вещества и замерзших газов, таких как: углекислый газ, метан, аммиак.

  При приближении кометы к Солнцу ядро прогревается и из него выделяются газ и пыль. Они создают газовую оболочку - голову кометы. Газ и пыль, входящие в состав головы, под действием давления солнечного излучения и корпускулярных потоков образуют хвост кометы, всегда направленный в сторону, противоположенную Солнцу. Чем ближе к Солнцу н подходит комета, тем она ярче и тем длиннее ее хвост вследствие большего ее облучения и интенсивного выделения газов. Чаще всего он прямой, тонкий, струйчатый. У больших и ярких комет иногда наблюдается широкий, изогнутый веером хвост. Некоторые хвосты достигают в длину расстояния от Земли до Солнца, а голова кометы - размеров Солнца. С удалением от Солнца вид и яркость кометы меняются в обратном порядке, и комета исчезает из вида, достигнув орбиты Юпитера.

  Спектр головы и хвоста кометы имеет обычно яркие полосы. Анализ спектра показывает, что голова кометы состоит в основном из паров углерода и циана, а в составе ее хвоста имеются ионизированные молекулы угарного газа. Спектр ядра кометы является копией солнечного спектра, т.е. ядро светится отраженным солнечным светом, поглощая и затем переизлучая солнечную энергию. На расстоянии Земли от Солнца комета не горячее чем Земля.

  Русский ученый Ф. А. Бредихин (1831-1904) разработал способ определения по кривизне хвоста силы, действующей на его частицы. Он установил классификацию кометных хвостов и объяснил ряд наблюдаемых в них явлений на основе законов механики и физики. В последние годы стало ясно, что движение газов в прямых хвостах и изломы вызваны взаимодействием ионизированных молекул газов хвоста с налетающим на них потоком частиц (корпускул) , летящих от Солнца, которых называют солнечным ветром. Воздействие солнечного ветра на ионы кометного хвоста превосходят их притяжение Солнцем в тысячи раз. Усиление коротковолновой радиации Солнца и корпускулярных потоков вызывает внезапные вспышки яркости комет.

  И в наше время иногда среди населения высказываются опасения, что Земля столкнется с кометой. В 1910 г. Земля прошла сквозь хвост кометы Галлея, где есть угарный газ. Однако его примесь в приземном воздухе обнаружить не удалось, так как даже в голове кометы газы чрезвычайно разряжены. Столкновение Земли с ядром кометы крайне маловероятное событие. Возможно, такое столкновение наблюдалось в 1908 г. как падение Тунгусского метеорита. При этом на высоте нескольких километров произошел мощный взрыв, воздушная волна которого повалила лес на огромной площади.

Метагалактика

  Галактики, подобно звездам, наблюдаются группами. Наша Галактика и Туманность Андромеды входят в Местную группу галактик, размеры которой достигают сотен

тысяч парсек. Местная группа представляет собой сравнительно небольшую систему, так как существуют скопления, содержащие сотни и тысячи галактик. Ближайшее к нам

скопление галактик находится в созвездии Девы и насчитывает сотни крупных галактик. Расстояние до него порядка 20 Мпк, это система диаметром более 6 Мпк. Крупные

скопления галактик находятся в созвездиях Волосы Вероники, Северная Корона, Геркулес и др. Данные внегалактической астрономии указывают на то, что возможно,

существует Местное сверхскопление галактик, насчитывающее примерно 10 тыс. галактик и имеющие диаметр около 50 Мпк. В его центре расположено скопление галактик в

созвездии Девы. В конце 70-х гг. в. астрономы обнаружили, что галактики в сверхскоплениях распределены не равномерно, а сосредоточены вблизи границ, внутри которых

галактик почти нет. Теоретически предвидели возможность такого распределения галактик, а потому не было неожиданным.

  Итак, в крупномасштабной структуре Вселенной не существует каких-либо особых, чем-то выделяющихся мест или направлений, поэтому в больших масштабах

Вселенную можно считать не только однородной, но и изотопной. Вся охваченная современными методами астрономических наблюдений часть Вселенной называется

Метагалактикой (или нашей Вселенной) . В Метагалактике пространство между галактиками заполнено чрезвычайно разреженным межгалактическим газом, пронизывается

космическими лучами, в нем существуют гравитационные и электромагнитные поля, а возможно, и невидимые массы вещества. И все-таки нет оснований отождествлять

Метагалактику со <всей Вселенной>. В принципе возможно существование других, пока неизвестных нам Метагалактик. Расстояние до целого ряда галактик были определены

американским астрономам Э. Хабблом. Сравнение расстояний до галактик со скоростями их удаления (скорости были определены еще Слайфером и другими астрономами и

только исправлялись за счет учета движения Солнца в Галактик) позволило Э. Хабблу установить в 1929г. замечательную закономерность; чем дальше галактика, тем больше

скорость ее удаления от нас. Оказалось, что существует простая зависимость между скоростью удаления галактик и расстоянием до нее: v=HR Коэффициент

пропорциональности H называют теперь постоянной Хаббла. Неизмеримо возросла мощность астрономических исследований, и эти исследования подтвердили закон Хаббла

закон пропорциональности скорости удаления галактик их расстояние. Однако оказалось, что величина коэффициента пропорциональности H была Хаббла сильно завышена.

Согласно современным оценкам H почти в десять раз меньше. Это открытие показывало, что галактики удаляются от нас во все стороны и скорость этого удаления прямо

пропорциональна расстоянию.

  Можно убедиться в том, что картина расширения, связанная с законом Хаббла, представляется одинаковой для наблюдателя, находящегося в любой точке пространства.

Возьмем однородный шар и затем увеличим его размеры, скажем, вдвое, так, чтобы ша р оставался по-прежнему однородным. Ясно, что при этом расстояние между любыми

парами точек внутри шара тоже увеличатся вдвое, как бы мы эти точки ни выбирали внутри шара. Значит, при раздувании шара, где бы наблюдатель ни находился внутри

него, он будет видеть одинаковую картину удаления от него всех точек внутри шара. Если взять шар неограниченно большого размера, то мы и получим картину, описанную

выше, не зависящую от положения наблюдателя. Разбегание галактик вообще никак не влияет на отдельные тела. Мы видели, что бесконечное однородное вещество не создает

никакого тяготения внутри шаровой полости, т.е. никак не влияет на тела.

  Точно так же как в разлетающемся облаке газа отдельные молекулы не расширяются, точно как же и в расширяющейся Вселенной гравитационно связанные тела-

галактики, звезды, Земля -не подвержена космическому расширению. Разумеется, они могут и расширятся и сжиматься, но это вызывается внутренними причинами -

процессами, которые происходят внутри этих тел. Расширение Метагалактике протекает с замедлением, и для будущего есть две возможности. Замедление пропорционально

плотности вещества в Метагалактике. С расширением плотность падает, уменьшается замедление.

  Возможна ситуация, когда при сегодняшней скорости расширения плотность вещества достаточно мола и замедление мало. Тогда расширение будет протекать

неограниченно. Но возможно, что плотность достаточно велика, а значит, велико замедление расширения. В результате расширение прекращается и сменяется сжатием. Итак,

для Метагалактике при нынешней скорости расширение и при малой плотности характерно неограниченное расширение, при большой плотности - расширение, сменяющееся

сжатием. Существует критическая значение плотности вещества Ркрит, отделяющее один случай от другого. Мы видим, что от величины фактической средней плотности всех

видов материи в Метагалактике зависит будущее Метагалактики. " Горячая вселенная. " До сих пор говорили главным образом о "механике" и "геометрии" Метагалактике и

почти не касались вопроса о физических процессах с расширяющейся Метагалактике. Для расчетов физических процессов в первую очередь надо знать, как происходит

расширение Метагалактики. Модель Фридмана, описывающая однородную, изотропную Метагалактику, дает закон расширения. Наблюдения показывают, что в настоящее

время большой точности Метагалактика расширяется изотропно, и плотность в больших масштабах в среднем однородна. Теория "горячей Вселенной " дает определенные

предсказания о содержании гелия в дозвездном веществе. В начале, 60-х годов советский физик Я. Б. Зельдович заметил, что предположение о "горячести" вещества вовсе не

обязательно для того, чтобы избежать превращения всего вещества в гелий. Можно оставаться в рамках холодной модели, но считать, что лептонный заряд не равен нулю. В

этой модели предполагалось, что вещество в начале космологического расширения состоит из протонов, электронов и нейтрино в равных количествах. Лептонный заряд L

равен двум; энтропия S равна нулю. Равное число электронов и протонов необходимо из условия электронейтральности вещества. Смысл гипотезы введения нейтрино

"холодной" модели заключается в том, что при высокой плотности в холодном веществе превращение протонов в нейтроны согласно уравнению p+e n+v не происходит, если

уже есть нейтрино. Это нейтрино не позволяют возникать новым нейтрино и процесс оказывается запрещенным.

  Первоначально теории горячей и холодной Вселенной связывались с попытками дать полное объяснение распространенности химических элементов в дозвездном

веществе. Попытки выяснить, какая теория верна, сначала направлялись в основном по пути анализа наблюдений распространенности химических элементов. Однако такие

наблюдения и в особенности их анализ очень сложны и зависят от многих предположений. Но теория " горячей Вселенной " даёт наблюдательное важнейшее предсказание,

которое является прямым следствием " горячести " большой энтропии вещества. Это - предсказание существования в нашу эпоху реликтового электромагнитного излучения во Вселенной, оставшегося от той эпохи, когда вещество в прошлом было плотным и горячим. Реликтовое излучение. Реликтовое излучение было открыто совершенно случайно в 1965 г. сотрудниками американской компании " Bell " Пензиасом и Вильсоном при отладке рупорной радиоантенны, созданной для наблюдения спутника " ЭХО ". Они обнаружили слабый фоновый радиошум, приходящий из космоса, не зависящий от направления антенны. Дикке, Пиблс, Ролл и Вилкенсон сразу же дали космологическое объяснение изменение Пензиаса и Вилсона, как доказательство горячей модели вселенной. Реликтовое излучение не возникло в каких - либо источниках подобно свету звёзд или радиоволны, родившимся в радиогалактиках. Реликтовое излучение существовала с самого начала расширения Метагалактики. Оно было в горячем веществе Вселенной, которое расширялось от сингулярности. Если подчитать общую плотность энергии, которая сегодня содержится в реликтовом излучении, то она окажется в 30 раз больше, чем плотность энергии в излучении от звёзд, радиогалактик и других источников вместе взятых. Открытие реликтового излучения является грандиозным достижением современной науки. Она позволяет сказать, что на ранних стадиях расширения Метагалактики было горячей. Предсказание реликтового излучения было сделано в рамках теории расширяющейся Метагалактики, поэтому его открытие ещё раз показывает правильность и плодотворность для космологии пути, указанного работами А. А. Фридмана.

Новые и сверхновые звезды

  При вспышках новых звезд выделяется энергия до 1038 Дж.

  Те звезды, которые неудачно называют новыми, на самом деле существуют и до вспышки. Это горячие карликовые звезды, которые вдруг за короткий срок (от суток до ста дней) увеличивают свою светимость на много звездных величин, после чего медленно, иногда на протяжении многих лет, возвращаются к своему первоначальному состоянию. При вспышках новых звезд из их атмосфер со скоростью 1000 км/с выбрасываются внешние газовые оболочки массой в тысячи раз меньшей масс Солнца. Ежегодно в галактике вспыхивает не менее 200 новых звезд, но из них мы замечаем лишь 2/3. Установлено, что новые звезды горячие звезды в тесных двойных системах, где вторая звезда гораздо холоднее первой. Именно двойственность и является. в конечном счете, причиной вспышки новой звезды. В тесных двойных системах происходит обмен газовым веществом между компонентами. Если на горячую звезду при этом попадает большое количество водорода со второй звезды, это приводит к мощному взрыву, и на Земле наблюдатели регистрируют вспышку новой звезды.

  Трудно, почти невозможно представить себе энергию, выделяющуюся при вспышках, или, точнее, взрывах сверхновых звезд. За несколько месяцев сверхновая звезда излучает во пространство столько же энергии (1043Дж) , сколько Солнце за несколько миллиардов лет. Причины взрывов сверхновых звезд достоверно не известны, однако, скорее всего они происходят потому, что в процессе излучения со звезды уходит громадное количество нейтрино и она теряет устойчивость. До взрыва ядро сверхновой звезды имеет плотность 1010 кг/м3 и температуру в несколько миллиардов кельвинов. После резкой утечки нейтрино звезда за несколько сотых долей секунды спадает внутрь себя. Ее ядро приобретает плотность 1017 кг/м3 и температуру порядка 200 млрд. кельвинов. В оболочке, окружающей ядро, возникает взрывная реакция выгорания углерода и кислорода. Мощнейшая взрывная волна срывает внешние оболочки звезды, и в этот момент мы видим вспышку сверхновой.

  Итог вспышки зависит от первоначальной массы звезды. Если до взрыва звезда имела массу от 1,2 до 2 масс Солнца, то после взрыва она превращается в нейтронную звезду. Существование таких объектов было предсказано еще в 1934 г. Они состоят из нейтронов, в которые преобразуются протоны и ядра всех более тяжелых элементов. Поперечники нейтронных звезд так малы (порядка 20 км) , что любая из них свободно разместилась бы на территории Москвы. Теоретические расчеты показывают, что нейтронные звезды должны очень быстро вращаться вокруг оси и обладать мощным магнитным полем.

  В другом случае, когда масса звезды более чем вдвое превышает солнечную массу, в результате взрыва звезда превращается в черную дыру или коллапсар.

Основные звездные характеристики. Рождение звезд

Содержание:

Основные звездные характеристики

Светимость и расстояние до звезд

Спектры звезд и их химический состав

Температура и масса звезд

Связь основных звездных величин

Звезды рождаются

Межзвездный газ

Межзвездная пыль

Разнообразие физических условий

Почему должны рождаться новые звезды?

Газово-пылевые комплексы - колыбель звезд

Звездные ассоциации

Кратко обо всем процессе рождения

  Основные звездные характеристики

  Светимость и расстояние до звезд

  Прежде всего надо понять, что звезды, за редчайшим исключением, наблюдаются как "точечные" источники излучения. Это означает, что их угловые размеры очень

малы. Даже в самые большие телескопы нельзя увидеть звезды в виде "реальных" дисков. Подчеркиваю слово "реальных", так как благодаря чисто инструментальным эффектам,

а главным образом неспокойностью атмосферы, в фокальной плоскости телескопов получается "ложное" изображение звезды в виде диска. Угловые размеры этого диска редко

бывают меньше одной секунды дуги, между тем как даже для ближайших звезд они должны быть меньше одной сотой доли секунды дуги.

  Итак, звезда даже в самый большой телескоп не может быть, как говорят астрономы, "разрешена". Это означает, что мы можем измерять только потоки излучения от

звезд в разных спектральных участках. Мерой величины потока является звездная величина.

  Светимость определяется, если известны видимая величина и расстояние до звезды. Если для определения видимой величины астрономия располагает вполне

надежными методами, то расстояние до звезд определить не так просто. Для сравнительно близких звезд, удаленных на расстояние, не превышающие нескольких десятков

парсек, расстояние определяется известным еще с начала прошлого столетия тригонометрическим методом, заключающимся в измерении ничтожно малых угловых смещений

звезд при их наблюдении с разных точек земной орбиты, то есть в разное время года. Этот метод имеет довольно большую точность и достаточно надежен. Однако для

большинства других более удаленных звезд он уже не годится: слишком малые смещения положения звезд надо измерять - меньше одной сотой доли секунды дуги! На помощь

приходят другие методы, значительно менее точные, но тем не менее достаточно надежные. В ряде случаев абсолютную величину звезд можно определить и непосредственно,

без измерения расстояния до них, по некоторым наблюдаемым особенностям их излучения.

  Спектры звезд и их химический состав

  Исключительно богатую информацию дает изучение спектров звезд. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность

спектральных классов обозначается буквами O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с

точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1... В9, А0 и так далее. Спектр звезд в

первом приближении похож на спектр излучающего "черного" тела с некоторой температурой Т. Эти температуры плавно меняются от 40-50 тысяч градусов у звезд

спектрального класса О до 3000 градусов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на

ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли. Однако в последние десятилетия были запущены специализированные искусственные

спутники земли; на их борту были установлены телескопы, с помощью которых оказалось возможным исследовать и ультрафиолетовое излучение.

  Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий

анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.

  Химический состав наружных слоев звезд, откуда к нам "непосредственно" приходит их излучение, характеризуется полным преобладанием водорода. На втором месте

находится гелий, а обилие остальных элементов достаточно невелико. Приблизительно га каждые десять тысяч атомов водорода приходиться тысячи атомов гелия, около 10

атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать,

что наружные слои звезд - это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов.

  Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с

нашим Солнцем (спектральный класс которого G2) , представляются желтыми, звезды же спектральных классов К и М - красные. В астрофизике имеется тщательно

разработанная и вполне объективная система цветов. Она основана на сравнении наблюдаемых звездных величин, полученных через различные строго эталонированные

светофильтры. Количественно цвет звезд характеризуется разностью двух величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи

("В") , а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом("V") . Техника измерений цвета звезд настолько высока, что по измеренному

значению B-V можно определить спектр звезды с точностью до подкласса. Для слабых звезд анализ цветов - единственная возможность их спектральной классификации.

  Температура и масса звезд

  Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как звезды излучают приблизительно как абсолютно черные тела

соответствующей температуры, то мощность, излученная единицей их поверхности, определяется из закона Стефана Больцмана: - постоянная

Больцмана Мощность излучения всей поверхности звезды, или ее светимость, очевидно будет равна (*) , где R - радиус звезды. Таким образом,

для определения радиуса звезды надо знать ее светимость и температуру поверхности.

  Нам остается определить еще одну, едва ли не самую важную характеристику звезды - ее массу. Надо сказать, что это сделать не так то просто. А главное существует не

так уж много звезд, для которых имеются надежные определения их масс. Последние легче всего определить, если звезды образуют двойную систему, для которой большая

полуось орбиты а и период обращения Р известны. В этом случае массы определяются из третьего закона Кеплера, который может быть записан в следующем виде:

, здесь М1 и М2 - массы компонент системы, G - постоянная в законе всемирного тяготения Ньютона. Уравнение дает сумму масс компонент

системы. Если к тому же известно отношение орбитальных скоростей, то их массы можно определить отдельно. К сожаления, только для сравнительно небольшого количества

двойных систем можно таким образом определить массу каждой из звезд.

  В сущности говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (то есть не входящей в состав

кратных систем) изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы

значительно более быстрым. В такой ситуации астрономы молчаливо принимаю, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Последние же

определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в состав

двойной системы, всегда следует принимать с некоторой осторожностью.

  Связь основных звездных величин

  Итак, современная астрономия располагает методами определения основных звездных характеристик: светимости, поверхностной температуры (цвета) , радиуса,

химического состава и массы. Возникает важный вопрос: являются ли эти характеристики независимыми? Оказывается, нет. Прежде всего имеется функциональная

зависимость, связывающая радиус звезды, ее болометрическую светимость и поверхностную температуру. Эта зависимость представляется простой формулой (*) и является

тривиальной. Наряду с этим, однако, давно уже была обнаружена зависимость между светимостью звезд и их спектральным классом (или, что фактически одно и то же, -

цветом) . Эту зависимость эмпирически установили (независимо) на большом статистическом материале еще в начале нашего столетия выдающиеся астрономы датчанин

Герцшпрунг и американец Рассел.

  Звезды рождаются

  Межзвездный газ

  Потребовалось, однако, тысячелетнее развитие науки, чтобы человечество осознало простой и вместе с тем величественный факт, что звезды - это объекты, более или

менее похожие на Солнце, но только отстоящие от нас на несравненно большие расстояния. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия

после великого английского ученого почти всеми молчаливо принималось, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная

пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. Только в самом начале XX столетия немецкий

астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но

вполне определенной плотностью. Это выдающиеся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

  Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно

часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении

света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек. Это и приводит

благодаря эффекту Доплера к незначительному смещению длин волн линий поглощения.

  Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу Солнца и звезд. Преобладающими элементами

являются водород и гелий, между тем как остальные элементы мы можем рассматривать как "примеси".

  Межзвездная пыль

  До сих пор, говоря о межзвездной среде, мы имели ввиду только межзвездный газ. но имеется и другая компонента. Речь идет о межзвездной пыли. Мы уже упоминали

выше, что еще в прошлом столетии дебатировался вопрос о прозрачности межзвездного пространства. Только около 1930 года с несомненностью было доказано, что

межзвездное пространство действительно не совсем прозрачно. Поглощающая свет субстанция сосредоточена в довольно тонком слое около галактической плоскости. Сильнее

всего поглощаются синие и фиолетовые лучи, между тем как поглощение в красных лучах сравнительно невелико.

  Что же это за субстанция? Сейчас уже представляется доказанным, что поглощение света обусловлено межзвездной пылью, то есть твердыми микроскопическими

частицами вещества, размерами меньше микрона. Эти пылинки имеют сложный химический состав. Установлено, что пылинки имеют довольно вытянутую форму и в какой-

то степени "ориентируются", то есть направления их вытянутости имеют тенденцию "выстраиваться" в данном облаке более или менее параллельно. По этой причине

проходящий через тонкую среду звездный свет становится частично поляризованным.

  Разнообразие физических условий

  Характернейшей особенностью межзвездной среды является большое разнообразие имеющихся в ней физических условий. Там имеются, во-первых, зоны, кинетическая

температура которых различается на два порядка. Имеются сравнительно плотные облака с концентрацией частиц газа, превышающей несколько тысяч на кубический

сантиметр, и весьма разряженная среда между облаками, где концентрация не превышает 0,1 частицы на кубический сантиметр. имеются, наконец, огромные области, где

распространяются ударные волны от взрывов звезд.

