У вас вопросы?
У нас ответы:) SamZan.net

Моделирование. Шпаргалка.html

Работа добавлена на сайт samzan.net: 2016-01-17

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 18.5.2025

1. Цель, суть и сферы применения моделирования.

Существует внешняя среда, которая представлена исследователю в виде объекта-оригинала или процесса (явления). Также сущ. информационная система – наблюдатель. Предполагается, что есть более сложная система, сост. из внешней среды и информационной системы.

Внеш. среда представлена нек. свойствами, не отн. к инф. системе, но она оказывает действие на инф. систему. С другой стороны, инф. система (наблюдатель) оказывает влияние на внеш. среду с пом. исполнительных устройств. Т.о. внеш. среда и инф. система взаимодействуют.

Свойства объекта-оригинала не представлены непосредственно на входе инф. системы Опосредованные характеристики оригинальных св-в объекта, которые имеются на входе инф. системы, формируются инф. системой в виде образа объекта – этот образ является моделью оригинала. Т.о. инф. система (субъект) формирует или создает для себя модель, которая ~ аналогична объекту-оригиналу. При этом предпол., что реальный объект труднодоступен для наблюдателя. Если удалось установить аналогию между моделью и оригиналом, то исследование объекта заменяется исследованием модели.

Сферы применения: В настоящее время моделир-е на сознательном уровне используется почти во всех сферах человеческой деятельности: медицине, биологии и т.д.

В последние десятилетия широко применяется цифровое/компьютерное мат. моделир-е. Но кроме мат. моделир-я, широко используются др. виды.

Сфер применения много, но основных направлений 2:

  1.  научные исследования;

проектирование систем. 3. Суть и роль общепринятых методологических подходов в познавательной деятельности и моделировании.

 

Во все времена существования человечества в качестве инструмента познавательной деятельности использовались методологические подходы (стереотипы мышления), в т.ч. в научной деят-ти. Роль этих подходов двояка.

С одной стороны, стереотипы мышления создают алгоритмы деят-ти, которые при последующих применениях уже не требуют творческих усилий.

С пом. систем образования эти стереотипы тиражируются, что экономит время. Однако недостатком установившихся методологических подходов (догматов) явл. невозможность взглянуть по-новому на прежние объекты и полная невозможность вкл. в поле зрения новые объекты => стереотипное мышление явл. тормозом в познавательной деятельности.

Различают следующие методологические подходы: классический и системный.

Их суть и роль удобно выявлять в сравнении их познавательных установок.

В основе классического подхода заложена мат. традиция, которая явно выражена в теории множеств => это теоретико-множественный подход. В основе этого подхода лежит то, что сложное можно описать с помощью простого.

Системный подход более новый, чем классический: в качестве основы он представляет наблюдение сложного объекта в целом. 7. Классич. и системн. подходы в сравнении их познавательных установок

Классический (а) Системный (б)

1 Первичность элементов Первичность целого

2 Очевидность элементов Неочевидность элементов наблюдаемого объекта

3 Принцип неразборчивости Принцип естественной системы

4 Принцип внешней организации Принцип внутренней организации

5 Принцип вероятностей Принцип ранговых распределений

1.а) При описании сложного объекта, полагается, что в его основе заложены некие простые эл-ты, в этом смысле эл-ты первичны (т.е. сист. не сущ. без этих эл-тов). Пр.: студ-ты группы; б) За первичную основу берется сам наблюдаемый объект. На первом этапе компоненты объекта не ясны (пр.: живой орг., музыка).

2.а) Эл-ты объекта очевидны и их не требуется выделять; б) Нужно использовать спец. процедуры для выявления компонентов объекта (пр. неграмотному нужно изучить язык, чтобы понять текст).

3.а) Предполагается, что в состав исследуемого объекта, могут быть введены произвольные эл-ты. Сложные объекты могут быть сконструированы искусственно. (пр. задачник включает все задачи вперемешку); б) Предполагается, что компоненты в целом волей наблюдателя не могут составлять сложную систему. Их набор не случаен и они представляют естественную компоновку (пр. организм – внутренние органы, электросхема).

4. а) Некая внеш. система организуется в целое другой внеш. системой/ организацией (пр. командир-> подразделение). В качестве внеш. системы может выступать внеш. среда или случай (пр. естеств. отбор) б) Главное – внутр. организация системы, которая в малой степени определяется внеш. факторами (пр. ДНК в основе развит. орган.).

5.а) Наблюдаемый объект представлен как генератор случайных событий, т.е. организация объекта случайна; б) Ранговые статистические распределения - упорядочивание по частоте вхождения (кроме равномерного распред-я), зависит от расположения объектов. Для любого целостно завершенного текста/картин.