  Наряду с отдельными облаками как ионизированного так и неионизированного газа в Галактике наблюдаются значительно большие по своим размерам, массе и

плотности агрегаты холодного межзвездного вещества, получившие название "газово-пылевых комплексов". Для нас самым существенным является то, что в таких газово-

пылевых комплексах происходит важнейший процесс конденсации звезд из диффузной межзвездной среды.

  Почему должны рождаться новые звезды?

  Значение газово-пылевых комплексов в современной астрофизике очень велико. Дело в том, что уже давно астрономы, в значительной степени интуитивно, связывали

образования конденсации в межзвездной среде с важнейшим процессом образования звезд из "диффузной" сравнительно разряженной газово-пылевой среды. Какие же

основания существуют для предположения о связи между газово-пылевыми комплексами и процессом звездообразования? Прежде всего следует подчеркнуть, что уже по

крайней мере с сороковых годов нашего столетия астрономам ясно, что звезды в Галактике должны непрерывно (то есть буквально "на наших глазах") образовываться из какой-

то качественно другой субстанции. Дело в том, что к 1939 году было установлено, что источником звездной энергии является происходящий в недрах звезд термоядерный

синтез. Грубо говоря, подавляющие большинство звезд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу.

Так как масса одного протона (в атомных единицах) равна 1,0081, а масса ядра гелия (альфа-частицы) равна 4,0039, то избыток массы, равный 0,007 атомной единицы на

протон, должен выделиться как энергия. Тем самым определяется запас ядерной энергии в звезде, которая постоянно тратится на излучение. В самом благоприятном случае

чисто водородной звезды запаса ядерной энергии хватит не более, чем на 100 миллионов лет, в то время как в реальных условиях эволюции время жизни звезды оказывается

на порядок меньше этой явно завышенной оценки. Но десяток миллионов лет - ничтожный срок для эволюции нашей Галактики, возраст которой никак не меньше чем 10

миллиардов лет. Возраст массивных звезд уже соизмерим с возрастом человечества на Земле! Значит звезды (по крайней мере, массивные с высокой светимостью) никак не

могут быть в Галактике "изначально", то есть с момента ее образования. Оказывается, что ежегодно в Галактике "умирает" по меньшей мере одна звезда. Значит, для того, чтобы

"звездное племя" не "выродилось", необходимо, чтобы столько же звезд в среднем образовывалось в нашей Галактике каждый год. Для того, чтобы в течении длительного

времени (исчисляемыми миллиардами лет) Галактика сохраняла бы неизменными свои основные особенности (например, распределение звезд по классам, или, что

практически одно и тоже, по спектральным классам) , необходимо, чтобы в ней автоматически поддерживалось динамическое равновесие между рождающимися и

"гибнущими" звездами. В этом отношении Галактика похожа на первобытный лес, состоящий из деревьев различных видов и возрастов, причем возраст деревьев гораздо

меньше возраста леса. Имеется, правда, одно важное различие между Галактикой и лесом. В Галактике время жизни звезд с массой меньше солнечной превышает ее возраст.

Поэтому следует ожидать постепенного увеличения числа звезд со сравнительно небольшой массой, так как они пока еще "не успели" умереть, а рождаться продолжают. Но для

более массивных звезд упомянутое выше динамическое равновесие неизбежно должно выполняться.

  Газово-пылевые комплексы - колыбель звезд

  Откуда же берутся в нашей Галактике молодые и "сверхмолодые" звезды? С давних пор, по установившейся традиции, восходящей к гипотезе Канта и Лапласа о

происхождении Солнечной системы, астрономы предполагали, что звезды образуются из рассеянной диффузной газово-пылевой среды. Было только одно строгое

теоретическое основание такого убеждения - гравитационная неустойчивость первоначально однородной диффузной среды. Дело в том, что в такой среде неизбежны малые

возмущения плотности, то есть отклонения от строгой однородности. в дальнейшем, однако, если массы этих конденсаций превосходят некоторый предел, под влиянием силы

всемирного тяготения малые возмущения будут нарастать и первоначально однородная среда разобьется на несколько конденсаций. Под действием силы гравитации эти

конденсации будут продолжать сжиматься и, как можно полагать, в конце концов превратятся в звезды.

  Характерное время сжатия облака до размеров протозвезды можно оценить по простой формуле механики, описывающей свободное падение тела под влиянием

некоторого ускорения. Так, к примеру, облако с массой, равной солнечной, сожмется за миллион лет.

  В процессе только что описанной первой стадии конденсации газово-пылевого облака в звезду, которая называется "стадией свободного падения", освобождается

определенное количество гравитационной энергии. Половина освободившейся при сжатии облака энергии должна покинуть облако в виде инфракрасного излучения, а

половина пойти на нагрев вещества.

  Как только сжимающееся облако станет непрозрачным для своего инфракрасного излучения, светимость его резко упадет. Оно будет продолжать сжиматься, но уже не

по закону свободного падения, а гораздо медленнее. Температура его внутренних областей, после того как процесс диссоциации молекулярного водорода закончится, будет

непременно повышаться, так как половина освобождающейся при сжатии гравитационной энергии будет идти на нагрев облака. Впрочем, такой объект назвать облаком уже

нельзя. Это уже самая настоящая протозвезда.

  Таким образом, из простых законов физики следует ожидать, что может иметь место единственный и закономерный процесс эволюции газово-пылевых комплексов

сначала в протозвезды, а потом и в звезды. Однако возможность - это еще не есть действительность. Первейшей задачей наблюдательной астрономии является, во-первых,

изучить реальные облака межзвездной среды и проанализировать, способны ли они сжиматься под действием собственной гравитации. Для этого надо знать их размеры,

плотность и температуру. Во-вторых, очень важно получить дополнительные аргументы в пользу "генетической близости облаков и звезд (например, тонкие детали их

химического и даже изотопного состава, генетическая связь звезд и облаков и прочее) . В-третьих, очень важно получить из наблюдений неопровержимые свидетельства

существования самых ранних этапов развития протозвезд (например, вспышки инфракрасного излучения в конце стадии свободного падения) . Кроме того, здесь могут

наблюдаться, и, по-видимому, наблюдаются совершенно неожиданные явления. Наконец, следует детально изучать протозвезды. Но для этого прежде всего надо уметь

отличать их от "нормальных" звезд.

  Звездные ассоциации

  Эмпирическим подтверждением процесса образования звезд из облаков межзвездной среды является то давно известное обстоятельство, что массивные звезды классов

О и В распределены в Галактике не однородно, а группируются в отдельные обширные скопления, которые позже получили название "ассоциации". Но такие звезды должны

быть молодыми объектами. Таким образом, сама практика астрономических наблюдений подсказывала, что звезды рождаются не поодиночке, а как бы гнездами, что

качественно согласуется с представлениями теории гравитационной неустойчивости. Молодые ассоциации звезд (состоящие не только из одних горячих массивных гигантов,

но и из других примечательных, заведомо молодых объектов) тесно связаны с большими газово-пылевыми комплексами межзвездной среды. Естественно считать, что такая

связь должна быть генетической, то есть эти звезды образуются путем конденсации облаков газово-пылевой среды.

  Процесс рождения звезд, как правило, не заметен, потому что скрыт от нас пеленой поглощающей свет космической пыли. Только радиоастрономия, как можно теперь с

большой уверенностью считать, внесла радикальное изменение в проблему изучения рождения звезд. Во-первых, межзвездная пыль не поглощает радиоволны. Во- вторых,

радиоастрономия открыла совершенно неожиданные явления в газово-пылевых комплексах межзвездной среды, которые имеют прямое отношение к процессу

звездообразования.

  Кратко обо всем процессе рождения

  Мы довольно подробно рассматривали вопрос о конденсации в протозвезды плотных холодных молекулярных облаков, на которые из-за гравитационной

неустойчивости распадается газово-пылевой комплекс межзвездной среды. Здесь важно еще раз подчеркнуть, что этот процесс является закономерным, то есть неизбежным. В

самом деле, тепловая неустойчивость межзвездной среды неизбежно ведет к ее фрагментации, то есть к разделению на отдельные, сравнительно плотные облака и

межоблачную среду. Однако собственная сила тяжести не может сжать облака - для этого они недостаточно плотны и велики. Но тут "вступает в игру" межзвездное магнитное

поле. В системе силовых линий этого поля неизбежно образуются довольно глубокие "ямы", куда "стекаются" облака межзвездной среды. Это приводит к образованию

огромных газово-пылевых комплексов. В таких комплексах образуется слой холодного газа, так как ионизирующее межзвездный углерод ультрафиолетовое излучение звезд

сильно поглощается находящейся в плотном комплексе космической пылью, а нейтральные атомы углерода сильно охлаждают межзвездный газ и "термостатируют" его при

очень низкой температуре - порядка 5-10 градусов Кельвина. Так как в холодном слое давление газа равно внешнему давлению окружающего более нагретого газа, то плотность

в этом слое значительно выше и достигает нескольких тысяч атомов на кубический сантиметр. Под влиянием собственной гравитации холодный слой, после того как он

достигнет толщины около одного парсека, начнет "фрагментировать" на отдельные, еще более плотные сгустки, которые под воздействием собственной гравитации будут продолжать сжиматься. Таким вполне естественным образом в межзвездной среде возникают ассоциации протозвезд. Каждая такая протозвезда эволюционирует со скоростью, зависящей от ее массы.

  Когда существенная часть массы газа превратиться в звезды, межзвездное магнитное поле, которое своим давлением поддерживало газово-пылевой комплекс, естественно, не будет оказывать воздействия на звезды и молодые протозвезды. Под влиянием гравитационного притяжения Галактики они начнут падать к галактической плоскости. Таким образом, молодые звездные ассоциации всегда должны приближаться к галактической плоскости.

Строение и эволюция Вселенной

   

  План:

  I) Строение вселенной

  II) Модели вселенной

  1. Наша Галактика

  2. Другие Галактики

  3. Вчерашний день метагалактики

  4. Метагалактика

  5. История развития взглядов о строении Вселенной

  III) Эволюция вселенной

  1. Модели строения и развития вселенной

  2. Теории, на основании которых созданы современные представления о эволюции вселенной

  3. Возраст вселенной

  IV) Вселенная и жизнь

  1. Условия жизни

  2. Пояс жизни

  3. Таинственный Марс

  V) Изучение вселенной

  Мир, Земля, Космос, Вселенная… Тысячелетиями пытливое человечество обращало свои взгляды на окружающий мир, стремилось постигнуть его, вырваться за

пределы микромира в макромир.

  Величественная картина небесного купола, усеянного мириадами звезд, с незапамятных звезд волновала ум и воображение ученых, поэтов, каждого живущего на Земле

и зачарованного любующегося торжественной и чудной картиной, по выражению Лермонтова.

  Что есть Земля, Луна, Солнце, звезды? Где начало и где конец Вселенной, как долго она существует, из чего состоит и где границы ее познания?

  В своем реферате я изложила всё то, что известно на сегодняшний день науке о строении и эволюции Вселенной.

  Изучение Вселенной, даже только известной нам её части является грандиозной задачей. Чтобы получить те сведения, которыми располагают современные ученые,

понадобились труды множества поколений.

  Вселенная бесконечна во времени и пространстве. Каждая частичка вселенной имеет свое начало и конец, как во времени, так и в пространстве, но вся Вселенная

бесконечна и вечна так, как она является вечно самодвижущейся материей.

  Вселенная - это всё существующее. От мельчайших пылинок и атомов до огромных скоплений в-ва звездных миров и звездных систем. Поэтому не будет ошибкой

сказать, что любая наука так или иначе изучает Вселенную, точнее, тем или иначе её стороны. Химия изучает мир молекул, физика – мир атомов и элементарных частиц,

биология – явления живой природы. Но существует научная дисциплина, объектом исследования которой служит сама вселенная или “Вселенная как целое” . Это особая

отрасль астрономии так называемая космология. Космология – учение о Вселенной в целом, включающая в себя теорию всей охваченной астрономическими наблюдениями

области, как части Вселенной, кстати не следует смешивать понятия Вселенной в целом и “наблюдаемой” (видимой) Вселенной. Во втором случае речь идет речь идет лишь о

той ограниченной области пространства, которая доступна современным методам научных исследований. С развитием кибернетики в различных областях научных

исследованиях приобрели большую популярность методики моделирования. Сущность этого метода состоит в том, что вместо того или иного реального объекта изучается его

модель, более или менее точно повторяющая оригинал или его наиболее важные и существенные особенности. Модель не обязательно вещественная копия объекта.

Построение приближенных моделей различных явлений помогает нам всё глубже познавать окружающий мир. Так, например, на протяжении длительного времени астрономы

занимались изучением однородной и изотронной (воображаемой) Вселенной, в которой все физические явления протекают одинаковым образом и все законы остаются

неизменными для любых областей и в любых направлениях. Изучались так же модели, в которых к этим двум условиям добавлялось третье, - неизменность картины мира. Это

означает, что в какую бы эпоху мы не созерцали мир, он всегда должен выглядеть в общих чертах одинаково. Эти во многом условные и схематические модели помогли

осветить некоторые важные стороны окружающего нас мира. Но! Как бы сложна ни была та или иная теоретическая модель, какие бы многообразные факты она ни учитывала,

любая модель – это еще не само явление, а только более или менее точная его копия, так сказать образ реального мира. Поэтому все результаты полученные с помощью моделей

Вселенной, необходимо обязательно проверить путем сравнения с реальностью. Нельзя отождествлять само явление с моделью. Нельзя без тщательной проверки, приписывать

природе те свойства, которыми обладает модель. Ни одна из моделей не может претендовать на роль точного “слепка” Вселенной. Это говорит о необходимости углубленной

разработки моделей неоднородной и неизотронной Вселенной.

  Звезды во Вселенной объединены в гигантские Звездные системы, называемые галактиками. Звездная система. В составе которой, как рядовая звезда находится наше

Солнце, называется Галактикой.

  Число звезд в галактике порядка 1012 (триллиона) . Млечный путь, светлая серебристая полоса звезд опоясывает всё небо, составляя основную часть нашей Галактики.

Млечный путь наиболее ярок в созвездии Стрельца, где находятся самые мощные облака звезд. Наименее ярок он в противоположной части неба. Из этого нетрудно вывести

заключение, что солнечная система не находится в центре Галактики, который от нас виден в направлении созвездия Стрельца. Чем дальше от плоскости Млечного Пути, тем

меньше там слабых звезд и тем менее далеко в этих направлениях тянется звездная система. В общем, наша Галактика занимает пространство, напоминающее линзу или

чечевицу, если смотреть на нее сбоку. Размеры Галактики были намечены по расположению звезд, которые видны на больших расстояниях. Это цефиды и горячие гиганты.

Диаметр Галактики примерно равен 3000 пк (Парсек (пк) – расстояние, с которым большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1” . 1

Парсек = 3,26 светового года = 206265 а. е. = 3*1013 км.) или 100000 световых лет (световой год – расстояние пройденное светом в течении года) , но четкой границы у нее нет,

потому что звездная плотность постепенно сходит на нет.

  В центре галактики расположено ядро диаметром 1000-2000 пк – гигантское уплотненное скопление звезд. Оно находится от нас на расстоянии почти 10000 пк (30000

световых лет) в направлении созвездия Стрельца, но почти целиком скрыто плотной завесой облаков, что препятствует визуальным и фотографическим обычным

наблюдениям этого интереснейшего объекта Галактики. В состав ядра входит много красных гигантов и короткопериодических цефид.

  Звезды верхней части главной последовательности а особенно сверхгиганты и классические цефиды, составляют более молодые население. Оно располагается дальше

от центра и образует сравнительно тонкий слой или диск. Среди звезд этого диска находится пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и

диска Галактики сферическую систему.

  Масса нашей галактики оценивается сейчас разными способами, равна 2*1011 масс Солнца (масса Солнца равна 2*1030 кг.) причем 1/1000 ее заключена в межзвездном

газе и пыли. Масса Галактики в Андромеде почти такова же, а масса Галактики в Треугольнике оценивается в 20 раз меньше. Поперечник нашей галактики составляет 100000

световых лет. Путем кропотливой работы московский астрономом В. В. Кукарин в 1944 г. нашел указания на спиральную структуру галактики, причем оказалось, что мы живем

между двумя спиральными ветвями, бедном звездами.

  В некоторых местах на небе в телескоп, а кое где даже невооруженным глазом можно различить тесные группы звезд, связанные взаимным тяготением, или звездные

скопления.

  Существует два вида звездных скоплений: рассеянные и шаровые .

  Рассеянные скопления состоят обычно из десятков или сотен звезд главной последовательности и сверхгигантов со слабой концентрацией к центру.

  Шаровые же скопления состоят обычно из десятков или сотен звезд главной последовательности и красных гигантов. Иногда они содержат короткопериодические

цефеиды. Размер рассеянных скоплений – несколько парсек. Пример их скопления Глады и Плеяды в созвездии Тельца. Размер шаровых скоплений с сильной концентрацией

звезд к центру – десяток парсек. Известно более 100 шаровых и сотни рассеянных скоплений, но в Галактике последних должно быть десятки тысяч.

  Кроме звезд в состав Галактики входит еще рассеянная материя, чрезвычайно рассеянное вещество, состоящее из межзвездного газа и пыли. Оно образует туманности.

Туманности бывают диффузными (клочковатой формы ) и планетарными . Светлые они от того, что их освещают близлежащие звезды. Пример: газопылевая туманность в

созвездии Ориона и темная пылевая туманность Конская голова.

  Расстояние до туманности в созвездии Ориона равно 500 пк, диаметр центральной части туманности – 6 пк, масса приблизительно в 100 раз больше массы Солнца.

  Во Вселенной нет ничего единственного и неповторимого в том смысле, что в ней нет такого тела, такого явления, основные и общие свойства которого не были бы

повторены в другом теле, другими явлениями.

  Внешний вид галактик чрезвычайно разнообразен, и некоторые из них очень живописны. Эдвин Пауэлла Хаббл (1889-1953) , выдающийся американский астроном –

наблюдатель, избрал самый простой метод классификации галактик по внешнему виду, и нужно сказать, что хотя в последствии другими выдающимися исследователями были

внесены разумные предположения по классификации, первоначальная система, выведенная Хабблом, по прежнему остаётся основой классификации галактик.

  Хаббл предложил разделить все галактики на 3 вида:

  1. Эллиптические – обозначаемые Е (elliptical) ;

  2. Спиральные (Spiral) ;

  3. Неправильные – обозначаемые I (irregular) .

  Эллиптические галактики внешне невыразительные. Они имеют вид гладких эллипсов или кругов с постепенным круговым уменьшением яркости от центра к

периферии. Ни каких дополнительных частей у них нет, потому что Эллиптические галактики состоят из второго типа звездного населения. Они построены из звезд красных и

желтых гигантов, красных и желтых карликов и некоторого количества белых звезд не очень высокой светлости. Отсутствуют бело-голубые сверхгиганты и гиганты,

группировки которых можно наблюдать в виде ярких сгустков, придающих структурность системе, нет пылевой материи которая, в тех галактиках где она имеется, создаёт

темные полосы, оттеняющие форму звездной системы.

  Внешне эллиптические галактики отличаются друг от друга в основном одной чертой – большим или меньшим сжатием (NGG и 636, NGC 4406, NGC 3115 и др.) С

несколько однообразными эллиптическими галактиками контрастируют спиральные галактики являющиеся может быть даже самыми живописными объектами во Вселенной.

У эллиптических галактик внешний вид говорит о статичности, стационарности Спиральные галактики наоборот являют собой пример динамики формы. Их красивые ветви,

выходящие из центрального ядра и как бы теряющие очертания за пределами галактики, указывает на мощное стремительное движение. Поражает также многообразие форм и

рисунков ветвей. Как правило, у галактики имеются две спиральные ветви, берущие начало в противоположных точках ядра, развивающимися сходным симметричным

образом и теряющая в противоположных областях периферии, галактики. Однако известны примеры большего, чем двух числа спиральных ветвей в галактике. В других

случаях спирали две, но они неравны – одна значительно более развита чем вторая. Примеры спиральных галактик: М31, NGC 3898, NGC 1302, NGC 6384, NGC 1232 и др.

  Перечисленные мною до сих пор типы галактик характеризовались симметричностью форм определенным характером рисунка. Но встречаются большое число галактик

неправильной формы . Без какой-либо закономерности структурного строения. Хаббл дал им обозначение от английского слова irregular – неправильные.

  Неправильная форма у галактики может быть, в следствии того, что она не успела принять правильной формы из-за малой плотности в ней материи или из-за молодого

возраста. Есть и другая возможность: галактика может стать неправильной в следствии искажения формы в результате взаимодействия с другой галактикой. По видимому эти

оба случая встречаются среди неправильных галактик и может быть с этим связанно разделение неправильных галактик на 2 подтипа.

  Подтип II характеризуется сравнительно высокой поверхностью, яркостью и сложностью неправильной структуры (NGM 25744, NGC 5204) . Французский астроном

Вакулер в некоторых галактиках этого подтипа, например Магеллановых облаках, обнаружил признаки спиральной разрушенной структуры.

  Неправильные галактики другого подтипа обозначаемого III, отличаются очень низкой поверхностью и яркостью. Эта черта выделяет их из среды галактик всех других

типов. В то же время она препятствует обнаружению этих галактик, вследствие чего удалось выявить только несколько галактик подтипа III расположенных сравнительно

близко (галактика в созвездии Льва.) .

  Только 3 галактики можно наблюдать невооруженным глазом, Большое Магелланово облако, Малое Магелланово облако и туманность Андромеды. В таблицы

приведены данные о десяти ярчайших галактиках неба. (БМО, ММО – Большое Магелланово облако и Малое Магелланово облако.) .

  Не вращающаяся звездная система по истечении некоторого срока должна принять форму шара. Такой вывод следует из теоретических исследований. Он

подтверждается на примере шаровых скоплений, которые вращаются и имеют шарообразную форму.

  Если же звездная система сплюснута, то это означает, что она вращается. Следовательно, должны вращаться и эллиптические галактики, за исключением тех, из них,

которые шарообразны, не имеют сжатия. Вращение происходит вокруг оси, которая перпендикулярна главной плоскости симметрии. Галактика сжата вдоль оси своего

вращения. Впервые вращение галактик обнаружил в 1914 г. американский астроном Слайфер.

  Особый интерес представляют галактики с резко повышенной светимостью. Их принято называть радиогалактиками. Наиболее выдающаяся галактика Лебедь. Это

слабая двойная галактика с чрезвычайно тесно расположенными друг к другу компонентами, являющимися мощнейшим дискретным источником. Объекты подобные галактике

Лебедь безусловно очень редки в метагалактике, но Лебедь не единственный объект подобного рода во Вселенной. Они должны находиться на громадном расстоянии друг от

друга (более 200Мпс) .

  Поток проходящего от них радиоизлучения в виду большого расстояния слабее, чем от источника Лебедь.

  Несколько ярких галактик, входящих в каталог NGC, также отнести к разряду радиогалактик, потому что их радиоизлучение аналогично сильное, хотя оно значительно

уступает по энергии световому. Из этих галактик NGC 1273, NGC 5128, NGC 4782 и NGC 6186 являются двойными. Одиночные NGC 2623 и NGC 4486.

  Когда английские и австралийские астрономы, применив интерференционный метод в 1963 г. определили с большой точностью положения значительного числа

дискретных источников радиоизлучения, они одновременно определили и другие угловые размеры некоторого числа радиоисточников. Диаметры большинства из них

исчислялись минутами или десятками секунд дуги, но у 5 источников, а именно у 3С48,3С147,3С196,3С273 и 3С286, размеры оказались меньше секунды дуги.

  Но поток их радиоизлучения не уступали потки радиоизлучения других фирм дискретных источников, превосходящих их по площади излучения в десятки тысяч раз. Эти

звездоподобные источники радиоизлучения были названы квадрами. Сейчас их открыто более 1000. Блеск квадра не остается постоянным. Массы квадров достигают

миллиона солнечных масс. Источник энергии квадров до сих пор не ясен. Есть предположения, что квадры – это исключительно активные ядра очень далеких галактик.

  Теоретическое моделирование имеет важное значение так же и для выяснения прошлого и будущего наблюдаемой Вселенной. В 1922 г. А. А. Фридман занялся

разработкой оригинальной теоретической модели Вселенной. Он предположил, что средняя плотность не является постоянно, а меняется с течением времени. Фридман

пришел к выводу, что любая достаточно большая часть Вселенной, равномерно заполняемая материя не может находится в состоянии равновесия: она должна либо

расширяться, либо сжиматься. Еще в 1917 г. В. М. Слайдер обнаружил “красное смещение” спектральных линий в спектрах далёких галактик. Подобное смещение наблюдается

тогда, когда источник света удаляется от наблюдателя. В 1929 г. Э. Хаббл объяснил это явление взаимным разбеганием этих звездных систем. Явление “красного смещения”

наблюдается в спектрах почти всех галактик, кроме ближайших (нескольких) . И чем дальше от нас галактика, тем больше сдвиг линий в её спектре, т.е. все звездные системы

удаляются от нас с огромными скоростями в сотни, тысячи десятки тысяч километров в секунду, более далекие галактики обладают и большими скоростями. А после того, как

эффект “красного смещения” был обнаружен и в радиодиапазоне, то не осталось, никаких сомнений в том, что наблюдаемая Вселенная расширяется. В настоящее время

известны галактики, удаляющиеся от нас со скоростью 0,46 скорости света. А сверхзвезды и квадры – 0,85 скорости света. Но почему они движутся, расширяются? На галактики

постоянно действует какая-то сила. В отдаленном прошлом материя в нашей области Вселенной находилась в сверхплотном состоянии. Затем произошел “взрыв” , в результате

которого и началось расширение. Чтобы выяснить дальнейшую судьбу метагалактики, необходимо оценить среднюю плотность межзвездного газа. Если она выше 10 протонов

на 1м3, то общее гравитационное поле метагалактики достаточно велико, чтобы постепенно остановить расширение. И оно смещается сжатием.

  Возникли два мнения по поводу состояния Метагалактики до начала расширения. Согласно одному из них первоначальное вещество метагалактики состояло из

“холодной” смеси протонов, т.е. ядер атомов водорода, электронов и нейтронов. Согласно второй, температура была очень велика, а плотность излучения даже превосходила

плотность вещества. Но после открытия в 1965 г. реликтового излучения А. Тицнасом и Р. Вилсоном предпочтение было отдано второй теории. После была представлена

попытка представить ход событий на первых стадиях расширения Метагалактики: через 1с после начала расширения сверхплотной исходной плазмы плотность вещества

снизилась до 500 кг/ см3, а t=1013 Со. В течение следующих 100с плотность снизилась до 50 г/см2 температура упала. Объединились протоны и нейтроны => ядра гелия. При

t=4000о, это продолжалось несколько сотен тысяч лет. Затем, после того, как образовались атомы водорода, началось постепенное формирование горячих водородных облаков,

из которых образовались галактики и звезды. Однако в процессе расширения могли сохраниться сгустки сверхплотного до звездного вещества, а в процессе их распада

образовались звезды и галактики. Не исключено, что действовали оба механизма. Понятие Метагалактика не является вполне ясным. Оно сформировалось на основании

аналогии со звездами. Наблюдения показывают, что галактики, подобно звездам, группирующиеся в рассеянные и шаровые скопления, также объединяются в группы и

скопления различной численности. Вся охваченная современными методами астрономических наблюдений часть Вселенной называется Метагалактикой (или нашей

Вселенной) . В Метагалактике пространство между галактиками заполнено чрезвычайно разряженным межгалактическим газом, пронизывается космическими лучами, в нем

существуют магнитные и гравитационные поля, и возможно невидимые массы веществ.

  От наиболее удаленных метагалактических объектов свет идет до нас много миллионов лет. Но все-таки нет оснований утверждать, что метагалактика это вся

вселенная. Возможно существуют др., пока не известные нам метагалактики.

  В 1929 г. Хаббл открыл замечательную закономерность которая была названная “законом Хаббла” или “закон красного смещения” : линии галактик смещенных к

красному концу, причем смещение тем больше, чем дальше находится галактика.

  Объяснив красные смещения эффектом Доплера. Ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Хотя

безусловно галактики не разлетаются во все стороны от нашей галактики, которая не занимает никакого особого положения в метагалактике, а происходит взаимное удаление

всех галактик. Следовательно, Метагалактика не стационарна.

  Открытие расширения метагалактики свидетельствует о том, что в прошлом метагалактика была не такой как сейчас и иной станет в будущем, т.е. метагалактика

эволюционирует.

  По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самым большими скоростями

(более 250 000 км/с) обладают некоторые квадры, которые считаются самыми удаленными от нас объектами Метагалактики.

  Мы живем в расширяющейся Метагалактики; расширение метагалактики проявляется только на уровне скоплений и сверхскоплений галактик. Метагалактика имеет одну

особенность: не существует центра, от которого разбегаются галактики. Удалось вычислить промежуток времени с начала расширения метагалактики.

  Промежуток расширения равен 20-13 млрд. лет. Расширение метагалактики является самым грандиозным из известных в настоящие время явлений природы. Это

открытие произвело коренное изменение во взглядах философов и ученых. Ведь некоторые философы ставили знак равенства между метагалактикой и вселенной, и пытались

доказать, что расширение метагалактики подтверждает религиозное представление о божественности происхождения вселенной. Но Вселенной известны естественные

процессы, по всей вероятности это взрывы. Есть предположение, что расширение метагалактики также началось с явления напоминающего. Колоссальный взрыв вещества,

обладающего огромной температурой и плотностью.

  Расчеты, выполненные астрофизиками, свидетельствуют о том, что после начала расширения вещество метагалактики имело высокую температуру и состояло из

элементарных частиц (нуклонов) и их античастиц. По мере расширения изменилась не только температура и плотность вещества, но и состав входивших в него частиц, т.е.

многие частицы и античастицы манипулировали, порождая при этом электромагнитные кванты, излучения которые в современной нам метагалактики оказалось больше, чем

атомов, из которых состоят звезды, планеты, диффузная материя.

  Эта теория называется теорией “горячей Вселенной” чтобы сверхплотное вещество превратилось в вещество с близкой плотностью к плотности воды. Через несколько

часов плотность почти сравнялась с плотностью нашего воздуха, а сейчас, по истечении миллиардов лет оценка средней плотности вещества в метагалактике приводит к

значению порядка 10-28 кг/м3.

  Но все эти данные удалось получить только с помощью уникального сложного оборудования позволяющего расширить границы Вселенной. До сих пор человечество

совершенствует его, изобретали все более гениальные приборы, но еще на заре цивилизации, когда пытливый человеческий ум обратился к заоблачным высотам, великие

философы мыслили свое представление о Вселенной, как о чем-то бесконечном. Древнегреческий философ Анаксимандр (VI в. до н.э.) ввел представление о некой единой

беспредельности, не обладавшей ни какими привычными наблюдениями, качествами, первооснове всего – апейроне.

  Стихии мыслились сначала как полуматериальные, полубожественные, одухотворенные субстанции. Представление чистоматериальной основе всего сущего в

древнегреческой основе достигли своей вершины в учении атомистов Левкиппа и Демокрита (V-IV в. в. до н.э.) о Вселенной, состоящей из бескачественных атомов и пустоты.

  Древнегреческим философам принадлежит ряд гениальных догадок об устройстве Вселенной. Анаксимандр высказал идею изолированности Земли, в пространстве.

Эйлалай первым описал пифагорейскую систему мира, где Земля как и Солнце обращались вокруг некоего “гигантского огня” . Шарообразность Земли утверждал другой

пифагореец Парменид (VI-V в. в. до н.э.) Гераклит Понтийский (V-IV в до н.э.) утверждал так же ее вращение вокруг своей оси и донес до греков еще более древнюю идею

египтян о том, что само солнце может служить центром вращение некоторых планет (Венера, Меркурий) .

  Французский философ и ученый, физик, математик, физиолог Рене Декарт (1596-1650) создал теорию о эволюционной вихревой модели Вселенной на основе

гелиоцентрализма. В своей модели он рассматривал небесные тела и их системы в их развитии. Для XVII в. в. его идея была необыкновенно смелой. По Декарту, все небесные

тела образовывались в результате вихревых движений, происходивших в однородной в начале, мировой материи. Совершенно одинаковые материальные частицы, находясь в

непрерывном движении и взаимодействии, меняли свою форму и размеры, что привело к наблюдаемому нами богатому разнообразию природы.

  Солнечная система согласно Декарту, представляет собой один из таких вихрей мировой материи. Планеты не имеют собственного движения – они движутся,

увлекаемые мировым вихрем. Декарт внес и новую идею для объяснения тяжести: он считал, что в вихрях, возникающих вокруг планет частицы давят друг на друга и тем

вызывают явление тяжести (например на Земле) . Таким образом Декарт, первым стал рассматривать тяжесть не как врожденное, а как производное качество тел.

  Великий немецкий ученый, философ Иммануил Кант (1724-1804) создал первую универсальную концепцию эволюционирующей Вселенной, обогатив картину ее

ровной структуры и представлял Вселенную бесконечной в особом смысле. Он обосновал возможности и значительную вероятность возникновение такой Вселенной

исключительно под действием механических сил притяжения и отталкивания и попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях –

начиная с планетной системных и кончая миром туманности.

  Эйнштейн совершил радикальную научную революцию, введя свою теорию относительности. Это было сравнительно просто, как и всё гениальное. Ему не пришлось

предварительно открыть новые явления, установить количественные закономерности. Он лишь дал принципиально новое объяснение.

  Эйнштейн раскрыл более глубокий смысл установленных зависимостей, эффектов уже связанных в некую физико-математическую систему (в виде постулатов Пуанкаре)

. Заменив в данном случае теорию абсолютности пространства и времени идей их относительности “Пуанкаре” , которую теперь уже не связывали с идеей абсолютного в

пространстве, абсолютной системы отсчета. Такой переворот снимал основное противоречие, создававшее кризисную ситуацию, в теоретическом осмыслении действия. Более

того, открылся путь для дальнейшего проникновения в свойства и законы окружающего мира, настолько глубоко, что сам Эйнштейн не сразу осознал степень

революционности своей идеи.

  В статье от 30.06.1905 г., заложившей основы специальной теории относительности Эйнштейн, обобщая принципы относительности Галилея, провозгласил

равноправие всех инерциальных систем отсчета не только в механических, но также электромагнитных явлений.

  Специальная или частная теория относительности Эйнштейна явилась результатом обобщения механики Галилея и электродинамики Максвелла Лоренца. Она

описывает законы всех физических процессов при скоростях движения близких к скорости света.

  Впервые принципиально новые космогологические следствия общей теории относительности раскрыл выдающийся советский математик и физик – теоретик Александр

Фридман (1888-1925 гг.) . Выступив в 1922-24 гг. он раскритиковал выводы Эйнштейна о том, что Вселенная конечна и имеет форму четырехмерного цилиндра. Эйнштейн

сделал свой вывод исходя из предположения о стационарности Вселенной, но Фридман показал необоснованность его исходного постулата.

  Фридман привел две модели Вселенной. Вскоре эти модели нашли удивительно точное подтверждение в непосредственных наблюдениях движений далёких галактик в

эффекте “красного смещения” в их спектрах.

  Этим Фридман доказал, что вещество во Вселенной не может находится в покое. Своими выводами Фридман теоретически способствовал открытию необходимости

глобальной эволюции Вселенной.

  Существует несколько теории эволюции: Теория пульсирующей Вселенной утверждает, что наш мир произошел в результате гигантского взрыва. Но расширение

вселенной не будет продолжаться вечно, т.к. его остановит гравитация.

  По этой теории наша Вселенная расширяется в течении 18 млрд. лет со времени взрыва. В будущем расширение полностью замедлится и произойдет остановка, а затем

она начнёт сжиматься до тех пор пока вещество опять не сожмется и произойдет новый взрыв.

  Теория стационарного взрыва: согласно ей Вселенная не имеет ни начала, ни конца. Она все время прибывает в одном и том же состоянии. Постоянно идет

образование нового водоворота, чтобы возместить вещество удаляющимися галактиками. Вот по этой причине Вселенная всегда одинакова, но если Вселенная, начало которой

положил взрыв будет расширяться до бесконечности, то она постепенно охладится и совсем угаснет.

  Но пока ни одна из этих теорий не доказана, т.к. на данный момент не существует ни каких точных доказательств хотя бы одной из них.

  Открытие многообразных процессов эволюции в различных системах и телах, составляющих Вселенную, позволило изучить закономерности космической эволюции на

основе наблюдательных данных и теоретических расчетов.

  В качестве одной из важнейших задач рассматривается определение возраста космических объектов и их систем. Поскольку в большинстве случаев трудно решить, что

нужно считать и понимать под “моментом рождения” тела или системы, то устанавливая возраст характеристики имеют ввиду две оценки:

  1. Время, в течении которого система уже находится в наблюдаемом состоянии.

  2. Полное время жизни данной системы от момента её появления. Очевидно, что вторая характеристика может быть получена только на основе теоретических расчетов.

  Обычно первую из высказанных величин называют возрастом, а вторую – временем жизни.

  Факт взаимного удаления галактик, составляющих метагалактики свидетельствует о том, что некоторое время тому назад она находилась в качественно ином состоянии

и была более плотной.

  Наиболее вероятное значение постоянной Хаббла (коэффициента пропорциональности, связывающего скорости удаления внегалактических объектов и расстояние до

них составляющее 60 км/сек – мегапарсек) , приводит к значению времени расширения метагалактики до современного состояния 17 млрд. лет.

  Из всех вышеперечисленных и тех доказательств, которые не вошли в мой реферат из-за своей громоздкости и математически-физической сложности можно с

уверенностью сделать вывод: Вселенная эволюционирует, бурные процессы происходили в прошлом, происходят сейчас и будут происходить в будущем.

  Проблема жизни в космосе – одна из наиболее увлекательных и популярных проблем в науке о Вселенной, которая с давних пор волнует не только ученых, но и всех

людей. Еще Дж. Бруно и М. Ломоносов высказывали предположение о множественности обитаемых миров. Изучение жизни во Вселенной – одна из сложнейших задач, с

которой когда-либо встречалось человечество. Речь идет о явлении, с которым сталкивалось человечество. Речь идет о явлении, с которым людям по существу еще не

приходилось непосредственно сталкиваться. Все данные о жизни вне Земли, носят чисто гипотетический характер. Поэтому глубоким исследованиям биологических

закономерностей и космических явлений занимается научная дисциплина – “экзобиология” .

  Так исследования внеземных, космических форм жизни помогло бы человеку, во-первых, понять сущность жизни, т.е. то, что отличает все живые организмы от

неорганической природы, во-вторых, выяснить пути возникновения и развития жизни и, в-третьих, определить место и роль человека во Вселенной. Сейчас можно считать

достаточно твердо установленным, что на нашей собственной планете жизнь возникла в отдаленном прошлом из неживой, неорганической материи при определенных

внешних условиях. Из числа этих условий можно выделить три главных. Прежде всего, это присутствие воды, которая входит в состав живого вещества, живой клетки. Во-

вторых, наличие газовой атмосферы, необходимой для газового обмена организма с внешней средой. Правда, можно представить себе и какую-либо иную среду. Третьим

условием является наличием на поверхности данного небесного тела подходящего диапазона температур. Также необходима внешняя энергия для синтеза молекулы живого

вещества из исходных органических молекул энергия космических лучей, или ультрафиолетовой радиации или энергия электронных разрядов. Внешняя энергия нужна и для

последующей жизнедеятельности живых организмов. Условия необходимые для возникновения жизни, в своё время сложилась естественным путём, в ходе эволюции Земли,

нет таких оснований считать, что они не могут складываться и процессе развития других небесных тел. Было выдвинуто множество гипотез по этому поводу. Академик А. И.

Опарин, считает, что жизнь должна была появиться тогда, когда поверхность нашей планеты представляла собой сплошной океан. В результате соединения С2СН 2 и N2

возникли простейшие органические соединения. Затем в водах первичного океана молекулы этих соединений, объединились и укрепились, образуя сложный раствор

органических веществ на третьей стадии из этой среды выделились комплексы молекул, которые и дали начало первичным живым организмам. Оро и Фесенков заметили, что

своеобразными переносчиками если не самой жизни, то, по крайней мере, её исходных элементов могут быть кометы и метеориты. Однако, если не вступать в область

близкую к фантастике, и оставаться на почве лишь достаточно твердо установленных научных фактов, то при поисках живых организмов на других небесных телах мы должны

прежде всего исходить из того, что нам известно о земной жизни.

  Что касается нашей солнечной системы, то различные ее планеты движутся на разных расстояниях от Солнца и получают неодинаковое количество солнечной энергии.

В связи с этим. В солнечной системе может быть выделен своеобразный тепловой пояс жизни, в который входят Земля, Марс и Венера, а также Луна на первый взгляд

физические условия на Луне полностью не исключает возможность существования живых организмов: на Луне отсутствует атмосферная оболочка, нет воды, температура

изменяется от –1500С до +1300С, поверхность Луны подвергается постоянной бомбардировке метеоритами, космическими лучами, ультрафиолетовой радиацией Солнца и т.п.

И пока можно гадать о том, существует ли в природе высокоорганизованные формы жизни, способные развиваться при подобных условиях. Исключение могут составлять

лишь микробы и бактерии, которые, как известно способны приспосабливаться к самым неблагоприятным условиям: нагревание и глубокое охлаждение; ультрафиолетовые и

радиоактивные излучения: интенсивная радиация и т.д. В настоящее время ряд ученых считает, что на Луне имеются органические вещества. Они могли образоваться здесь на

заре существования Луны или быть занесенными метеоритами. Высказываются предположения, что над слоем лунного грунта (10м) расположен целый мощный слой сложных

органических соединений. Так же и Венера, если температура на её поверхности высока, то несмотря на наличие атмосферы, условия для жизни на этой планете

малопригодны. Гораздо перспективнее в этом отношении Марс.

  В наши дни астрономов прежде всего интересует вопрос о физических условиях на Марсе. Живые организмы, обитающие на небесном теле, непрерывно

взаимодействуют с окружающей средой. Так, например, на поверхности Марса имеются темные пятна “моря” . Они меняют свою окраску в соответствии со сменой времен

года. Это явление напоминает сезонные изменения цвета зеленой растительности. Атмосфера Марса значительно разряжена, чем земная. В воздушной оболочке морей до сих

пор не обнаружен свободный кислород. В связи с этим можно предположить, что марсианские растения выделяют кислород не в атмосферу а в почву, или удерживают его в

корнях, или растений так мало, что они выделяют небольшое количество кислорода, чтобы его можно было обнаружить с Земли. Вода. Известно, что на Марсе нет открытых

водных поверхностей. Но исследователи считают, что на поверхности планеты вода есть: об этом свидетельствовало уменьшение в весенне-летний периоды белых пятен,

полярных шапок. При тех физических условиях, существующих на Марсе, вода в жидком состоянии находится там не может. Она должна немедленно испаряться и замерзать

оседая в виде тонкого слоя инея. Почва слой льда или вечной мерзлоты. Жидкая вода же может существовать на значительной глубине. Было отмечено, что у марсианских

растений отсутствует хлорофилл, его заменяет каратиноид, пигмент красного цвета. Особый интерес вызывают марсианские каналы. Американский астроном Ловелл считает,

что это ирригационная система построенная разумными обитателями Марса. Они выглядят темными жилками неправильной формы и цепочками отдельных пятнышек. На

протяжении десятилетий был высказан целый ряд гипотез:

  1. Зоны растительности

  2. Образования тектонического характера

  3. Трещины в вечной мерзлоте

  4. Результаты ударов метеоритов.