2. Определения модели и моделирования; этапы моделирования.

Модель — естественно существующие или искусственно созданные объект, явление, процесс, ситуация, которые ~ аналогичны труднодоступному или вообще недоступному для прямого исследования явлению, процессу… .

В качестве модели может выступать лишь доступный исследователю объект.

Моделирование — процесс опосредованного опознания труднодоступного объекта-оригинала с помощью модели.

Если удалось установить аналогию между моделью и оригиналом, то исследование объекта заменяется исследованием модели.

2 этапа моделир-я:

  1.  построение модели, адекватной оригиналу (этот этап самый важный и трудный);
  2.  исследование объекта-оригинала с помощью модели (используем модель, чтобы познать труднодоступный объект). Исследование возможно, если ранее удалось построить адекватную модель.

На практике бывает полезно знать не просто описание объекта с пом. модели, но и то, как поведет себя объект в разных ситуациях. В этом смысле полезно исследование модели.

 6. Понятие системы и внешней среды; структурный и функциональный подходы в моделировании; иерархия уровней моделирования; "внутренние" и "внешние" системы.

Под системой понимают множество физ. компонентов (в т.ч. разных), которые составляют некоторую пространственно-временную организацию.

Для этих систем характерно наличие разнородных компонентов, которые дополняют друг друга.

Внешняя система — совокупность реально или потенциально существующих объектов, обычно одинаковой физической природы и с одинаковыми функциями. Такие совокупности называют классами.

Обычно компонентами внешней системы являются внутренние системы.

В зависимости от цели иссл-я, при системном подходе возможно использование 2 разных подходов: структурный и функциональный.

1) Структурный – предполагает рассмотрение системы как мн-во отдельных компонентов и связей между ними. При этом в зависимости от цели исследования можно рассм. разные структуры на разных уровнях иерархической организации. Пр.: в выч. технике возможны разные уровни детализации:

  •  сетевой;
  •  системный;
  •  функциональный;
  •  цифровых устройств;
  •  логических эл-тов;
  •  физический уровень.

2) Функциональный — рассматривает отдельные компоненты и их организацию в более сложную систему с т. зр. только выполняемой функции. Этот подход характерен для ТАУ при исследовании и описании динамических систем. 4. Отношение "моделирования" в классическом и системном подходах; основания для перехода к моделированию на основе системного подхода. 

Описать отн-е моделирования = описать отн-е между 3 компонентами: наблюдатель, объект, модель.

В классическом подходе предполагается, что:

1) роль наблюдателя min;

2) объект и модель имеют одну природу, т.е. явл. мн-вами;

3) отношение или соотв-е между моделью и объектом взаимно однозначное (объекту соотв. только одна модель);

4) модель не влияет на поведение реального объекта (наблюдение пассивно).

В системном подходе предполагается:

1) обязательный учет наблюдателя;

2) объект есть нечто большее по св-вам, чем модель (объект – реальное, модель – мысленное, или идеальное образование).

3) отношение между объектом и моделью не взаимно однозначное (объекту может соответствовать несколько моделей);

4) модель через наблюдателя и сам наблюдатель влияют на объект.

В физике субсвет. скоростей и микромира оказалось, что влияние наблюдателя существенно. В др. отраслях науки это влияние давно известно. => необходим переход от моделирования на основе классич. подхода к системному. Для этого:

  1.  следует учитывать разную природу объекта и модели;
  2.  нужно учитывать влияние наблюдателя на процесс моделирования.

Результат моделир-я (модель) определяется 3 факторами, которые представляют наблюдателя: его цель, позиция и концепция (первоначальное представление об объекте до начала наблюдения).

Наблюдатель преобразует инф-ю об объекте в первомодели. Наличие мн-ва первомоделей позволяет устанавливать между ними и окончательной моделью неоднозначное соотв-е.

8. Способы классификации моделей и моделирования.