  Но на основании только гипотез выводы делать преждевременно. Но бесспорно, что весьма любопытные выводы, к которым приводит теория графов: тщательный

статистический анализ различных образований типа сетей, встречающихся в земных условиях, привел ученых к выводу, что искусственные сети отличаются от естественных в

узлах. Искусственного происхождения преобладают узлы с четырьмя сходящимися линиями, а сеть каналов Марса обладает преимущественно узлами 4-го порядка, сеть также

отличается значительным процентом этих узлов; делают выяснение природы загадочных марсианских преобразований еще более увлекательной проблемой.

  Трактаты и статьи ученых, чьи имена звучали в реферате:

  1. Г. Декарт. “Трактат о системе мира” 1633 г., “Рассуждение о методе” 1637 г., “Геометрия” , “Диоптика” , “Метеоры” 1638 г., “Начала философии” 1644 г., “Трактат о

свете” 1664 г.

  2. И. Кант. “Всеобщая естественная история и теория неба” 1755 г.

  3. А. Фридман. “О кривизне пространства мира” 1922 г., “О возможности мира с постоянной отрицательной кривизной пространства” 1924 г.

  Литература, использованная в написании реферата:

  1. Т. А. Агекян “Звезды, галактики, Метагалактика” , М. “Наука”

  2. Б. А. Воронцов-Вельяминов “Вселенная” Государственное изд-во технико-теоретической литературы.

  3. И. Д. Новиков “Эволюция Вселенной” , М. 1983 г.

  4. А. И. Еремеева. “Астрологическая картина мира и ее творцы” . М. “Наука” 1984 г.

  5. Б. А. Воронцов-Вельяминов. “Очерки о Вселенной” , М., “Наука” 1976

  6. П. П. Паренаго “Новейшие данные о строении Вселенной” , М. “Правда” 1948 г.

  7. Большая Советская Энциклопедия” . 5т., стр. 443-445.

  8. В. Н. Комаров “Увлекательная астрономия” . М, “Наука” , 1968 г.

  9. С. П. Левитан. “Астрономия” , М., “Просвещение” 1994 г.

  10. В. В. Казютинский “Вселенная Астрономия, Философия” , М., “Знание” 1972 г.

Что такое звезды?

План реферата:

1. Введение

2. Открытие

3. Интерпретация: нейтронные звезды Рентгеновские пульсары

5. Радиопульсары

6. Источник энергии

7. Магнитно-дипольное излучение

8. Магнитосфера

9. Пульсары и космические лучи.

10. Список литературы

  Введение

  На протяжении веков единственным источником сведений о звездах и Вселенной был для астрономов видимый свет. Наблюдая невооруженным глазом или с помощью

телескопов, они использовали только очень небольшой интервал волн из всего многообразия электромагнитного излучения, испускаемого небесными телами. Астрономия

преобразилась с середины нашего века, когда прогресс физики и техники предоставил ей новые приборы и инструменты, позволяющие вести наблюдения в самом широком

диапазоне волн – от метровых радиоволн до гамма-лучей, где длины волн составляют миллиардные доли миллиметра. Это вызвало нарастающий поток астрономических

данных. Фактически все крупнейшие открытия последних лет – результат современного развития новейших областей астрономии, которая стала сейчас всеволновой. Еще с

начала 30-х годов, как только возникли теоретические представления о нейтронных звездах, ожидалось, что они должны проявить себя как космические источники

рентгеновского излучения. Эти ожидания оправдались через 40 лет, когда были обнаружены барстеры и удалось доказать, что их излучение рождается на поверхности горячих

нейтронных звезд. Но первыми открытыми нейтронными звездами оказались все же не барстеры, а пульсары, проявившие себя - совершенно неожиданно - как источники

коротких импульсов радиоизлучения, следующих друг за другом с поразительно строгой периодичностью.

  Открытие

  Летом 1967 г. в Кембриджском университете (Англия) вошел в строй новый радиотелескоп, специально построенный Э. Хьюишем и его сотрудниками для одной

наблюдательной задачи - изучения мерцаний космических радиоисточников. Это явление подобно известному всем мерцанию звезд возникает из-за случайных

неоднородностей плотности в среде, сквозь которую проходят электромагнитные волны по пути к нам от источника. Новый радиотелескоп позволял производить наблюдения

больших участков неба, а аппаратура для обработки сигналов была способна регистрировать уровень радио-потока через каждые несколько десятых долей секунды. Эти две

особенности их инструмента и позволили кембриджским радиоастрономам открыть нечто совершенно новое - пульсары.

  Первые отчетливо различимые серии периодических импульсов были замечены 28 ноября 1967 г. аспиранткой кембриджской группы Дж. Белл. Импульсы следовали

один за другим с четко выдерживаемым периодом в 1,34 с. Это было совершенно непохоже на обычную хаотическую картину случайных нерегулярных мерцаний.

Принимаемые сигналы напоминали скорее помеху земного происхождения. Например, системы зажигания в проезжающих мимо автомобилях. Но это и другие простые

объяснения вскоре пришлось оставить. Были исключены и сигналы самолетов или космических аппаратов. Затем, когда появились основания полагать, что импульсы имеют

космическое происхождение, возникло предположение о внеземной цивилизации, посылающей на Землю свои сигналы. Предпринимались серьезные попытки распознать

какой-либо код в принимаемых импульсах. Это оказалось невозможным, хотя, как рассказывают, к делу были привлечены самые квалифицированные специалисты. К тому же

вскоре обнаружили еще три подобных пульсирующих радиоисточника. Становилось очевидным, что источники излучения являются естественными небесными телами.

  Первая публикация кембриджской группы появилась в феврале 1968 г., и уже в ней в качестве вероятных кандидатов на роль источников пульсирующего излучения

упоминаются нейтронные звезды. Периодичность радиосигнала связывается с быстрым вращением нейтронной звезды. Источник вращается как фонарь маяка, и это создает

прерывистость видимого излучения, приходящего к нам отдельными импульсами. Открытие пульсаров отмечено Нобелевской премией по физике в 1978 г.

  Интерпретация: нейтронные звезды В астрономии известно немало звезд, блеск которых непрерывно меняется, то возрастая, то падая. Имеются звезды, их называют

цефеидами (по первой из них, обнаруженной в созвездии Цефея) , со строго периодическими вариациями блеска. Усиление и ослабление яркости происходит у разных звезд

этого класса с периодами от нескольких дней до года. Но до пульсаров никогда еще не встречались звезды со столь коротким периодом, как у первого “кембриджского”

пульсара.

  Вслед за ним в очень короткое время было открыто несколько десятков пульсаров, и периоды некоторых из них были еще короче. Так, период пульсара,

обнаруженного в 1968 г. в центре Крабовидной туманности, составлял 0,033 с. Сейчас известно около четырех сотен пульсаров. Подавляющее их большинство—до 90%—

имеет периоды в пределах от 0.3 до 3 с, так что типичным периодом пульсаров можно считать период в 1 с. Но особенно интересны пульсары-рекордсмены, период которых

меньше типичного. Рекорд пульсара Крабовидной туманности продержался почти полтора десятилетия. В конце 1982 г. в созвездии Лисички был обнаружен пульсар с

периодом 0,00155 с, т.е. 1,55 мс. Вращение с таким поразительно коротким периодом означает 642 об/с. Очень короткие периоды пульсаров послужили первым и самым

веским аргументом в пользу интерпретации этих объектов как вращающихся нейтронных звезд. Звезда со столь быстрым вращением должна быть исключительно плотной.

Действительно, само ее существование возможно лишь при условии, что центробежные силы, связанные с вращением, меньше сил тяготения, связывающих вещество звезды.

Центробежные силы не могут разорвать звезду, если центробежное ускорение на экваторе меньше ускорения силы тяжести Здесь M, R — масса и радиус

звезды, Q — угловая частота ее вращения, G — гравитационная постоянная. Из неравенства для ускорений (1.1) следует неравенство для средней плотности звезды (1.2)

Если взять период пульсара Крабовидной туманности P=0,033 с, то соответствующая ему частота вращения Q=2p /Р, составит приблизительно 200 рад/с. На этом основании

найдем нижний предел его плотности.

  

  Это очень значительная плотность, которая в миллионы раз. превышает плотность белых карликов самых плотных из наблюдавшихся до того звезд. Оценка плотности

по периоду “миллисекундного” пульсара, P=0,00155 с, Q=4000 рад/с, приводит к. еще большему значению: Эта плотность приближается к плотности вещества внутри

атомных ядер: Столь компактными, сжатыми до такой высокой степени могут быть лишь нейтронные звезды: их плотность действительно близка к ядерной. Этот вывод

подтверждается всей пятнадцатилетней историей изучения пульсаров. Но каково происхождение быстрого вращения нейтронных звезд-пульсаров? Оно несомненно вызвано

сильным сжатием звезды при ее превращении из “обычной” звезды в нейтронную. Звезды всегда обладают вращением с той или иной скоростью или периодом: Солнце,

например, вращается вокруг своей оси с периодом около месяца. Когда звезда сжимается, ее вращение убыстряется. С ней происходит то же, что с танцором на льду: прижимая

к себе руки, танцор ускоряет свое вращение. Здесь действует один из основных законов механики -- закон сохранения момента импульса (или момента количества движения) .

Из него следует, что при изменении размеров вращающегося тела изменяется и скорость его вращения; но остается неизменным произведение (которое и

представляет собой - с точностью до несущественного числового множителя - момент импульса) . В этом произведении Q - частота вращения тела, M- его масса, R- размер

тела в направлении, перпендикулярном оси вращения, который в случае сферической звезды совпадает. с ее радиусом. При неизменной массе остается постоянным

произведение, и, значит, с уменьшением размера тела частота его вращения возрастает по закону: (1.3) Нейтронная звезда образуется путем сжатия центральной области,

ядра звезды, исчерпавшей запасы ядерного топлива. Ядро успевает еще предварительно сжаться до размеров белого карлика, Дальнейшее сжатие до размера

нейтронной звезды, означает уменьшение радиуса в тысячу раз. Соответственно в миллион раз должна возрасти частота вращения и во столько же раз должен уменьшиться его

период. Вместо, скажем месяца звезда совершает теперь один оборот вокруг своей оси всего за три секунды. Более быстрое исходное вращение дает и еще более короткие

периоды. Сейчас известны не только пульсары, излучающие в радиодиапазоне, - их называют радиопульсарами, но и рентгеновские пульсары, излучающие регулярные

импульсы рентгеновских лучей. Они тоже оказались нейтронными звездами; в их физике много такого, что роднит их с барстерами. Но и радиопульсары, и рентгеновские

пульсары отличаются от барстеров в одном принципиальном отношении: они обладают очень сильными магнитными полями. Именно магнитные поля - вместе с быстрым

вращением - и создают эффект пульсаций, хотя и действуют эти поля по-разному в радиопульсарах и пульсарах рентгеновских.

  Мы расскажем сначала о рентгеновских пульсарах, механизм излучения которых более или менее ясен, а затем о радиопульсарах, которые изучены пока в гораздо

меньшей степени, хотя они и открыты раньше рентгеновских пульсаров и барстеров.

  Рентгеновские пульсары

  Рентгеновские пульсары — это тесные двойные системы, в которых одна из звезд является нейтронной, а другая — яркой звездой-гигантом. Известно около двух

десятков этих объектов. Первые два рентгеновских пульсара — в созвездии Геркулеса и в созвездий Центавра — открыты в 1972 г. (за три года до обнаружения барстеров) с

помощью американского исследовательского спутница “Ухуру” ) . Пульсар в Геркулесе посылает импульсы с периодом 1,24 с. Это период вращения нейтронной звезды. В

системе имеется еще один период — нейтронная звезда и ее компаньон совершают обращение вокруг их общего центра тяжести с периодом 1,7 дня. Орбитальный период был

определен в этом случае благодаря тому (случайному) обстоятельству, что “обычная” звезда при своем орбитальном движении регулярно оказывается на луче зрения,

соединяющем нас и нейтронную звезду, и потому она заслоняет на время рентгеновский источник. Это возможно, очевидно, тогда, когда плоскость звездных орбит составляет

лишь небольшой угол с лучом зрения. Рентгеновское излучение прекращается приблизительно на 6 часов, потом снова появляется, и так каждые 1,7 дня.

  (Между прочим, наблюдение рентгеновских затмений для барстеров до последнего времени не удавалось. И это было странно: если орбиты двойных систем

ориентированы в пространстве хаотически, то нужно ожидать, что из более чем трех десятков барстеров по крайней мере несколько имеют плоскости орбитального движения,

приблизительно параллельные лучу зрения (как у пульсара в Геркулесе) , чтобы обычная звезда могла периодически закрывать от нас нейтронную звезду. Только в 1982 г., т.е.

через 7 лет после открытия барстеров, один пример затменного барстера был, наконец, обнаружен.) Длительные наблюдения позволили установить еще один третий - период

рентгеновского пульсара в Геркулесе: этот период составляет 35 дней, из которых II дней источник светит, а 24 дня нет. Причина этого явления остается пока неизвестной.

Пульсар в созвездии Центавра имеет период пульсаций 4,8 с. Период орбитального движения составляет 2,087 дня—он тоже найден по рентгеновским затмениям.

Долгопериодических изменений, подобных 35-дневному периоду пульсара в созвездии Геркулеса у этого пульсара не находят. Компаньоном нейтронной звезды в двойной

системе этого пульсара является яркая видимая звезда-гигант с массой 10-20 Солнц. В большинстве случаев компаньоном нейтронной звезды в рентгеновских пульсарах

является яркая голубая звезда-гигант. Этим они отличаются от барстеров, которые содержат слабые звезды-карлики. Но как и в барстерах, в этих системах возможно

перетекание вещества от обычной звезды к нейтронной звезде, и их излучение тоже возникает благодаря нагреву поверхности нейтронной звезды потоком аккрецируемого

вещества. Это тот же физический механизм излучения, что и в случае фонового (не вспышечного) излучения барстера. У некоторых из рентгеновских пульсаров вещество

перетекает к нейтронной звезде в виде струи (как в барстерах) . В большинстве же случаев звезда-гигант теряет вещество в виде звездного ветра - исходящего от ее поверхности

во все стороны потока плазмы, ионизированного газа. (Явление такого рода наблюдается и у Солнца, хотя солнечный ветер и слабее - Солнце не гигант, а карлик.) Часть

плазмы звездного ветра попадает в окрестности нейтронной звезды, в зону преобладания ее тяготения, где и захватывается ею.

  Однако при приближении к поверхности нейтронной звезды заряженные частицы плазмы начинают испытывать воздействие еще одного силового поля магнитного

поля нейтронной звезды-пульсара. Магнитное поле способно перестроить аккреционный поток, сделать его несферически-симметричным, а направленным. Как мы сейчас

увидим, из-за этого и возникает эффект пульсаций излучения, эффект маяка. Есть все основания полагать, что нейтронные звезды рентгеновских пульсаров обладают очень

сильным магнитным полем, достигающим значений магнитной индукции что в раз больше среднего магнитного поля Солнца. Но такие поля естественно

получаются в результате сильного сжатия при превращении обычной звезды в нейтронную. Согласно общим соотношениям электродинамики магнитная индукция В поля,

силовые линии. которого пронизывают данную массу вещества, усиливается при уменьшении геометрических размеров R этой массы: (1.4) Это соотношение следует из

закона сохранения магнитного потока. Стоит обратить внимание на то, что магнитная индукция нарастает при сжатии тела точно так же, как и его частота вращения.

  При уменьшении радиуса звезды от значения, равного, например, радиусу Солнца , до радиуса нейтронной звезды, магнитное поле усиливается на

10 порядков. Магнитное поле с индукцией сравнимое с полем Солнца, считается более или менее типичным для обычных звезд; у некоторых “магнитных” звезд обнаружены

поля в несколько тысяч раз большие, так что вполне можно ожидать, что определенная (и не слишком малая) доля нейтронных звезд действительно должна обладать очень

сильным, магнитным полем. К такому заключению пришел советский астрофизик Н. С. Кардашев еще в 1964 г.

  По своей структуре, т.е. по геометрии силовых линий, магнитное поле пульсара похоже, как можно ожидать, на магнитное поле Земли или Солнца: у него имеются два

полюса, из которых в разные стороны расходятся силовые линии. Такое поле называют дипольным.

  Вещество, аккрецируемое нейтронной звездой, - это звездный ветер, оно ионизовано, и поэтому взаимодействует при своем движении с ее магнитным полем.

Известно, что движение заряженных частиц поперек силовых линий поля затруднено, а движение вдоль силовых линий происходит беспрепятственно. По этой причине

аккрецируемое вещество движется вблизи нейтронной звезды практически по силовым линиям ее магнитного поля. Магнитное поле нейтронной звезды как бы создает

воронки у ее магнитных полюсов, и в них направляется аккреционный поток. На такую возможность указали еще в 1970 г. советские астрофизики Г. С. Бисноватый-Коганта. А.

М. Фридман. Благодаря этому нагрев поверхности нейтронной звезды оказывается неравномерным: у полюсов температура значительно выше, чем на всей остальной

поверхности. Горячие пятна у полюсов имеют, согласно расчетам, площадь около одного квадратного километра; они и создают главным образом излучение звезды - ведь

светимость очень чувствительна к температуре — она пропорциональна температуре в четвертой степени.

  Как и у Земли, магнитная ось нейтронной звезды наклонена к ее оси вращения. Из-за этого возникает эффект маяка: яркое пятно то видно, то не видно наблюдателю.

Излучение быстро вращающейся нейтронной звезды представляется наблюдателю прерывистым, пульсирующим. Этот эффект был предсказан теоретически советским

астрофизиком В. Ф. Шварцманом за несколько лет до открытия рентгеновских пульсаров. На самом деле излучение горячего пятна происходит, конечно, непрерывно, но оно не

равномерно по направлениям, не изотропно, и рентгеновские лучи от него не направлены все время на нас, их пучок вращается в пространстве вокруг оси вращения

нейтронной звезды, пробегая по Земле один раз за период.

  От рентгеновских пульсаров никогда не наблюдали вспышек, подобных вспышкам барстеров. С другой стороны, от барстеров никогда не наблюдали

регулярных пульсаций. Почему же барстеры не пульсируют, а пульсары не вспыхивают? Все дело, вероятно, в том, что магнитное поле нейтронных звезд в барстерах заметно

слабее, чем в пульсарах, и потому оно не влияет сколько-нибудь заметно на динамику аккреции, допуская более или менее равномерный прогрев всей поверхности нейтронной

звезды. Ее вращение, которое может быть столь же быстрым, как и у пульсаров, не сказывается на рентгеновском потоке так как этот поток изотропен. С другой стороны,

предполагают, что поле магнитной индукцией способно как то - хотя, правда, и не вполне ясно пока, как именно, - подавлять термоядерные взрывы в приполярных зонах

нейтронных звезд. Различие в магнитном поле связано, вероятно, с различием возраста барстеров и пульсаров. О возрасте двойной системы можно судить по обычной звезде-

компаньону. Нейтронные звезды в рентгеновских пульсарах имеют компаньонами яркие звезды-гиганты; в барстерах же компаньонами нейтронных звезд являются слабые по

блеску звезды малых масс. Возраст ярких гигантов не превышает нескольких десятков миллионов лет, тогда как возраст слабых звезд-карликов может насчитывать миллиарды

лет: первые гораздо быстрее расходуют свое ядерное топливо, чем вторые. Отсюда следует, что барстеры - это старые системы, в которых магнитное поле успело со временем

в какой-то степени ослабнуть, а пульсары - это относительно молодые системы и потому магнитные поля в них. сильнее. Может быть, барстеры когда-то в прошлом

пульсировали, а, пульсарам еще предстоит вспыхивать в будущем.

  Известно, что самые молодые и яркие звезды Галактики находятся в ее диске, вблизи галактической плоскости. Естественно поэтому ожидать, что и рентгеновские

пульсары с их яркими звездами-гигантами располагаются преимущественно у галактической плоскости. Их общее распределение по небесной сфере должно отличаться от

распределения барстеров, старых объектов, которые - как и все старые звезды Галактики - концентрируются не к ее плоскости, а к галактическому центру. Наблюдения

подтверждают эти соображения: рентгеновские пульсары действительно находятся в диске Галактики, в сравнительно узком слое по обе стороны галактической плоскости.

Такое же распределение на небе обнаруживают и пульсары, излучающие радиоимпульсы, - радиопульсары.

  Радиопульсары

  Распределение радиопульсаров на небесной сфере позволяет заключить прежде всего, что эти источники принадлежат нашей Галактике: они очевидным образом

концентрируются к ее плоскости служащей, экватором галактической координатной сетки. Объекты, которые никак не связаны о галактикой, никогда не показали бы никакой,

преимущественной ориентации такого рода. Распределение по направлениям говорит в этом случае о реальном пространственном расположении источников: такая картина

может возникнуть лишь тогда, когда источники находятся в диске Галактики. Некоторые из них лежат заметно выше или ниже экватора; но они тоже расположены в диске,

около плоскости Галактики, только ближе к нам, чем большинство остальных пульсаров. Ведь вместе с Солнцем мы находимся почти точно в галактической плоскости, и

потому направление от нас на близкие объекты внутри хотя бы и узкого слоя может быть, вообще говоря, любым. Близких пульсаров сравнительно мало и они не затемняют

общую картину. Если радиопульсары располагаются вблизи галактической плоскости, среди самых молодых звезд Галактики, то разумно полагать, что и сами они являются

молодыми. Об одном из них, пульсаре Крабовидной туманности, определенно известно, что он существует всего около тысячи лет - это остаток вспышки сверхновой 1054

года; его возраст значительно меньше времени жизни ярких звезд-гигантов, - 10 миллионов лет, не говоря уже о звездах-карликах, средний возраст которых еще в 1000 раз

больше. Строгая периодичность следования импульсов, расположение в плоскости Галактики и молодость - все это сближает радиопульсары с рентгеновскими пульсарами. Но

во многих других отношениях они резко отличаются друг от друга. Дело не только в том, что одни испускают радиоволны, а другие рентгеновские лучи. Важнее всего то, что

радиопульсары - это одиночные, а не двойные звезды. Известно всего три радиопульсара, имеющих звезду-компаньона. У всех остальных, а их более трехсот пятидесяти,

никаких признаков двойственности не замечается. Отсюда немедленно следует, что физика радиопульсаров должна быть совсем иной, чем у барстеров или рентгеновских

пульсаров. Принципиально иным должен быть источник их энергии — это во всяком случае не аккреция. Другой важнейший факт: спектр излучения радиопульсаров очень

далек от какого-либо подобия универсальному чернотельному спектру, который характерен для излучения нагретых тел. Это означает, что излучение радиопульсаров никак не

связано с нагревом нейтронной звезды, с температурой, с тепловыми процессами на ее поверхности. Излучение электромагнитных волн, не связанное с нагревом тела,

называют нетепловым. Такое излучение не редкость в астрофизике, физике и технике. Вот простой пример. Антенна радиостанции или телецентра - это проводник

определенного размера и формы. В нем имеются свободные электроны, которые под действием специального генератора совершают согласованные движения вдоль

проводника туда и обратно с заданной частотой. Так как электроны колеблются “в унисон” , то и излучают они согласованно: все излучаемые в пространство

электромагнитные волны имеют одинаковую частоту - частоту колебаний электронов. Так что спектр излучения антенны содержит только одну частоту или длину волны.

Сведения о спектре излучения радиопульсаров удалось получить прежде всего благодаря наблюдениям самого яркого из них - пульсара Крабовидной туманности.

Замечательно, что его излучение регистрируется во всех диапазонах электромагнитных волн - от радиоволн до гамма-лучей. Больше всего энергии он испускает именно в

области гамма-лучей (так что пульсар вполне заслуживает названия гамма-пульсара) ; принимаемый гамма-поток в рентгеновской области в 5—10 раз меньше. В

области видимого света он еще в десять раз меньше. Слабее всего поток в радиодиапазоне: Можно проверить, что ни при какой температуре излучение нагретого

тела не может обладать таким распределением энергии по областям спектра.

  Кроме пульсара Крабовидной туманности, “миллисекундного” пульсара в созвездии Лисички и еще одного пульсара в созвездии Парусов, все остальные радиопульсары

регистрируются лишь благодаря излучению в радиодиапазоне. Не исключено, что они излучают и в других областях спектра - в видимом свете, в рентгеновских и гамма-лучах,

подобно пульсару Крабовидной. туманности (хотя, вероятно, и не так интенсивно, как он) ; но они находятся дальше от нас, а чувствительность существующих

радиотелескопов выше чувствительности оптических, рентгеновских и гамма-телескопов.

  Интересно, что уже и одних только данных о светимости пульсаров в радиодиапазоне — без каких-либо сведений об излучении на более коротких длинах волн

достаточно, чтобы убедиться в нетепловом, нечернотельном характере их излучения. Расстояние до Крабовидной туманности известно: , поэтому с помощью данных о

потоке излучения можно найти светимость пульсара. Полная Светимость во всех диапазонах получается умножением полного потока на площадь, сферы радиуса d: (В

качестве потока f взят фактически поток в гамма-диапазоне.) Светимость этого пульсара приблизительно в тысячу раз больше светимости Солнца на всех длинах волн. Здесь,

однако нужно сделать одно замечание. Наша оценка была бы вполне справедлива, если бы пульсар излучал одинаково во всех направлениях. На самом деле его излучение не

изотропно, оно обладает определенной направленностью. Мы не знаем, как выглядит луч этого “маяка” : какова его ширина и как ось вращения пульсара ориентирована

относительно Земли. Поэтому учесть направленность излучения точно не удается; Действительная светимость может быть, вообще говоря, и больше, и меньше; чем

Неопределенность все же не катастрофически велика; так что значение светимости находится, вероятно, между

  Источник энергии

  Периодичность импульсов радиопульсара выдерживается с удивительной точностью. Это самые точные часы в природе. И все же для многих. пульсаров удалось

зарегистрировать и регулярные изменения их периодов. Конечно, это исключительно малые изменения и происходят они крайне медленно, так что регулярность следования

импульсов нарушается лишь очень слабо. Характерное время изменения периода составляет для большинства пульсаров приблизительно миллион лет; это означает, что только

за миллион лет можно ожидать заметного - скажем, вдвое - изменения периода.

  Во всех известных случаях радиопульсары увеличивают, а не уменьшают свой период. Иными словами, их вращение замедляется со временем. Что-то тормозит

вращение нейтронной звезды, на что-то тратится ее энергия вращения. Так не служит ли вращение источником, питающим излучение пульсара?

  Чтобы это проверить, нужно сделать прежде всего энергетическую оценку. Если пульсар действительно излучает за счет вращения, то кинетическая энергия вращения

должна обеспечивать наблюдаемую мощность излучения, его светимость. Ориентировочную оценку кинетической энергии вращения звезды можно получить по простой

формуле где М — масса звезды, V —характерная скорость вращения, в качестве которой можно взять линейную скорость вращения на экваторе звезды. При

типичном периоде Р==1 с и радиусе нейтронной звезды 10000 м находим: Таков запас энергии вращения. Оценим теперь темп ее использования. Если период пульсара

увеличивается вдвое за время t, то за то же время кинетическая энергия вращения нейтронной звезды уменьшается в 4 раза Значит, за время t теряется ѕ начального

запаса энергии вращения. Средняя потеря энергии в единицу времени: (1.5) Мы приняли здесь в качестве t характерное время, равное одному миллиону лет, и

воспользовались предыдущей оценкой энергии вращения Е. Величина Wсредняя мощность, связанная с расходованием энергии вращения, что для типичного пульсара на

несколько порядков выше его радиосветимости Для пульсара Крабовидной туманности, период которого составляет одну тридцатую секунды, оценку нужно

сделать отдельно. У него и характерное время увеличения периода не миллион лет; как показывают наблюдения, оно сравнимо с его возрастом, т.е. близко к тысяче лет. В этом

случае мощность Ж окажется в миллион раз больше, чем по соотношению (1.5) ; она превышает на несколько порядков полную светимость этого пульсара во всех диапазонах

волн.

  Можно, таким образом, сказать, что предположение о вращении как источнике энергии пульсара выдерживает первую проверку: кинетическая энергия вращения

нейтронной звезды достаточно велика и она способна служить резервуаром, из которого излучение черпает свою энергию. При этом на излучение тратится только небольшая

доля общего расхода энергии.

  Магнитно-дипольное излучение

  Каким же образом энергия вращения превращается в энергию электромагнитных волн? Согласно идее, выдвинутой итальянским астрофизиком Ф. Пачини и английским

теоретиком Т. Голдом, решающая роль в этом должна принадлежать магнитному полю нейтронной звезды. Как мы уже говорили, нейтронная звезда может обладать очень

значительным магнитным полем. Скорее всего, поле имеет дипольный характер, а его ось наклонена к оси вращения нейтронной звезды, как и у рентгеновского пульсара

Система силовых линий магнитного поля вращается с той угловой скоростью, с какой вращается сама нейтронная звезда. Вне светового цилиндра магнитное поле

вращающегося наклонного диполя уже не может оставаться тем же, что и внутри его. На световом цилиндре происходит превращение дипольного магнитного поля в

электромагнитные волны, которые распространяются вовне, унося с собой определенную энергию. Эта энергия черпается из энергии вращения нейтронной звезды. Такого

рода магнитно-дипольное излучение давно изучено в электродинамике. Известно, что частота излученных волн равна частоте вращения магнитного диполя, длина волны

равна радиусу светового цилиндра. Итак, вращающаяся нейтронная звезда с наклонным магнитным полем способна излучать электромагнитные волны. При этом энергия ее

вращения преобразуется в энергию излучения. Но магнитно-дипольные волны - это отнюдь не то излучение, которое наблюдают у пульсаров: его частота слишком мала, а

длина волны слишком велика - десятки и сотни километров. Магнитно-дипольные волны должны претерпеть какие-то очень существенные превращения, прежде, чем

возникнет наблюдаемое излучение пульсаров. Эти превращения происходят, по-видимому, в магнитосфере пульсара - в окружающем нейтронную звезду вращающемся облаке

заряженных частиц.

  Магнитосфера

  Возможность и даже необходимость существования такого облака доказали американские астрофизики-теоретики П. Голдрайх и В. Джулиан. Они изучили

электромагнитные явления, происходящие не на световом цилиндре, где рождается магнитно-дипольное излучение, а вблизи самой поверхности нейтронной звезды. Здесь

намагниченная нейтронная звезда способна “работать” подобно динамомашине: ее вращение вызывает появление сильных электрических полей, а с ними и токов, т.е.

направленных движений заряженных частиц. Отношение электрической силы к силе тяжести, испытываемой электроном, очень велико: Такая же оценка для протона

показывает, что действующая на него электрическая сила в миллиард раз больше силы притяжения к нейтронной звезде. Это означает, что силы тяготения совершенно

несущественны для заряженных частиц по сравнению с электрическими силами у самой поверхности нейтронной звезды. Электрические силы здесь необычайно велики и они

способны беспрепятственно управлять движением электронов и протонов: они могут отрывать их от поверхности нейтронной звезды, ускорять их, сообщая частицам

огромные энергии. Электрическая сила, действующая в поле на частицу о зарядом, совершает на пути частицы работу. Значит проходя в электрическом поле расстояние,

сравнимое с радиусом нейтронной звезды (например, от экватора до одного из полюсов) , частица приобретает энергию Это действительно огромная энергия, на

много порядков превышающая даже энергии покоя электрона и протона. Гигантская энергия частиц соответствует их скоростям движения, приближающимся к скорости света,

а фактически совпадающим с ней. Частицы высоких энергий, отрываемые от поверхности нейтронной звезды и ускоряемые сильным электрическим полем, создают поток,

исходящий от нейтронной звезды и похожий на солнечный или звездный ветер. Магнитное поле увлекает этот поток во вращение вместе о нейтронной звездой. Так вокруг нее

возникает расширяющаяся и вращающаяся магнитосфера. Рождение и ускорение частиц, образующих магнитосферу, требует значительной энергии, которая черпается из

кинетической энергии вращения нейтронной звезды. Теоретический анализ, проделанный П. Голдрайхом и В. ; Джулианом, показывает, что на это тратится приблизительно

столько же энергии, сколько и на магнитно-дипольное излучение. При этом и само магнитно-дипольное излучение пополняет запас энергии магнитосферы, оно практически

не выходит наружу и поглощается магнитосферой, передавая свою энергию ее частицам. Нет сомнения, что именно в магнитосфере нейтронной звезды и разыгрываются

многообразные физические процессы, определяющие все наблюдаемые проявления пульсара. Полной и исчерпывающей теории этих процессов пока нет; теория

радиопульсаров находится в процессе развития, и даже на главные вопросы она еще не может дать законченного и убедительного ответа. Нас, прежде всего интересует, как

возникает направленность в излучении пульсара, создающая этот естественный радиомаяк. Сейчас можно изложить лишь самые предварительные соображения, не

претендующие на строгую доказательность, но содержащие, тем не менее, ряд важных идей. Вероятно, нужно исходить из того, что частицы высокой энергии, заполняющие

магнитосферу пульсара, способны излучать электромагнитные волны очень высокой частоты, или, на квантовом языке, фотоны очень высокой энергии. Один из физических

механизмов излучения связан с движением частиц в сильных магнитных полях. Частицы следуют главным образом вдоль магнитных силовых линий, а так как силовые линии

изогнуты, движение частиц не может быть прямолинейным и равномерным. Отклонение же от прямолинейного и равномерного движения означает ускорение (или

торможение) частицы и, следовательно, сопровождается излучением электромагнитных волн. Согласно расчетам электромагнитные волны такого происхождения

принадлежат к гамма-диапазону. В свою очередь гамма-фотоны способны рождать (в присутствии сильного магнитного поля) пары электронов и позитронов. Электроны и

позитроны также излучают электромагнитные волны при своем движений в магнитном поле, а эти новые волны способны рождать новые пары частиц и т.д. Такой каскад

процессов развивается главным образом вблизи магнитных полюсов нейтронной звезды, где сходятся магнитные силовые линии и поле особенно велико. Здесь формируются,

как можно полагать, направленные потоки согласованно движущихся частиц, которые - как в антенне - излучают согласованно и направленно, создавая луч пульсара.

Магнитная ось звезды не совпадают с ее осью вращения, и потому этот луч вращается подобно лучу маяка. Но как в действительности это происходит, еще предстоит

выяснить.

  Основная доля энергии вращения, теряемой нейтронной звездой, преобразуется не в наблюдаемое излучение пульсара, а в энергию частиц, ускоряемых в магнитосфере

нейтронной звезды. Радиопульсары являются, таким образом, мощным источником частиц высоких энергий. Электроны высоких энергий, рождаемые пульсаром Крабовидной

туманности, непосредственно проявляют себя в свечении туманности. Об этом речь впереди, а здесь стоит сказать несколько слов об эволюции и дальнейшей судьбе

радиопульсаров. С течением времени пульсар теряет свою энергию вращения и магнитную энергию, так что постепенно и частота вращения, и магнитное поле нейтронной

звезды убывают. Из-за этого уменьшается электрическое поле у поверхности звезды, снижается эффективность отрыва частиц и их ускорения. Рано или поздно частицы

высоких энергий перестанут рождаться, и радиоизлучение пульсара прекратится. Если бы радиопульсар составлял пару вместе с обычной звездой, он мог бы тогда

превратиться в барстер, излучение которого питается аккреционным потоком, увлекаемым с поверхности звезды-компаньона. Но (за очень редким исключением, как

говорилось) радиопульсары - это одиночные нейтронные звезды, а не члены тесных двойных систем. И тем не менее свечение, хотя и довольно слабое, все же может

возникать. По мнению советского астрофизика А. И. Цыгана оно может быть обязано аккреции нейтрального межзвездного газа, сквозь который движется потухший

радиопульсар. Излучению такого происхождения отвечает светимость , и большая часть испускаемых квантов принадлежит гамма-диапазону. Поиски таких бывших

пульсаров, а ныне гамма-звезд - одна из интересных задач гамма-астрономии.

  Пульсары и космические лучи

  Еще в 1934г. В. Бааде и Ф. Цвикки указали на возможную связь между вспышками сверхновых, нейтронными звездами и космическими лучами - частицами высоких

энергий, приходящими на Землю из космического пространства.

  Космические лучи были открыты более 60 лет назад и с тех пор служат предметом тщательного изучения. Интерес к ним связан, прежде всего, с возможностью

использовать их для исследования взаимодействий элементарных частиц при высоких энергиях, недостижимых в лабораторных ускорительных устройствах. Наибольшая

энергия частицы, зарегистрированная в космических лучах: тогда как на лучших современных ускорителях достигаются энергии на 8 порядков меньше. Частицы

высоких энергии, приходящие к Земле из межпланетного и межзвездного пространства, порождают в земной атмосфере новые, вторичные частицы, тоже обладающие

немалыми энергиями. Но более всего интересны, очевидно, исходные, первичные частицы. Они представляют собою главным образом протоны; среди них имеются в

небольшом числе и атомные ядра таких элементов, как гелий, литий, бериллий, углерод, кислород и т.д., вплоть до урана. Кроме редких случаев экстремально больших

энергий, энергии в космических лучах в расчете на один нуклон (протон или нейтрон) не превышают Средняя концентрация частиц космических лучей в

межзвездном пространстве нашей Галактики оценивается величиной Средняя энергия частицы Плотность энергии космических лучей, т.е. энергия частиц в

единице объема, Последняя величина сравнима с плотностью энергии магнитного поля Галактики и близка к средней плотности кинетической энергии хаотических

движении облаков межзвездного газа. Электронов в космических лучах не более 1-2 %. Поток космических лучей изотропен - он приходят к Земле равномерно со всех сторон

(кроме, конечно, частиц, испускаемых Солнцем) .

  Космические лучи, распространяясь в межзвездных магнитных полях, способны создавать синхротронное излучение. Общее радиоизлучение Галактики известно с

конца 40-х годов. Его мощность составляет Напомним, что мощность оптического излучения Галактики эквивалентна свету приблизительно солнц. Однако радиомощность Галактики несравненно больше. Объяснение общего радиоизлучения Галактики как синхротронного излучения электронов космических лучей предложено В. Л„Гинзбургом в 1950—1951 гг. Основной вопрос физики космических лучей с самого начала ее развития — природа их высокой энергии. Он до сих пор еще не решен. Обсуждается целый ряд интересных возможностей: ускорение частиц в межзвездных магнитных полях (как это предполагал еще в 40-е годы Э. Ферми) , в оболочках, сбрасываемых при вспышках сверхновых (эта идея развивается сейчас многими авторами) , в ядре Галактики или даже вне ее — в квазарах. Открытие пульсаров, анализ их электродинамики, данные о частицах высокой энергии в Крабовидной туманности, получаемые из анализа ее синхротронного излучения, —все это указывает на пульсары как на эффективный источник космических лучей. Давняя идея В. Бааде и Ф. Цвикки о Единстве происхождения нейтронных звезд и космических лучей приобретает сейчас новые основания.

Эволюция звезд

      Как и все тела в природе, звёзды не остаются неизменными, они рождаются, эволюционируют, и наконец "умирают". Чтобы проследить жизненный путь звёзд и

понять, как они стареют, необходимо знать, как они возникают. В прошлом это представлялось большой загадкой ; современные астрономы уже могут с большой уверенностью

подробно описать пути, ведущие к появлению ярких звёзд на нашем ночном небосводе.

  Не так давно астрономы считали, что на образование звезды из межзвёздных газа и пыли требуются миллионы лет. Но в последние годы были получены поразительные

фотографии области неба, входящей в состав Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звёзд. На снимках 1947 г. в этом

месте была видна группа из трёх звездоподобных объектов. К 1954 г. некоторые из них стали продолговатыми, а к 1959 г. эти продолговатые образования распались на

отдельные звёзды - впервые в истории человечества люди наблюдали рождение звёзд буквально на глазах этот беспрецедентный случай показал астрономам, что звёзды могут

рождаться за короткий интервал времени, и казавшиеся ранее странными рассуждения о том, что звёзды обычно возникают в группах, или звёздных скоплениях, оказались

справедливыми.

  Каков же механизм их возникновения? Почему за многие годы астрономических визуальных и фотографических наблюдений неба только сейчас впервые удалось

увидеть "материализацию" звёзд? Рождение звезды не может быть исключительным событием: во многих участках неба существуют условия, необходимые для появления этих

тел.

  В результате тщательного изучения фотографий туманных участков Млечного Пути удалось обнаружить маленькие чёрные пятнышки неправильной формы, или

глобулы, представляющие собой массивные скопления пыли и газа. Они выглядят чёрными, так как не испускают собственного света и находятся между нами и яркими

звёздами, свет от которых они заслоняют. Эти газово-пылевые облака содержат частицы пыли, очень сильно поглощающие свет, идущий от расположенных за ними звёзд.

Размеры глобул огромны - до нескольких световых лет в поперечнике. Несмотря на то что вещество в этих скоплениях очень разрежено, общий объём их настолько велик, что

его вполне хватает для формирования небольших скоплений звёзд, по массе близких к Солнцу. Для того чтобы представить себе, как из глобул возникают звёзды, вспомним,

что все звёзды излучают и их излучение оказывает давление. Разработаны чувствительные инструменты, которые реагируют на давление солнечного света, проникающего

сквозь толщу земной атмосферы. В чёрной глобуле под действием давления излучения, испускаемого окружающими звёздами, происходит сжатие и уплотнение вещества.

Внутри глобулы гуляет "ветер", разметающий по всем направлениям газ и пылевые частицы, так что вещество глобулы пребывает в непрерывном турбулентном движении.

  Глобулу можно рассматривать как турбулентную газово-пылевую массу, на которую со всех сторон давит излучение. Под действием этого давления объём, заполняемый

газом и пылью, будет сжиматься, становясь всё меньше и меньше. Такое сжатие протекает в течение некоторого времени, зависящего от окружающих глобулу источников

излучения и интенсивности последнего. Гравитационные силы, возникающие из-за концентрации массы в центре глобулы, тоже стремятся сжать глобулу, заставляя вещество

падать к её центру. Падая, частицы вещества приобретают кинетическую энергию и разогревают газово-пылевое облако.

  Падение вещества может длиться сотни лет. Вначале оно происходит медленно, неторопливо, поскольку гравитационные силы, притягивающие частицы к центру, ещё

очень слабы. Через некоторое время, когда глобула становится меньше, а поле тяготения усиливается, падение начинает происходить быстрее. Но, как мы уже знаем, глобула

огромна, не менее светового года в диаметре. Это значит, что расстояние от её внешней границы до центра может превышать 10 триллионов километров. Если частица от края

глобулы начнёт падать к центру со скоростью немногим менее 2км/с, то центра она достигнет только через 200 000 лет. Наблюдения показывают, что скорости движения газа и

пылевых частиц на самом деле гораздо больше, а потому гравитационное сжатие происходит значительно быстрее.