Различают разные способы классификации моделей:

  1.  По степени идеализации: физические (имеют такую же природу, как объекты; должны соблюдаться пространственно-временные соотношения процессов); физ.-мат. (материальная природа обычно отличается от объекта, но должно быть соответствие мат. описание конструкции)=>дешевые, компактные и легко управляемые; чисто мат. (логико-мат.) модели (строятся в виде ур-ний, неравенств, лог. условий)=>наиболее эфф-ны, если возможно мат. описание.
  2.  По форме представления: мысленные и реальные, которые в свою очередь имеют подклассы - см. вопрос №8)
  3.  По полноте описания: полные (отражают все ф-ции объекта и адекватно), неполные (отображают некоторые ф-ции объекта неадекватно) и приближенные (не все ф-ции и не все адекватно).
  4.  По характеру изучаемых процессов: статические и динамические (это модели таких систем, у кот. парам-ры во времени не изменяются/изменяются); вероятностные и детерминированные (это модели таких систем, поведение которых (не определено)/(однозначно определено) по параметру или/и внешнему (входному-выходному) воздействию) и непрерывные, дискретные и дискретно-непрерывные (некоторые процессы характеризуются некоторыми мн-вами хар-к, которые представлены соответствующими величинами, состояниями или процессами).
  5.  По способу представления переменных в модели: аналоговые (АВМ - хар-ки возмущения представлены непрерывными величинами), цифровые (ЦВМ - переменные представлены дискретными величинами) и аналого-цифровые.

Виды моделей: аналитические (obj представл. в виде ур-ний), имитационные (исп. моделирующий алгоритм для сложных объектов), комбинированные (комбинация рассм. выше видов) и кибернетические (“чёрн. ящик”) 11. Классификация моделей и моделирования по форме представления объекта.

Различают 2 класса: мысленные (основной класс моделей, используемых при моделировании) и реальные (сам исследуемый объект или его точная копия в масштабе).

Идеальные модели объектов строятся на основе з-нов подобия, для выполнения которых необходимо соблюдение соответствия хотя бы некоторых основных св-в, параметров, структур для объекта. Набор основных характеристик объекта и степень соответствия модели выясняется в процессе моделирования на основе опыта и интуиции исследователя - это творческий процесс.

Мысленные модели делятся на:

  1.  Наглядные (наглядный образ реального объекта). 3 вида: гипотетические (строятся, когда нет мат. описания, нет наглядных образов, но есть некоторая гипотеза о структуре данного объекта, пр.: модель атома H), аналоговые (достаточно точное наглядное отображение), и макеты (отображают пространственные хар-ки объекта).
  2.  Символические. 3 вида: естественно-языковые; построенные на основе формальных или искусственных языков (на основе тезауруса); знаковые. Также может быть их комбинация.
  3.  Математические. Конструируются из знаков, записанных поочередно в форме мат. высказываний. Обеспечивают наиболее полное соответствие, легко управляемые и дешёвые в использовании.

Реальные модели делятся на: 

  1.  Натурные. Обычно представляют реальный объект в натуральном масштабе времени.

Физические. Позволяют исследовать в реальном и измененном масштабе времени. 9. Символические модели; их возможности.

Эти модели являются более продвинутыми в плане формализации по сравнению с наглядными моделями.

Символические модели делятся на:

  1.  Естественно-языковые: на начальных этапах исследований используются обычные записи св-в, процессов и ситуаций, которые отображают реальный объект в виде текста. Недостатком явл. недостаточный формализм описания (т.е. неоднозначное отображение понятий).
  2.  Построенные на основе искусственных или формальных языков (тезауруса). Искусственный язык - язык с точными определенными понятиями. Тезаурус – это словарь однозначных понятий.
  3.  Знаковые. Конструируются как высказывания, построенные с помощью знаков, иероглифов, символов. В таких моделях между знаками устанавливаются определенные отношения, которые позволяют конструировать допустимые высказывания. Нарушение этих правил заведомо приводит к созданию неадекватных реальному объекту моделей. Знаковые модели позволяют более точно фиксировать выявленные на ранних этапах ошибки, чем это позволяют языковые. Такие модели могут быть предпоследним этапом в процессе моделирования перед мат. моделями, но иногда на этом этапе удается завершить процесс моделирования.

На практике применяются комбинированные модели, например знаково-языковые.

10. Реальные модели; их возможности.

Реальные модели применяются для исследования объектов в 3 случаях:

  •  В нормальных режимах работы
  •  В приграничных (экстремальных) условиях
  •  В нестандартных (нештатных)

Реальные модели делятся на:

  1.  Натурные. Обычно представляют реальный объект в натуральном масштабе времени. Это сам исследуемый объект или его точная копия. Натурное моделир-е осуществляется на экспериментальных образцах разработанных объектов. Иногда системы разрабатываются в малых количествах или в единственном экземпляре, здесь необходимы все виды моделирования. Однако при запуске таких систем на этапе отладки применяются только натурные модели.

Виды натурных моделей:

  •  производственный эксперимент (отладка отдельных частей);
    •  комплексное испытание (для системы в целом, для выяснения взаимодействия различных частей)
    •  научный эксперимент (цель – открытие явлений природы)
    •  исследование путем обобщения опыта.