  Падение вещества к центру сопровождается весьма частыми столкновениями частиц и переходом их кинетической энергии в тепловую. В результате температура

глобулы возрастает. Глобула становится протозвездой и начинает светиться, так как энергия движения частиц перешла в тепло, нагрела пыль и газ.

  В этой стадии протозвезда едва видна, так как основная доля её излучения приходится на далёкую инфракрасную область. Звезда ещё не родилась, но зародыш её уже

появился. Астрономам пока неизвестно, сколько времени требуется протозвезде, чтобы достигнуть той стадии, когда она начинает светиться как тусклый красный шар и

становится видимой. По различным оценкам, это время колеблется от тысяч до нескольких миллионов лет. Однако, помня о появлении звёзд в Большой Туманности Ориона,

стоит, пожалуй, считать, что наиболее близка к реальности оценка, которая даёт минимальное значение времени.

  Здесь мы должны сделать небольшое отступление, с тем, чтобы тщательно рассмотреть некоторые детали, связанные с рождением звезды, и оценить их воздействие на

её дальнейшую судьбу. Звёзды рождаются с самыми различными массами. Кроме того, они могут обладать самым разным химическим составом. Оба эти фактора оказывают

влияние на дальнейшее поведение звезды, на всю её судьбу. Чтобы лучше в этом разобраться, выйдем из дома и взглянем на ночное небо.

  С вершины горы, вдали от мешающего нам городского света, мы увидим на небе по крайней мере 3000 звёзд. Наблюдатель с очень острым зрением при идеальных

атмосферных условиях увидит в полтора раза больше звёзд. Одни из них удалены от нас на тысячу, другие - всего на несколько световых лет. Попытаемся теперь разместить

все эти звёзды на диаграмме, на которой каждая звезда характеризуется двумя физическими величинами: температурой и светимостью. Разместив все 3000 звёзд, мы

обнаружим, что самые яркие из них одновременно оказываются и самыми горячими, а самые слабые - самыми холодными. При этом заметим, что подавляющее большинство

звёзд располагается вдоль наклонной линии, которая тянется из верхнего левого угла графика в нижний правый (Если, как это традиционно принято, ось температур направить

влево, а ось светимостей - вверх.) Это нормальные звёзды, и их распределение называют "главной последовательностью". Полученная диаграмма называется диаграммой

Герцшпрунга - Рессела, в честь двух выдающихся астрономов, впервые установивших эту замечательную зависимость. В ней важную роль играет масса звезды. Если масса

звезды велика, последняя при рождении попадает на верхнюю часть главной последовательности, если масса мала, то звезда оказывается в нижней её части.

  Продолжительность жизни звезды зависит от её массы. Звёзды с массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного "топлива" и могут

светить десятки миллиардов лет. Внешние слои звёзд, подобных нашему Солнцу, с массами не большими 1,2 масс Солнца, постепенно расширяются и в конце концов совсем

покидают ядро звезды. На месте гиганта остаётся маленький и горячий белый карлик.

  БЕЛЫЕ КАРЛИКИ

  Белые карлики - одна из увлекательнейших тем в истории астрономии: впервые были открыты небесные тела, обладающие свойствами, весьма далёкими от тех, с

которыми мы имеем дело в земных условиях. И, по всей вероятности, разрешение загадки белых карликов положило начало исследованиям таинственной природы вещества,

запрятанного где-то в разных уголках Вселенной.

  Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар

(США) , показало, что их количество превышает 1500. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет

должно находиться около 100 таких звёзд. История открытия белых карликов восходит к началу 19в, когда Фридрих Вильгельм Бессель, прослеживая движение наиболее яркой

звезды Сириус, открыл, что её путь является не прямой линией, а имеет волнообразный характер. Собственное движение звезды происходило не по прямой линии; казалось,

что она едва заметно смещалась из стороны в сторону. К 1844г., спустя примерно десять лет после первых наблюдений Сириуса, Бессель пришёл к выводу, что рядом с

Сириусом находится вторая звезда, которая, будучи невидимой, оказывает на Сириус гравитационное воздействие; оно обнаруживается по колебаниям в движении Сириуса.

Ещё более интересным оказалось то обстоятельство, что если тёмный компонент действительно существует, то период обращения обеих звёзд относительно их общего центра

тяжести равен приблизительно 50 годам.

  Перенесёмся в 1862 г. и из Германии в Кембридж, штат Массачусетс (США) . Алвану Кларку, крупнейшему строителю телескопов в США, Университетам штата

Миссисипи было поручено сконструировать телескоп с объективом диаметром 18,5 дюйма (46 см) , который должен был стать самым большим телескопом в мире. После того

как Кларк закончил обработку линзы телескопа, нужно было проверить, обеспечена ли необходимая точность формы её поверхности. С этой целью линзу установили в

подвижной трубе и направили на Сириус - самую яркую звезду, являющуюся лучшим объектом для проверки линз и выявления их дефектов. Зафиксировав положение трубы

телескопа, Алван Кларк увидел слабый «призрак» , который появился на восточном краю поля зрения телескопа в отблеске Сириуса. Затем, по мере движения небосвода, в

поле зрения попал и сам Сириус. Его изображение было искажено - казалось, что «призрак» представляет собой дефект линзы, который следовало бы устранить, прежде чем

сдать линзу в эксплуатацию. Однако эта возникшая в поле зрения телескопа слабая звёздочка оказалась компонентом Сириуса, предсказанным Бесселем. В заключение следует

добавить, что из-за начавшейся первой мировой войны телескоп Кларка так никогда и не был отправлен в Миссисипи - его установили в Дирбоновской обсерватории, вблизи

Чикаго, а линзу используют по сей день, но на другой установке.

  Таким образом, Сириус стал предметом всеобщего интереса и многих исследований, ибо физические характеристики двойной системы заинтриговали астрономов. С

учётом особенностей движения Сириуса, его расстояние до Земли и амплитуды отклонений от прямолинейного движения астрономам удалось определить характеристики

обеих звёзд системы, названых Сириус А и Сириус В. Суммарная масса обеих звёзд оказалась в 3,4 раза больше массы Солнца. Было найдено, что расстояние между звёздами

почти в 20 раз превышает расстояние между Солнцем и Землёй, то есть примерно равно расстоянию между Солнцем и Ураном; полученная на основании измерения

параметров орбиты масса Сириуса А оказалась в 2,5 раза больше массы Солнца, а масса Сириуса В составила 95% массы Солнца. После того как были определены светимости

обеих звёзд, обнаружилось, что Сириус А почти в 10 000 раз ярче, чем Сириус В. По абсолютной величине Сириуса А мы знаем, что он примерно в 35,5 раза светит сильнее

Солнца. Отсюда следует, что светимость Солнца в 300 раз превышает светимость Сириуса В.

  Светимость любой звезды зависит от температуры поверхности звезды и её размеров, то есть диаметра. Близость второго компонента к более яркому Сириусу А

чрезвычайно осложняет определение его спектра, что необходимо для установки температуры звезды. В 1915 г. с использованием всех технических средств, которыми

располагала крупнейшая обсерватория того времени Маунт-Вилсон (США) , были получены удачные фотографии спектра Сириуса. Это привело к неожиданному открытию:

температура спутника составляла 8000 К, тогда как Солнце имеет температуру 5700 К. Таким образом, спутник в действительности оказался горячее Солнца, а это означало,

что светимость единицы его поверхности также больше.

  В самом деле, простой расчёт показывает, что каждый сантиметр этой звезды излучает в четыре раза больше энергии, чем квадратный сантиметр поверхности Солнца.

Отсюда следует, что поверхность спутника должна быть в 300ґ4 раз меньше, чем поверхность Солнца, и Сириус В должен иметь диаметр около 40 000 км. Однако масса этой

звезды составляет 95% от массы Солнца. Этот значит, что огромное количество вещества должно быть упаковано в чрезвычайно малом объёме, иначе говоря, звезда должна

быть плотной. В результате несложных арифметических действий получаем, что плотность спутника почти в 100 000 раз превышает плотность воды. Кубический сантиметр

этого вещества на Земле весил бы 100 кг, а 0,5 л такого вещества - около 50 т.

  Такова история открытия первого белого карлика. А теперь зададимся вопросом: каким образом вещество можно сжать так, чтобы один кубический сантиметр его весил

100 кг?

  Когда в результате высокого давления вещество сжато до больших плотностей, как в белых карликах, то вступает в действие другой тип давления, так называемое

«вырожденное давление» . Оно появляется при сильнейшем сжатии вещества в недрах звезды. Именно сжатие, а не высокие температуры является причиной вырожденного

давления. Вследствие сильного сжатия атомы оказываются настолько плотно упакованными, что электронные оболочки начинают проникать одна в другую.

  Гравитационное сжатие белого карлика происходит в течение длительного времени, и электронные оболочки продолжают проникать друг в друга до тех пор, пока

расстояние между ядрами не станет порядка радиуса наименьшей электронной оболочки. Внутренние электронные оболочки представляют собой непроницаемый барьер,

препятствующий дальнейшему сжатию. При максимальном сжатии электроны уже не связаны с отдельными ядрами, а свободно движутся относительно них. Процесс

отделения электронов от ядер происходит в результате ионизации давлением. Когда ионизация становится полной, облако электронов движется относительно решётки из

более тяжёлых ядер, так что вещество белого карлика приобретает определённые физические свойства, характерные для металлов. В таком веществе энергия переносится к

поверхности электронами, подобно тому, как тепло распространяется по железному пруту, нагреваемому с одного конца.

  Но электронный газ проявляет и необычные свойства. По мере сжатия электронов их скорость всё больше возрастает, потому что, как мы знаем, согласно

фундаментальному физическому принципу, два электрона, находящиеся в одном элементе фазового объёма, не могут иметь одинаковые энергии. Следовательно, чтобы не

занимать один и тот же элемент объёма, они должны двигаться с огромными скоростями. Наименьший размер допустимого объёма зависит от диапазона скоростей

электронов. Однако в среднем, чем ниже скорость электронов, тем больше тот минимальный объём, который они могут занимать. Иными словами, самые быстрые электроны

занимают наименьший объём. Хотя отдельные электроны носятся со скоростями, соответствующими внутренней температуре порядка миллионов градусов, температура

полного ансамбля электронов в целом остаётся низкой.

  Установлено, что атомы газа обычного белого карлика образуют решётку плотно упакованных тяжёлых ядер, сквозь которую движется вырожденный электронный газ.

Ближе к поверхности звезды вырождение ослабевает, и на поверхности атомы ионизированы не полностью, так что часть вещества находится в обычном газообразном

состоянии.

  Зная физические характеристики белых карликов, мы можем сконструировать их наглядную модель. Начнём с того, что белые карлики имеют атмосферу. Анализ

спектров карликов приводит к выводу, что толщина их атмосферы составляет всего несколько сотен метров. В этой атмосфере астрономы обнаруживают различные знакомые

химические элементы. Известны белые карлики двух типов - холодные и горячие. В атмосферах более горячих белых карликов содержится некоторый запас водорода, хотя,

вероятно, он не превышает 0,05%. Тем не менее, по линиям в спектрах этих звёзд были обнаружены водород, гелий, кальций, железо, углерод и даже окись титана. Атмосферы

холодных белых карликов состоят почти целиком из гелия; на водород, возможно, приходится меньше, чем один атом из миллиона. Температуры поверхности белых карликов

меняются от 5000 К у "холодных" звёзд до 50 000 К у "горячих". Под атмосферой белого карлика лежит область невырожденного вещества, в котором содержится небольшое

число свободных электронов. Толщина этого слоя 160 км, что составляет примерно 1% радиуса звезды. Слой этот может меняться со временем, но диаметр белого карлика

остаётся постоянным и равным примерно 40 000 км. Как правило, белые карлики не уменьшаются в размерах после того, как достигли этого состояния. Они ведут себя

подобно пушечному ядру, нагретому до большой температуры; ядро может менять температуру, излучая энергию, но его размеры остаются неизменными. Чем же определяется

окончательный диаметр белого карлика? Оказывается его массой. Чем больше масса белого карлика, тем меньше его радиус; минимально возможный радиус составляет 10 000

км. Теоретически, если масса белого карлика превышает массу Солнца в 1,2 раза, его радиус может быть неограниченно малым. Именно давление вырожденного электронного

газа предохраняет звезду от всяческого дальнейшего сжатия, и, хотя температура может меняться от миллионов градусов в ядре звезды до нуля на поверхности, диаметр её не

меняется. Со временем звезда становится тёмным телом с тем же диаметром, который она имела, вступив в стадию белого карлика.

  Под верхним слоем звезды вырожденный газ практически изотермичен, то есть температура почти постоянна вплоть до самого центра звезды; она составляет несколько

миллионов градусов - наиболее реальная цифра 6 млн. К.

  Теперь, когда мы имеем некоторые представления о строении белого карлика, возникает вопрос: почему он светится? Очевидно одно: термоядерные реакции

исключаются. Внутри белого карлика отсутствует водород, который поддерживал бы этот механизм генерации энергии.

  Единственный вид энергии, которым располагает белый карлик, -это тепловая энергия. Ядра атомов находятся в беспорядочном движении, так как они рассеиваются

вырожденным электронным газом. Со временем движение ядер замедляется, что эквивалентно процессу охлаждения. Электронный газ, который не похож не на один из

известных на Земле газов, отличается исключительной теплопроводностью, и электроны проводят тепловую энергию к поверхности, где через атмосферу эта энергия

излучается в космическое пространство.

  Астрономы сравнивают процесс остывания горячего белого карлика с остыванием железного прута, вынутого из огня. Сначала белый карлик охлаждается быстро, но по

мере падения температуры внутри него охлаждение замедляется. Согласно оценкам, за первые сотни миллионов лет светимость белого карлика падает на 1% от светимости

Солнца. В конце концов, белый карлик должен исчезнуть и стать чёрным карликом, однако на это могут понадобиться триллионы лет, и, по мнению многих учёных,

представляется весьма сомнительным, чтобы возраст Вселенной был достаточно велик для появления в ней чёрных карликов.

  Другие астрономы считают, что и в начальной фазе, когда белый карлик ещё довольно горяч, скорость охлаждения невелика. А когда температура его поверхности

падает до величины порядка температуры Солнца, скорость охлаждения увеличивается и угасание происходит очень быстро. Когда недра белого карлика достаточно остынут,

они затвердеют.

  Так или иначе, если принять, что возраст Вселенной превышает 10 млрд. лет, красных карликов в ней должно быть намного больше, чем белых. Зная это, астрономы

предпринимают поиски красных карликов. Пока они безуспешны. Массы белых карликов определены недостаточно точно. Надёжно их можно установить для компонентов

двойных систем, как в случае Сириуса. Но лишь немногие белые карлики входят в состав двойных звёзд. В трёх наиболее хорошо изученных случаях массы белых карликов,

измеренные с точностью свыше 10% оказались меньше массы Солнца и составляли примерно половину её. Теоретически предельная масса для полностью вырожденной не

вращающейся звезды должна быть в 1,2 раза больше массы Солнца. Однако если звёзды вращаются, а по всей вероятности, так оно и есть, то вполне возможны массы, в

несколько раз превышающие солнечную.

  Сила тяжести на поверхности белых карликов примерно в 60-70 раз больше, чем на Солнце. Если человек весит на Земле 75 кг, то на Солнце он весил бы 2 тонны, а на

поверхности белого карлика его вес составлял бы 120-140 тонн. С учётом того, что радиусы белых карликов мало отличаются и их массы почти совпадают, можно заключить,

что сила тяжести на поверхности любого белого карлика приблизительно одна и та же. Во Вселенной много белых карликов. Одно время они считались редкостью, но

внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар, показало, что их количество превышает 1500. Астрономы полагают, что частота

возникновения белых карликов постоянна, по крайней мере, в течение последних 5 млрд. лет. Возможно, белые карлики составляют наиболее многочисленный класс объектов

на небе. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд.

Возникает вопрос: все ли звёзды становятся белыми карликами в конце своего эволюционного пути? Если нет, то какая часть звёзд переходит в стадию белого карлика?

  Важнейший шаг в решении проблемы был сделан, когда астрономы нанесли положение центральных звёзд планетарных туманностей на диаграмму температура

светимость. Чтобы разобраться в свойствах звёзд, расположенных в центре планетарных туманностей, рассмотрим эти небесные тела.

  На фотографиях планетарная туманность выглядит как протяжённая масса газов эллипсоидной формы со слабой, но горячей звездой в центре. В действительности эта

масса представляет собой сложную турбулентную, концентрическую оболочку, которая расширяется со скоростями 15-50 км/с. Хотя эти образования выглядят как кольца, на

деле они являются оболочками и скорость турбулентного движения газа в них достигает примерно 120 км/с. Оказалось, что диаметры нескольких планетарных туманностей, до

которых удалось измерить расстояние, составляют порядка 1 светового года, или около 10 триллионов километров. Расширяясь с указанными выше скоростями, газ в оболочках

становится очень разряженным и не может возбуждаться, а следовательно, его нельзя увидеть спустя 100 000 лет.

  Многие планетарные туманности, наблюдаемые нами сегодня, родились в последние 50 000 лет, а типичный их возраст близок к 20 000 лет. Центральные звёзды таких

туманностей - наиболее горячие объекты среди известных в природе. Температура их поверхности меняется от 50 000 до 1млн. К. Из-за необычайно высоких температур

большая часть излучения звезды приходится на далёкую ультрафиолетовую область электромагнитного спектра. Это ультрафиолетовое излучение поглощается, преобразуется и

переизлучается газом оболочки в видимой области спектра, что и позволяет нам наблюдать оболочку. Это означает, что оболочки значительно ярче, нежели центральные

звёзды, - которые на самом деле являются источником энергии, - так как огромное количество излучения звезды приходится на невидимую часть спектра.

  Из анализа характеристик центральных звёзд планетарных туманностей следует, что типичное значение их массы заключено в интервале 0,6-1 масса Солнца. А для

синтеза тяжёлых элементов в недрах звезды необходимы большие массы. Количество водорода в этих звёздах незначительно. Однако газовые оболочки богаты водородом и

гелием.

  Некоторые астрономы считают, что 50-95 % всех белых карликов возникли не из планетарных туманностей. Таким образом, хотя часть белых карликов целиком связана

с планетарными туманностями, по крайней мере, половина или более из них произошли от нормальных звёзд главной последовательности, не проходящих через стадию

планетарной туманности.

  Полная картина образования белых карликов туманна и неопределенна. Отсутствует так много деталей, что в лучшем случае описание эволюционного процесса можно

строить лишь путём логических умозаключений. И тем не менее, общий вывод таков: многие звёзды теряют часть вещества на пути к своему финалу, подобному стадии белого

карлика, и затем скрываются на небесных «кладбищах» в виде чёрных, невидимых карликов.

  Если масса звезды примерно вдвое превышает массу Солнца, то такие звёзды на последних этапах своей эволюции теряют устойчивость. Такие звёзды могут взорваться

как сверхновые, а затем сжаться до размеров шаров радиусом несколько километров, т.е. превратиться в нейтронные звёзды.

  СВЕРХНОВЫЕ

  Около семи тысяч лет назад в отдалённом уголке космического пространства внезапно взорвалась звезда, сбросив с себя наружные слои вещества. Сравнительно

большая и массивная звезда вдруг столкнулась с серьёзной энергетической проблемой - её физическая целостность оказалась под угрозой. Когда была пройдена граница

устойчивости, разразился захватывающий, чрезвычайно мощный, один из самых катастрофических во всей Вселенной взрывов, породивший сверхновую звезду.

  Шесть тысяч лет мчался по космическим просторам свет от этой звезды из созвездия Тельца и достиг, наконец, Земли. Это случилось в 1054 г. В Европе наука была

тогда погружена в дрему, и у арабов она переживала период застоя, но в другой части Земли наблюдатели заметили объект, величественно сверкающий на небе перед

восходом Солнца.

  Четвёртого июля 1054 г. китайские астрономы, вглядываясь в небо, увидели светящийся небесный объект, который был много ярче Венеры. Его наблюдали в Пекине и

Кайфыне и назвали "звездой-гостьей". Это был самый яркий после Солнца объект на небе. В течение 23 дней, вплоть до 27 июля 1054 г., он был виден даже днём. Постепенно

объект становился слабее, но всё же оставался видимым для невооружённого глаза ещё 627 дней и наконец исчез 17 апреля 1056 г. Это была ярчайшая из всех

зарегистрированных сверхновых - она сияла как 500 млн. Солнц. Если бы она находила от нас на таком расстоянии, как ближайшая к нам звезда альфа Центавра, то даже самой

тёмной ночью при её свете мы могли бы свободно читать газету - она светила бы значительно ярче, чем полная Луна.

  В европейских хрониках тех лет нет никаких упоминаний о данном событии, но не следует забывать, что то были годы средневековья, когда на европейском континенте

почти угас свет науки.

  Один интересный момент в истории открытия этой звезды. В 1955 г. Уильям Миллер и Гельмут Абт из обсерваторий Маунт-Вилсон и Маунт-Паломар обнаружили

доисторические пиктограммы на стене одной пещеры в скале каньона Навахо в Аризоне. В каньоне изображение было высечено на камне, а в пещере - нарисовано куском

гематита - красного железняка. На обоих рисунках изображён кружок и полумесяц. Миллер истолковывает эти фигуры как изображение лунного серпа и звезды; по его мнению,

они, возможно, отображают появление сверхновой в 1054 г. Для такого заключения есть два основания: во-первых, в 1054 г., когда вспыхнула сверхновая, фаза Луны и её

расположение относительно сверхновой были именно такими, как показано на рисунке.

  Во-вторых, по найденным в тех местах глиняным черепкам установлено, что около тысячи лет назад в этой местности обитали индейцы. Таким образом, рисунки, по-

видимому, являются художественным изображением сверхновой, сделанным древними индейцами.