Физические. Позволяют исследовать в реальном и измененном масштабе времени. 13. Наглядные модели; их возможности.

Наглядные модели характеризуются тем, что позволяют получить наглядные образы реального объекта. Эти модели могут использоваться совместно с другими моделями, когда нужно иметь наглядный образ.

Наглядные модели делятся на 3 вида:

  1.  Гипотетические. Строятся, когда нет мат. описания, нет наглядных образов, но есть некоторая гипотеза о структуре данного объекта. Модель атома H.
  2.  Аналоговые. Иногда наглядные гипотезы оказываются удачными и позволяют строить мат. модель. Даже получается построить достаточно точное наглядное отображение реального объекта. (пр. белки, ДНК)
  3.  Макеты. На практике полезно использовать модели, которые способны отображать пространственные хар-ки объекта. Физ. природа макета отличается от природы реального объекта (пр. широко используется в архитектуре).

 14. Имитационное моделирование и его возможности.

Для исследования сложных объектов используется имитационное моделирование, когда вместо ур-ний используется моделирующий алгоритм. При этом обычно нек. перечень факторов имеет случайную природу. Поэтому имитационные модели очень часто явл. статистическими. Пр.: л/р по помехоустойчивому кодированию.

При моделировании сложных объектов не удается построить аналитическую модель, однако исследователю удается моделируемый процесс разбить на элементарные процессы в пространстве и времени, которые связаны между собой и достаточно точно отображают реальные хар-ки объекта.

Совокупность связей между элементарными процессами, отображающими реальный процесс, представляется с помощью моделирующего алгоритма, или имитационной модели.

С помощью имит. моделей можно получить мн-во частных решений, что позволяет понять поведение объекта в целом, что присуще аналитическому моделированию, т.е. при большом числе испытаний имитационная модель приближается к аналитической модели.

15. Кибернетические модели; их возможности.

Зачастую при исследовании объекта и проектировании системы не требуется познание внутренней структуры и ф-ций объекта, либо это в принципе невозможно. Бывает достаточным получить приближенное описание наблюдаемого объекта, в разных, по мнению исследователя, ситуациях.

В таких случаях допускается произвольная структура и ф-ции модели. Обычно это некоторые моделирующие алгоритмы, которые обеспечивают правдоподобное поведение модели. Степень правдоподобности поведения модели определяется исследователем по известному поведению реального объекта. Если поведение модели совпадает с поведение объекта, то делается допущение о том, что искусственная структура обеспечивает похожие поведение модели в др. ситуациях.

Внутр. структура и ф-ции в кибернетической модели наз. “чёрным ящиком”. При киберн. моделировании неважно, что в “чёрном ящике”.

Требования к “чёрному ящику”: Если в диалоге «человек–машина» часто удается получать правдоподобные ответы и машина формирует правдоподобные предложения, то наблюдаемая система признается мыслящей. 14. Математическое моделирование.

Наиболее формальным явл. мат. моделирование, в кот. модели конструируются из знаков, записанных поочередно в форме мат. высказывания (уравнение, неравенство, лог. условие). Между знаками устанавливается очень точное отношение алгебраических операций. Сами знаки представляют переменные и величины, которые характеризуют определенные св-ва объекта, а операции отношения фиксируют точные связи между компонентами модели.

Мат. моделирование наиболее удобно в инженерной работе и НИР, т.к. оно обеспечивает:

  •  наиболее полное соответствие;
  •  легкую управляемость;
  •  дешёвые (только в использовании) модели. Высокие затраты на построение.

Это моделирование более эффективно, если возможно мат. описание процессов и когда это описание простое.




1. Введение Преобразование энергии по напряжению происходит на трансформаторных подстанция
2. составная часть любой управленческой функции
3. Франчайзи обязуется продавать этот продукт или услуги по заранее определенным законам и правилам ведения б
4. Теплотехника Уровень ООП бакалавр Что такое рабочее тело Почему в качестве рабочих тел приняты в тер
5. О. Богомольця Затвердженоrdquo; на методичній нараді кафедри фізичної реабілі
6. Ешь с хлебом А хлеб ведь невкусный
7. 1 Складання проекту бюджету- розробка проекту Основних напрямів
8. тема- Учетная политика организации принципы ее формирования и раскрытия выполнила студ
9. разделения властей условность данной формулы очевидна исходит из следующих принципиальных позиций
10. реакцию тревоги проявляющуюся в срочной мобилизации защитных сил и ресурсов организма;2 фазу сопротивлен