  После фотографирования и тщательного исследования участка неба, где находилась сверхновая, было обнаружено, что остатки сверхновой образуют сложную

хаотическую расширяющуюся газовую оболочку, заключающую несколько звёзд. Весь этот комплекс из газа и звёзд был назван Крабовидной туманностью. Источником

вещества туманности является одна из центральных звёзд, та самая, которая взорвалась семь тысяч лет назад. Это нейтронная звезда. Она имеет температуру 6-7 млн. К и

чрезвычайно малый диаметр. По фотографиям и спектрограммам можно определить физические характеристики звезды.

  В результате исследования выяснилось, что в Крабовидной туманности различаются два типа излучающих областей. Во-первых, это волокнистая сетка, состоящая из

газа, нагретого до нескольких десятков тысяч градусов и ионизированного под действием интенсивного ультрафиолетового излучения центральной звезды; газ включает в себя

водород, гелий, кислород, неон, серу. И во-вторых, большая светящаяся аморфная область, на фоне которой мы видим газовые волокна.

  По фотографиям, сделанным около двенадцати лет назад, обнаружено, что некоторые из волокон туманности движутся от её центра наружу. Зная угловые размеры, а

также приблизительно расстояние и скорость расширения, учёные определили, что около девяти столетий назад на месте туманности был точечный источник. Таким образом

удалось установить прямую связь между крабовидной туманностью и тем взрывом сверхновой, который почти тысячу лет назад наблюдали китайские и японские астрономы.

  Вопрос о причинах взрывов сверхновых по-прежнему остаётся предметом дискуссий и служит поводом для выдвижения противоречивых гипотез.

  Звезда с массой, превосходящей солнечную примерно на 20%, может со временем стать неустойчивой. Это показал в своём блестящем теоретическом исследовании,

сделанном в конце 30-х годов нашего столетия, астроном Чандрасекар. Он установил, что подобные звёзды на склоне жизни порой подвергаются катастрофическим

изменениям, в результате чего достигается некоторое равновесное состояние, позволяющее звезде достойно завершить свой жизненный путь. Многие астрономы занимались

изучением последних стадий звёздной эволюции и исследованием зависимости эволюции звезды от её массы. Все они пришли к одному выводу: если масса звезды превышает

предел Чандрасекара, её ожидают невероятные изменения.

  Как мы видели, устойчивость звезды определяется соотношением между силами гравитации, стремящимися сжать звезду, и силами давления, расширяющими её

изнутри. Мы также знаем, что на последних стадиях звёздной эволюции, когда истощаются запасы ядерного горючего, это соотношение обеспечивается за счёт эффекта

вырождения, которое может привести звезду к стадии белого карлика и позволит ей провести остаток жизни в таком состоянии. Став белым карликом, звезда постепенно

остывает и заканчивает свою жизнь, превратившись в холодный, безжизненный, невидимый звёздный шлак.

  Если масса звезды превосходит предел Чандрасекара, эффект вырождения уже не в состоянии обеспечить необходимое соотношение давлений. Перед звездой остаётся

только один путь для сохранения равновесия поддерживать высокую температуру. Но для этого требуется внутренний источник энергии. В процессе обычной эволюции звезда

постепенно использует для этого ядерное горючее. Однако как может звезда добыть энергию на последних стадиях звёздной эволюции, когда ядерное топливо, регулярно

поставляющее энергию, на исходе? Конечно она ещё не энергетический «банкрот» , она большой, массивный объект, значительная часть массы которого находится на большом

расстоянии от центра, и у неё в запасе ещё есть гравитационная энергия. Она подобна камню, лежащему на вершине высокой горы, и благодаря своему местоположению

обладающему потенциальной энергией. Энергия заключённая во внешних слоях звезды, как бы находится в огромной кладовой, из которой в нужный момент её можно

извлечь.

  Итак, чтобы поддерживать давление, звезда теперь начинает сжиматься, пополняя таким образом запас своей внутренней энергии. Как долго продолжается это сжатие?

Фред Хойл и его коллеги тщательно исследовали подобную ситуацию и пришли к выводу, что в действительности происходит катастрофическое сжатие, за которым следует

катастрофический взрыв. Толчком взрыву, избавляющему звезду от избытка массы, является значение плотности, создаваемое при сжатии. Избавившись от избыточной массы,

звезда тут же возвращается на путь обычного угасания.

  Наибольший интерес для учёных представляет процесс, в ходе которого шаг за шагом осуществляется постепенное выгорание ядерного топлива. Для расчёта этого

процесса используется информация, полученная из лабораторных опытов; огромную роль при этом играют современные быстродействующие вычислительные машины. Хойл

и Фаулер смоделировали с помощью ЭВМ процесс энерговыделения в звезде и проследили её ход. В качестве примера они взяли звезду, масса которой втрое превосходит

солнечную, то есть звезду, находящуюся далеко за пределом Чандрасекара. Звезда с такой массой должна иметь светимость, в 60 раз превышающую светимость Солнца, и

время жизни около 600 млн. лет.

  Мы уже знаем, что в ходе обычных термоядерных реакций, протекающих в недрах звезды почти в течение всей её жизни, водород превращается в гелий. После того как

значительная часть вещества звезды превратится в гелий, температура в её центре возрастает. При увеличении температуры примерно до 200 млн. К ядерным горючим

становится гелий, который затем превращается в кислород и неон. Таким образом, гелиевое ядро начинает порождать более тяжёлое ядро, состоящее из двух этих химических

элементов. Теперь звезда становится многослойной энергопроводящей системой. В тонкой оболочке, по одну сторону от которой находится водород, а по другую гелий,

происходит превращение водорода в гелий; эта реакция идёт с выделением энергии. Поэтому, пока такая реакция осуществляется, температура ядра звезды неуклонно растёт.

Сжатие звезды ведёт к уплотнению её ядра и росту температуры в центре до 200-300 млн. К. Но даже при столь высоких температурах кислород и неон вполне устойчивы и не

вступают в ядерные реакции. Однако через некоторое время ядро становится ещё плотнее, температура удваивается, теперь она уже равняется 600 млн. К. И тогда ядерным

топливом становится неон, который в ходе реакций превращается в магний и кремний. Образование магния сопровождается выходом свободных нейтронов. Когда звезда

родилась из праматерии, она уже содержала некоторые металлы группы железа. Свободные нейтроны, вступая в реакцию с этими металлами, создают атомы более тяжёлых

металлов - вплоть до урана - самого тяжёлого из природных элементов.

  Но вот израсходован весь неон в ядре. Ядро начинает сжиматься, и снова сжатие сопровождается ростом температуры. Наступает следующий этап, когда каждые два

атома кислорода, соединяясь, порождают атом кремния и атом гелия. Атомы кремния, соединяясь попарно, образуют атомы никеля, которые вскоре превращаются в атомы

железа. В ядерные реакции, сопровождающиеся возникновением новых химических элементов, вступают не только нейтроны, но также протоны и атомы гелия. Появляются

такие элементы, как сера, алюминий, кальций, аргон, фосфор, хлор, калий. Температура ядра поднимается до полутора миллиардов градусов. По-прежнему продолжается

образование более тяжёлых элементов с использованием свободных нейтронов, но на этой стадии из-за большой температуры происходят некоторые новые явления.

  Хойл считает, что при температурах порядка миллиарда градусов возникает мощное гамма-излучение, способное разрушать ядра атомов. Нейтроны и протоны

отрываются от ядер, но этот процесс обратимый: частицы вновь соединяются, создавая устойчивые комбинации. Когда температура превысит 1,5 млрд. К, более вероятными

становятся процессы распада ядер. Любопытным и неожиданным оказался следующий результат: при дальнейшем увеличении температуры и усилении процессов разрушения

и соединения ядра в итоге присоединяют всё больше и больше частиц и, как следствие этого, возникают более тяжёлые химические элементы. Так, при температурах 2-5 млрд.

К рождаются титан, ванадий, хром, железо, кобальт, цинк, и др. Но из всех этих элементов наиболее представлено железо. Как и прежде, при превращении лёгких элементов в

тяжёлые вырабатывается энергия, удерживающая звезду от коллапса. Своим внутренним строением звезда теперь напоминает луковицу, каждый слой которой заполнен

преимущественно каким-либо одним элементом.

  Как отмечает Хойл, с образованием группы железа звезда оказывается накануне драматического взрыва. Ядерные реакции, протекающие в железном ядре звезды,

приводят к превращению протонов в нейтроны. При этом испускаются потоки нейтрино, уносящие с собой в космическое пространство значительное количество энергии

звезды. Если температура в ядре звезды велика, то эти энергетические потери могут иметь серьёзные последствия, так как они приводят к снижению давления излучения,

необходимого для поддержания устойчивости звезды. И как следствие этого, в действие опять вступают гравитационные силы, призванные доставить звезде необходимую

энергию. Силы гравитации всё быстрее сжимают звезду, восполняя энергию, унесённую нейтрино. Как и прежде сжатие звезды сопровождается ростом температуры, которая

в конце концов достигает 4-5 млрд. К. Теперь события развиваются несколько иначе. Ядро, состоящее из элементов группы железа, подвергается серьёзным изменениям:

элементы этой группы уже не вступают в реакции с образованием более тяжёлых элементов, а начинают снова превращаться в гелий, испуская при этом колоссальный поток

нейтронов. Большая часть этих нейтронов захватывается веществом внешних слоёв звезды и участвует в создании тяжёлых элементов.

  На этом этапе, как указывает Хойл, звезда достигает критического состояния. Когда создавались тяжёлые химические элементы, энергия высвобождалась в результате

слияния лёгких ядер. Тем самым огромные её количества звезда выделяла на протяжении сотен миллионов лет. Теперь же конечные продукты ядерных реакций вновь

распадаются, образуя гелий: звезда оказывается вынужденной восполнить утраченную ранее энергию. Остаётся последнее её достояние - гравитация. Но чтобы звезда могла

воспользоваться этим резервом, плотность её ядра должна увеличиваться крайне быстро, то есть ядро должно резко сжаться; происходит «взрыв внутрь» , отрывающий ядро

звезды от её внешних слоёв. Он должен произойти за считанные секунды. Это и есть начало конца массивной звезды.

  Имплозия, или взрыв внутрь, устраняет давление, поддерживавшее внешние слои звезды, её оболочку, и с этого момента оболочка, сжимаясь, начинает падать на ядро.

Падение сопровождается выделением колоссального количества энергии - так ещё раз проявляет себя гравитация. Выделение энергии приводит в свою очередь к резкому

повышению температуры (примерно 3 млрд. К) , и падающая оболочка звезды оказывается в необычных для неё температурных условиях. Для звезды с температурой ядра,

равной 2,5 млрд. К, лёгкие элементы оболочки служат потенциальным ядерным топливом. Но чтобы обеспечить свечение во время взрыва, температура должна подняться

выше этого значения - до 3 млрд. К. В течение секунды кинетическая энергия звезды превращается в тепловую, и вещество оболочки нагревается. При такой высокой

температуре более лёгкие элементы - в основном кислород - проявляют взрывную неустойчивость и начинают взаимодействовать. Подсчитано, что за время меньше секунды в

ходе этих ядерных реакций выделяется энергия, равная энергии, которую Солнце излучает за миллиард лет!

  Внезапно освободившаяся энергия срывает со звезды её наружные слои и выбрасывает их в космическое пространство со скоростью, достигающей нескольких тысяч

километров в секунду. На эти слои приходится значительная часть массы звезды. Газовая оболочка удаляется от звезды образуя туманность, которая простирается на многие

миллионы миллионов километров.

  Газ по инерции продолжает удаляться от звезды до тех пор, пока, возможно через 100 000 лет, вещество туманности не станет настолько разряженным и диффузным, что

больше уже не сможет возбуждаться коротковолновым излучением очень горячей материнской звезды ; тогда мы перестанем его видеть. Но самое главное: как в взорвавшемся

веществе, так и в межзвездном газе присутствует магнитное поле. Сжатие газа за фронтом ударной волны вызывает сжатие силовых линий и повышение напряжённости

межзвёздного магнитного поля, что в свою очередь приводит к увеличению энергии электронов, и их ускорению. В результате остаётся сверхгорячая звезда, масса которой

уменьшилась именно настолько, чтобы она могла достойно угаснуть и умереть. По всей вероятности она станет нейтронной звездой, масса которой в 1,2-2 массы Солнца. Если

же её масса более, чем вдвое превышает массу Солнца, то она в конечном счёте может превратиться в чёрную дыру.

  Сверхновые - очень редкие объекты. История засвидетельствовала лишь несколько случаев появления сверхновых. Первая - это, конечно, Крабовидная туманность,

вторая Сверхновая Тихо Браге, обнаруженная в 1572 г., и третья - Сверхновая Кеплера, открытая им в 1604 г. Недавно стало известно о сверхновой в созвездии Волка.

Астрономы вычислили, что каждая звёздная система, галактика, в среднем раз в сто-триста лет рождает сверхновую. В настоящее время астрономами открыто около 150

сверхновых.

  Только три из них оказались в нашей Галактике, хотя существует много объектов, такие, как Петля в Лебеде и Кассиопея А, которые, как предполагают, могут оказаться

остатками взрывов сверхновых Млечного Пути. Точное время взрыва для Петли в Лебеде почти невозможно установить, но полагают, что если это действительно остатки

взрыва сверхновой, то Петля в Лебеде начала своё расширение около 60 тысяч лет назад. Кассиопея А - самая молодая сверхновая на небе, так как её расширение началось

примерно в 1700 г.

  Почему природа создаёт такие диковинные объекты? Как они возникают? Каков механизм вспышек, которые по своей яркости могут соперничать с сиянием десятков

миллиардов звёзд? Каков конечный продукт звёздного взрыва? Это только часть вопросов, которые возникают у астронома, наблюдающего за грандиознейшими взрывами в

том или ином уголке неба. Чтобы ответить хотя бы на некоторые из них, необходимо исследовать историю жизни звезды.

  Профессор Джон А. Уиллер заметил: «Одно дело изучать почти стационарную звезду, как, например, Солнце, другое дело - когда мы берёмся предсказывать

причудливую динамику сверхновой. Мы умеем в подробностях предсказывать и ход ядерных реакций, идущих в недрах Солнца и других звёзд, и выход энергии излучения с

поверхности звезды. Однако можем ли мы с такой же уверенностью говорить о звёздах, испытывающих мощные внутренние движения?» Недавно учёные предприняли

попытку применить математическую теорию атомного взрыва для описания гидродинамики сверхновых. Это позволило тщательно исследовать гидродинамику сверхновых с

помощью теории, которая заведомо не слишком далека от истины. Некоторые астрономы различают пять типов сверхновых; два из них главные - это сверхновые типа 1 и

сверхновые типа 2. Они отличаются друг от друга светимостями, характером изменения светимости, спектрами, а также количеством и местоположением в конкретной

галактике либо в различных типах галактик. Характер изменения светимости со временем у сверхновых обоих основных типов практически одинаков.

  НЕЙТРОННЫЕ

  Звёзды, у которых масса в 1,5-3 раза больше, чем у Солнца не смогут в конце жизни остановить своё сжатие на стадии белого карлика. Мощные силы гравитации

сожмут их до такой плотности, при которой произойдёт «нейтрализация» вещества: взаимодействие электронов с протонами привёдёт к тому, что почти вся масса звезды будет

заключена в нейтронах. Образуется нейтронная звезда. Наиболее массивные звёзды могут обраться в нейтронные, после того как они взорвутся как сверхновые.

  Концепция нейтронных звёзд не нова: первое предположение о возможности их существования было сделано талантливыми астрономами Фрицем Цвикки и Вальтером

Баарде из Калифорнии в 1934 г. (несколько раньше в 1932 г. возможность существования нейтронных звёзд была предсказана известным советским учёным Л. Д. Ландау.) В

конце 30-х годов она стала предметом исследований других американских учёных Оппенгеймера и Волкова. Интерес этих физиков к данной проблеме был вызван стремлением

определить конечную стадию эволюции массивной сжимающейся звезды. Так как роль и значение сверхновых вскрылись примерно в то же время, было высказано

предположение, что нейтронная звезда может оказаться остатком взрыва сверхновой. К несчастью, с началом второй мировой войны внимание учёных переключилось на

военные нужды и детальное изучение этих новых и в высшей степени загадочных объектов было приостановлено. Затем, в 50-х годах, изучение нейтронных звёзд

возобновили чисто теоретически с целью установить, имеют ли они отношение к проблеме рождения химических элементов в центральных областях звёзд. Нейтронные

звёзды остаются единственным астрофизическим объектом, существование и свойства которых были предсказаны задолго до их открытия.

  В начале 60-х годов открытие космических источников рентгеновского излучения весьма обнадёжило тех, кто рассматривал нейтронные звёзды как возможные

источники небесного рентгеновского излучения. К концу 1967 г. был обнаружен новый класс небесных объектов - пульсары, что привело учёных в замешательство. Это

открытие явилось наиболее важным событием в изучении нейтронных звёзд, так как оно вновь подняло вопрос о происхождении космического рентгеновского излучения.

  Говоря о нейтронных звёздах, следует учитывать, что их физические характеристики установлены теоретически и весьма гипотетичны, так как физические условия,

существующие в этих телах, не могут быть воспроизведены в лабораторных экспериментах.

  Решающее значение на свойства нейтронных звёзд оказывают гравитационные силы. По различным оценкам, диаметры нейтронных звёзд составляют 10-200 км. И этот

незначительный по космическим понятиям объём «набит» таким количеством вещества, которое может составить небесное тело, подобное Солнцу, диаметром около 1,5 млн.

км, а по массе почти в треть миллиона раз тяжелее Земли! Естественное следствие такой концентрации вещества - невероятно высокая плотность нейтронной звезды.

Фактически она оказывается настолько плотной, что может быть даже твёрдой. Сила тяжести нейтронной звезды столь велика, что человек весил бы там около миллиона

тонн. Расчёты показывают, что нейтронные звёзды сильно намагничены. Согласно оценкам, магнитное поле нейтронной звезды может достигать 1млн. млн. гаусс, тогда как

на Земле оно составляет 1 гаусс. Радиус нейтронной звезды принимается порядка 15 км, а масса - около 0,6 - 0,7 массы Солнца. Наружный слой представляет собой

магнитосферу, состоящую из разрежённой электронной и ядерной плазмы, которая пронизана мощным магнитным полем звезды. Именно здесь зарождаются радиосигналы,

которые являются отличительным признаком пульсаров. Сверхбыстрые заряженные частицы, двигаясь по спиралям вдоль магнитных силовых линий, дают начало разного

рода излучениям. В одних случаях возникает излучение в радиодиапазоне электромагнитного спектра, в иных излучение на высоких частотах. Почти сразу же под

магнитосферой плотность вещества достигает 1 т/см3, что в 100 000 раз больше плотности железа.

  Следующий за наружным слой имеет характеристики металла. Этот слой «сверхтвёрдого» вещества, находящегося в кристаллической форме. Кристаллы состоят из ядер

атомов с атомной массой 26 39 и 58 - 133. Эти кристаллы чрезвычайно малы: чтобы покрыть расстояние в 1 см, нужно выстроить в одну линию около 10 млрд. кристалликов.

Плотность в этом слое более чем в 1 млн. раз выше, чем в наружном, или иначе, в 400 млрд. раз превышает плотность железа. Двигаясь дальше к центру звезды, мы пересекаем

третий слой. Он включает в себя область тяжёлых ядер типа кадмия, но также богат нейтронами и электронами. Плотность третьего слоя в 1 000 раз больше, чем предыдущего.

  Глубже проникая в нейтронную звезду, мы достигаем четвёртого слоя, плотность при этом возрастает незначительно примерно в пять раз. Тем не менее, при такой

плотности ядра уже не могут поддерживать свою физическую целостность: они распадаются на нейтроны, протоны и электроны. Большая часть вещества пребывает в виде

нейтронов. На каждый электрон и протон приходится по 8 нейтронов. Этот слой, по существу, можно рассматривать как нейтронную жидкость, «загрязнённую» электронами и

протонами.

  Ниже этого слоя находится ядро нейтронной звезды. Здесь плотность примерно в 1,5 раза больше, чем в вышележащем слое. И тем не менее, даже такое небольшое

увеличение плотности приводит к тому, что частицы в ядре движутся много быстрее, чем в любом другом слое. Кинетическая энергия движения нейтронов, смешанных с

небольшим количеством протонов и электронов, столь велика, что постоянно происходят неупругие столкновения частиц. В процессах столкновения рождаются все известные

в ядерной физике частицы и резонансы, которых насчитывается более тысячи. По всей вероятности, присутствует большое число ещё не известных нам частиц.

  Температуры нейтронных звёзд сравнительно высоки. Этого и следует ожидать, если учесть, как они возникают. За первые 10 100 тыс. лет существования звезды

температура ядра уменьшается до нескольких сотен миллионов градусов. Затем наступает новая фаза, когда температура ядра звезды медленно уменьшается вследствие

испускания электромагнитного излучения.

  ЧЁРНЫЕ ДЫРЫ

  Если масса звезды в два раза превышает солнечную, то к концу своей жизни звезда может взорваться как сверхновая, но если масса вещества оставшегося после взрыва,

всё ещё превосходит две солнечные, то звезда должна сжаться в крошечное плотное тело, так как гравитационные силы всецело подавляют всякое внутреннее сопротивление

сжатию. Учёные полагают, что именно в этот момент катастрофический гравитационный коллапс приводит к возникновению чёрной дыры. Они считают, что с окончанием

термоядерных реакций звезда уже не может находиться в устойчивом состоянии. Тогда для массивной звезды остаётся один неизбежный путь - путь всеобщего и полного

сжатия (коллапса) , превращающего её в невидимую чёрную дыру.

  В 1939 г. Р. Оппенгеймер и его аспирант Снайдер в Калифорнийском университете (Беркли) занимались выяснением окончательной судьбы большой массы холодного

вещества. Одним из наиболее впечатляющих следствий общей теории относительности Эйнштейна оказалось следующее: когда большая масса начинает коллапсировать, этот

процесс не может быть остановлен и масса сжимается в чёрную дыру. Если, например, невращающаяся симметричная звезда начинает сжиматься до критического размера,

известного как гравитационный радиус, или радиус Шварцшильда (назван так в честь Карла Шварцшильда, которой первым указал на его существование) . Если звезда

достигает этого радиуса, то уже не что не может воспрепятствовать ей завершить коллапс, то есть буквально замкнуться в себе. Чему же равен гравитационный радиус?

Строгое математическое уравнение показывает, что для тела с массой Солнца гравитационный радиус равен почти 3 км, тогда как для системы, включающей миллиард звёзд, -

галактики - этот радиус оказывается равным расстоянию от Солнца до орбиты планеты Уран, то есть составляет около 3 млрд. км.

  Каковы же физические свойства «чёрных дыр» и как учёные предполагают обнаружить эти объекты? Многие учёные раздумывали над этими вопросами; получены кое-

какие ответы, которые способны помочь в поисках таких объектов.

  Само название - чёрные дыры - говорит о том, что это класс объектов, которые нельзя увидеть. Их гравитационное поле настолько сильно, что если бы каким-то путём

удалось оказаться вблизи чёрной дыры и направить в сторону от её поверхности луч самого мощного прожектора, то увидеть этот прожектор было бы нельзя даже с

расстояния, не превышающего расстояние от Земли до Солнца. Действительно, даже если бы мы смогли сконцентрировать весь свет Солнца в этом мощном прожекторе, мы

не увидели бы его, так как свет не смог бы преодолеть воздействие на него гравитационного поля чёрной дыры и покинуть её поверхность. Именно поэтому такая поверхность

называется абсолютным горизонтом событий. Она представляет собой границу чёрной дыры.

  Учёные отмечают, что эти необычные объекты нелегко понять, оставаясь в рамках законов тяготения Ньютона. Вблизи поверхности чёрной дыры гравитация столь

сильна, что привычные ньютоновские законы перестают здесь действовать. Их следует заменить законами общей теории относительности Эйнштейна. Согласно одному из

трёх следствий теории Эйнштейна, покидая массивное тело, свет должен испытывать красное смещение, так как он должен испытывать красное смещение, так как он теряет

энергию на преодоление гравитационного поля звезды. Излучение, приходящее от плотной звезды, подобной белому карлику - спутнику Сириуса А, лишь слегка смещается в

красную область спектра. Чем плотнее звезда, тем больше это смещение, так что от сверхплотной звезды совсем не будет приходить излучения в видимой области спектра. Но

если гравитационное действие звезды увеличивается в результате её сжатия, то силы тяготения оказываются настолько велики, что свет вообще не может покинуть звезду.

Таким образом, для любого наблюдателя возможность увидеть чёрную дыру полностью исключена! Но тогда естественно возникает вопрос: если она невидима, то как же мы

можем её обнаружить? Чтобы ответить на этот вопрос, учёные прибегают к искусным уловкам. Руффини и Уиллер досконально изучили эту проблему и предложили несколько

способов пусть не увидеть, но хотя бы обнаружить чёрную дыру. Начнём с того, что, когда чёрная дыра рождается в процессе гравитационного коллапса, она должна излучать

гравитационные волны, которые могли бы пересекать пространство со скоростью света и на короткое время искажать геометрию пространства вблизи Земли. Это искажение

проявилось бы в виде гравитационных волн, действующих одновременно на одинаковые инструменты, установленные на земной поверхности на значительных расстояниях

друг от друга. Гравитационное излучение могло бы приходить от звёзд, испытывающих гравитационный коллапс. Если в течение обычной жизни звезда вращалась, то,

сжимаясь и становясь всё меньше и меньше, она будет вращаться всё быстрее сохраняя свой момент количества движения. Наконец она может достигнуть такой стадии, когда

скорость движения на её экваторе приблизится к скорости света, то есть к предельно возможной скорости. В этом случае звезда оказалась бы сильно деформированной и могла

бы выбросить часть вещества. При такой деформации энергия могла бы уходить от звезды в виде гравитационных волн с частотой порядка тысячи колебаний в секунду (1000

Гц) .

  Дж. Вебер установил ловушки гравитационных волн в Аргоннской национальной лаборатории вблизи Чикаго и в Мэрилендском университете. Они состояли из

массивных алюминиевых цилиндров, которые должны были колебаться, когда гравитационные волны достигнут Земли. Используемые Вебером детекторы гравитационного

излучения реагируют на высокие (1660 Гц) , так и на очень низкие (1 колебание в час) частоты. Для детектирования последней частоты используется чувствительный

гравиметр, а детектором является сама Земля. Собственная частота квадрупольных колебаний Земли равна одному колебанию за 54 мин.

  Все эти устройства должны были срабатывать одновременно в момент, когда гравитационные волны достигнут Земли. Действительно они срабатывали одновременно.

Но к сожалению, ловушки включались слишком часто - примерно раз в месяц, что выглядело весьма странно. Некоторые учёные считают, что хотя опыты Вебера и полученные

им результаты интересны, но они недостаточно надёжны. По этой причине многие относятся весьма скептически к идее детектирования гравитационных волн (эксперименты

по детектированию гравитационных волн, аналогичные опытам Вебера, позднее были проверены в ряде других лабораторий и не подтвердили результатов Вебера. В

настоящее время считается, что опыты Вебера ошибочны) .

  Роджер Пенроуз, профессор математики Биркбекского колледжа Лондонского университета, рассмотрел любопытный случай коллапса и образования чёрной дыры. Он

также допускает, что чёрная дыра исчезает, а затем проявляется в другое время в какой-то иной вселенной. Кроме того, он утверждает, что рождение чёрной дыры во время

гравитационного коллапса является важным указанием на то, что с геометрией пространства-времени происходит нечто необычное. Исследования Пенроуза показывают, что

коллапс заканчивается образованием сингулярности, то есть он должен продолжаться до нулевых размеров и бесконечной плотности объекта. Последнее условие даёт

возможность другой вселенной приблизиться к нашей сингулярности, и не исключено, что сингулярность перейдёт в эту новую вселенную. Она даже может появиться в

каком-либо другом месте нашей собственной Вселенной.

  Некоторые учёные рассматривают образование чёрной дыры как маленькую модель того, что, согласно предсказаниям общей теории относительности, в конечном счёте

может случиться со Вселенной. Общепризнано, что мы живём в неизменно расширяющейся Вселенной, и один из наиболее важных и насущных вопросов науки касается

природы Вселенной, её прошлого и будущего. Без сомнения, все современные результаты наблюдений указывают на расширение Вселенной. однако на сегодня один из самых

каверзных вопросов таков: замедляется ли скорость этого расширения, и если да, то не сожмётся ли Вселенная через десятки миллиардов лет, образуя сингулярность. По-

видимому, когда-нибудь мы сможем выяснить, по какому пути следует Вселенная, но, быть может, много раньше, изучая информацию, которая просачивается при рождении

чёрных дыр, и те физические законы, которые управляют их судьбой, мы сможем предсказать окончательную судьбу Вселенной.

  Почти всю свою жизнь звезда сохраняет температуру и размер практически постоянными. Значение главной последовательности заключается в том, что большинство

обычных звёзд оказываются нормальными, то есть лишёнными каких-либо особенностей. Мы вправе ожидать, что эти звёзды подчиняются определённым зависимостям,

подобным, например, упомянутой главной последовательности. Большинство звёзд оказываются на этой наклонной линии главной последовательности, потому, что звезда

может прийти на эту линию всего лишь за несколько сотен тысяч лет, а покинув её, прожить ещё несколько сотен миллионов лет, большинство звёзд заведомо остаётся на

главной последовательности в течение миллиардов лет. Рождение и смерть ничтожно малые мгновенья в жизни звезды. Наше Солнце, являющееся обычной звездой,

находится на этой последовательности уже в течение 5-6 млрд. лет и, по-видимому, проведёт на ней ещё столько же времени, так как звёзды с такой массой и таким

химическим составом, как у Солнца, живут 10-12 млрд. лет. Звёзды много меньшей массы находятся на главной последовательности примерно 50 млрд. лет. Если же масса

звезды в 30 раз превосходит солнечную, то время её пребывания на главной последовательности составит всего около 1 млн. лет.

  Вернёмся к рассмотрению процессов, происходящих при рождении звезды: она продолжает сжиматься, сжатие сопровождается возрастанием температуры. Температура

ползёт вверх, и вот огромный газовый шар начинает светиться, его уже можно наблюдать на фоне тёмного ночного неба как тусклый красноватый диск. Значительная доля

энергии его излучения по-прежнему приходится на инфракрасную область спектра. Но это ещё не звезда. По мере того как вещество протозвезды уплотняется, оно всё быстрее

падает к центру, разогревая ядро звезды до всё более высоких температур. Наконец температура достигает 10 млн. К, и тогда начинают протекать термоядерные реакции -

источник энергии всех звёзд во Вселенной. Как только термоядерные процессы включаются в действие, космическое тело превращается в полноценную звезду.

  Сжимаясь, пыль и газ образуют протозвезду ; её вещество представляет собой типичный образец вещества окружающей нас части космического пространства. Говоря об

образце вещества Вселенной, мы подразумеваем, что этот кусочек межзвёзной среды на 89% состоит из водорода, на 10%-из гелия; такие элементы, как кислород, азот, углерод,

неон и т.п. составляют в нём менее 1%, а все металлы, вместе взятые, - не более 0,25%. Таким образом, звезда в основном состоит из тех элементов, которые чаще всего

встречаются во Вселенной. И поскольку богаче всего во Вселенной представлен водород, то, конечно, любые термоядерные реакции должны протекать с его участием.

  Кое-где встречаются уголки космического пространства с повышенным содержанием тяжёлых элементов, но это лишь местные аномалии - остатки давних звёздных

взрывов, разбросавших и рассеявших в окрестности тяжёлые элементы. Мы не будем останавливаться на таких аномальных областях с повышенной концентрацией тяжёлых

элементов, а сосредоточим внимание на звёздах, состоящих в основном из водорода.

  Когда температура в центре протозвезды достигает 10 млн. К, начинаются сложные (но детально изученные) термоядерные реакции, в ходе которых из ядер водорода

(протонов) образуются ядра гелия; каждые четыре протона, объединяясь, создают атом гелия. Сначала, когда соединяются друг с другом два протона, возникает атом тяжёлого

водорода, или дейтерия. Затем последний сталкивается с третьим протоном, и в результате реакции рождается лёгкий изотоп гелия, содержащий два протона и один нейтрон.

  В сумятице, которая царит в ядре звезды, быстро движущиеся атомы лёгкого гелия иногда сталкиваются друг с другом, в результате чего появляется атом обычного

гелия, состоящий из двух протонов и двух нейтронов. Два лишних протона возвращаются обратно в горячую смесь, чтобы когда-нибудь опять вступить в реакцию,

порождающую гелий. В этом процессе около 0,7% массы превращается в энергию. Описанная цепочка реакций - один из важных термоядерных циклов, протекающих в ядрах

звёзд при температуре около 10 млн. К. Некоторые астрономы считают, что при более низких температурах могут протекать другие реакции, в которых участвуют литий,

бериллий и бор. Но они тут же делают оговорку, что если такие реакции и имеют место, то их относительный вклад в генерацию энергии незначителен.

  Когда температура в недрах звезды снова увеличивается, в действие вступает ещё одна важная реакция, в которой в качестве катализатора участвует углерод. Начавшись

с водорода и углерода-12, такая реакция приводит к образованию азота-13, который спонтанно распадается на углерод-13 - изотоп углерода, более тяжёлый, чем тот, с которого

реакция начиналась. Углерод-13 захватывает ещё один протон, превращаясь в азот-14. Последний подобным же путём становится кислородом-15. Этот элемент также

неустойчив и в результате спонтанного распада превращается в азот-15. И наконец азот-15, присоединив к себе четвёртый протон, распадается на углерод-12 и гелий.

  Таким образом, побочным продуктом этих термоядерных реакций является углерод-12, который может вновь положить начало реакциям данного типа. Объединение

четырёх протонов приводит к образованию одного атома гелия, а разница в массе четырёх протонов и одного атома гелия, составляющая около 0,7% от первоначальной массы,

проявляется в виде энергии излучения звезды. На Солнце каждую секунду 564 млн. т водорода превращается в 560 млн. т гелия, а разница 4 млн. т вещества - превращается в

энергию и излучается в пространство. Важно, что механизм генерации энергии в звезде зависит от температуры.

  Именно температура ядра звезды определяет скорость процессов. Астрономы считают, что при температуре около 13 млн. К углеродный цикл относительно

несущественен. Следовательно, при такой температуре преобладает протон-протонный цикл. При увеличении температуры до 16 млн. К, вероятно, оба цикла дают равный

вклад в процесс генерации энергии. Когда же температура ядра поднимается выше 20 млн. К, преобладающим становится углеродный цикл.

  Как только энергия звезды начинает обеспечиваться за счёт ядерных реакций, гравитационное сжатие, с которого начался весь процесс, прекращается. Теперь

самоподдерживающаяся реакция может продолжаться в течение времени, длительность которого зависит от начальной массы звезды и составляет примерно от 1 млн. лет до

100 млрд. лет и больше. Именно в этот период звезда достигает главной последовательности и начинает свою долгую жизнь, протекающую почти без изменений. Целую

вечность проводит звезда в этой стадии. Ничего особенного с ней не происходит, она не привлекает к себе пристального внимания. Теперь это всего-навсего полноценный

член звёздной колонии, затерянный среди множества собратьев.

  Однако процессы, протекающие в ядре звезды, несут в себе зародыши её грядущего разрушения. Когда дерево или уголь сгорают в камине, выделяется тепло, а в

качестве продуктов отхода образуются дым и зола. В "камине" звёздного ядра водород - это уголь, а гелий - зола. Если из камина время от времени не удалять золу, то она может

забить его и огонь потухнет.

  Если в ядре звезды вещество не перемешивается, в термоядерных реакциях начинают принимать участие слои, непосредственно примыкающие к гелиевому ядру, что

обеспечивает звезду энергией. Однако со временем запасы водорода в этих слоях иссякают, и ядро разрастается всё больше и больше. Наконец достигается состояние, когда в

ядре совсем не остаётся водорода. Обычные реакции превращения водорода в гелий прекращаются ; звезда покидает главную последовательность и вступает в сравнительно

короткий (но интересный) отрезок своего жизненного пути, отмеченный необычайно бурными реакциями.

  Когда водорода становится мало и он больше не может участвовать в реакциях, источник энергии иссякает. Но, как мы уже знаем, звезда представляет собой тонко

сбалансированный механизм, в котором давление, раздувающее звезду изнутри, полностью уравновешено гравитационным притяжением. Следовательно, когда генерация

энергии ослабевает, давление излучения резко падает, и силы тяготения начинают сжимать звезду. Снова происходит падение вещества к её центру, во многом напоминающее

то, с которого началось рождение протозвезды. Энергия, возникающая при гравитационном сжатии, намного больше энергии, выделяемой теперь в ядерных реакциях, а раз

так, то звезда начинает быстро сжиматься. В результате верхние слои звезды нагреваются, она снова расширяется и растёт в размерах до тех пор, пока внешние слои не станут

достаточно разреженными, лучше пропускающими излучение звезды. Полагают, что звезда типа Солнца может увеличиться настолько, что заполнит орбиту Меркурия. После

того как звезда начинает расширяться, она покидает главную последовательность и, как мы уже видели, дни её теперь сочтены. С этого момента жизнь звезды начинает

клониться к закату.

  Когда звезда сжимается, за счёт работы сил тяготения выделяется огромная энергия, которая раздувает звезду. Казалось бы, это должно привести к падению

температуры в ядре. Но это не так. Против ожидания температура в ядре звезды резко возрастает. В относительно тонком слое вокруг ядра всё ещё происходит обычное

ядерное выгорание водорода, что приводит к увеличению содержания гелия в ядре. Когда в ядре концентрируется около половины массы звезды, последняя расширяется до

своего максимального размера и её цвет из белого становится жёлтым, а затем красным, так как температура поверхности звезды уменьшается. Теперь звезда вступает в новую

фазу. Температура ядра растёт до тех пор, пока не превысит 200 млн. К. При такой температуре начинает выгорать гелий, в результате чего образуется углерод. Три ядра гелия,

сливаясь, превращаются в ядро углерода, который оказывается более лёгким, чем три исходных ядра гелия, поэтому такая реакция также идёт с выделением энергии. Снова

давление радиации, которое играло столь важную роль, когда звезда находилась на главной последовательности, начинает противодействовать тяготению, и ядро звезды опять

удерживается от дальнейшего сжатия. Звезда возвращается к обычным размерам ; по мере того как это происходит, температура её поверхности растёт и она из красной

становится белой.

  В этот момент по некоторым загадочным причинам звезда оказывается неустойчивой. Астрономы полагают, что переменные звёзды, то есть звёзды, периодически

меняющие свою светимость, возникают на этой стадии звёздной эволюции, так как процесс сжатия происходит не гладко и на некоторых его этапах возникают ритмические

колебания звезды. На этой стадии звезда может пройти через фазу новой, в течение которой она внезапно выбрасывает в межзвёздное пространство значительное количество

вещества ; оно, принимая вид расширяющейся оболочки, может содержать значительную часть массы звезды. Вспышки некоторых новых многократно повторяются, и это

означает, что одной вспышки недостаточно, чтобы звезда достигла устойчивости. Но со временем она приобретает устойчивость, колебания исчезают, звезда начинает свой

длинный путь к звёздному кладбищу. Даже на этой стадии звезда ещё способна к активности. Она может стать сверхновой. Причина, по которой звезда оказывается способной

на такую активность, обусловлена количеством вещества, оставшимся у неё к этой стадии.

  Когда мы обсуждали процессы, протекающие в недрах звезды, мы говорили, что основным продуктом ядерных реакций является гелий. По мере того как

перерабатывается всё больше и больше водорода, растёт гелиевое ядро звезды. Водород исчезает, следовательно, энерговыделение за счёт этого источника также прекращается.

Но при температуре около 200 млн. К открывается ещё один путь, следуя которому гелий порождает более тяжёлые элементы, и в этом процессе выделяется энергия. Два атома

гелия соединяются, образуя атом бериллия, который обычно вновь распадается на атомы гелия. Однако температуры и скорости реакций столь высоки, что, прежде чем

происходит распад бериллия, к нему присоединяется третий атом гелия и образуется атом углерода.

  Но процесс не останавливается, так как теперь атомы гелия, бомбардируя углерод, порождают кислород, бомбардируя кислород, дают неон, а бомбардируя неон,

производят магний. На этой стадии температура ядра ещё слишком низка для образования более тяжёлых элементов. Ядро опять сжимается, и так продолжается до тех пор,

пока температура не достигнет величины порядка миллиарда градусов и не начнётся синтез более тяжёлых элементов. Если в результате дальнейшего сжатия ядра температура поднимается до 3 млрд. К, тяжёлые ядра взаимодействуют друг с другом до тех пор, пока не образуется железо. Процесс останавливается. Если атомы гелия будут бомбардировать ядра железа, то вместо образования более тяжёлых элементов произойдёт распад ядер железа.

  На этой стадии жизни звезды её ядро состоит из железа, окружённого слоями ядер более лёгких элементов вплоть до гелия, а наружный тонкий слой образован водородом, который ещё обеспечивает некоторое количество энергии. Наконец наступает время, когда водород оказывается полностью израсходованным и этот источник энергии иссякает. Перестают также действовать и другие механизмы генерации энергии ; звезда лишается всяких средств для воспроизводства своих энергетических запасов. Это означает, что она должна умереть. Теперь, исчерпав запасы ядерной энергии, звезда может только сжиматься и использовать гравитационную энергию, чтобы поддержать своё свечение. Звезда будет сжиматься и ярко светиться. Когда же и эта энергия иссякнет, звезда начинает изменять свой цвет от белого к жёлтому, затем к красному ; наконец она перестаёт излучать и начинает непрерывное путешествие в необозримом космическом пространстве в виде маленького тёмного безжизненного объекта. Но на пути к угасанию обычная звезда проходит стадию белого карлика.

   




1. Цели технического обследования заключается в определении действительного технического состояния
2. Организация социальной защиты пенсионеров в городе Москве
3. 2 2013 г
4. Становление системного мышления в первой половине ХХ века
5. ИНСТИТУТ РАЗВИТИЯ ОБРАЗОВАНИЯ САХАЛИНСКОЙ ОБЛАСТИ Кафедра дошкольного образования.html
6. Форма и содержание теоретический очерк
7.  Общество Общественные науки- экономика философия социология политология этика о морали эстетика
8. тема залогвозврат как экономический механизм природопользования 7 Расчетная часть Задание 18 Задани
9. Цветовой тест отношенийпредставляет собой невербальный компактный диагностический прием отражающий как
10. Автоматизация процесса подготовки шихты
11. лекция 338-5 История лекция Зайцева Елена Алексеевна 338-5 Подгруппа 1 Испанский язык Сал
12. Методика преподавания имени существительного
13. Завдання на проект Вступ Відомості креслень основного комплекту Архітектурно ' будівельна час
14. птичьем рынке как хомяк какойто1
15. Будапешт
16. УТВЕРЖДЕНО УТВЕРЖДЕНО Директор Директор СБ Искра магазинов ТОЧКА С
17. Стихийные бедствия
18. практикум по дисциплине Механика Направление подготовки бакалавров 260100 Продукты питания из раст
19. Тема- Вирусы ' неклеточные формы жизни
20. Лекция 4 Методология и методика экономического анализа деятельности предприятия