Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

тематических ожиданиях

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«МАТИ» - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ имени  К.Э. ЦИОЛКОВСКОГО

Кафедра «Моделирование систем и информационные технологии»

ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ.

Гипотезы о средних (о математических ожиданиях).

Сравнение двух средних.

Методические указания к практическим занятиям

по дисциплине «Математическая статистика»

 

                                                                             Составители:  Егорова Ю.Б.

              Мамонов И.М.

МОСКВА 2009

Проверка статистических гипотез. Гипотезы о средних (о математических ожиданиях). Сравнение двух средних: Методические указания к практическим занятиям по дисциплине «Математическая статистика»/ Ю.Б. Егорова, И.М. Мамонов. М.: МАТИ, 2009. – 16 с.

Егорова Ю.Б.,

Мамонов И.М.,

составление, 2009

  МАТИ, 2009

ВВЕДЕНИЕ

Методические указания предназначены для студентов дневного отделения факультета №14 специальностей  230102, 220231 и являются учебным руководством при выполнении индивидуального задания.

  1.  ПРОВЕРКА ГИПОТЕЗЫ О СРАВНЕНИИ  ДВУХ

ГЕНЕРАЛЬНЫХ СРЕДНИХ (ДВУХ МАТЕМАТИЧЕСКИХ ОЖИДАНИЙ)

1.1. Генеральные дисперсии известны (большие независимые выборки n≥30)

Пусть генеральные совокупности исследуемых случайных величин Х и Y распределены нормально: Х~N(mхх) и  Y~N(myy). Предположим, что генеральные дисперсии D(X) и D(Y) известны, например, по многолетним наблюдениям, или заданы по проекту, или найдены теоретически, или вычислены по выборкам большого объема (n≥30). Из генеральных совокупностей Х и  Y сделаем выборки объемами n1 и n2. Найдем соответственно выборочные средние и .

При заданном уровне значимости α необходимо проверить нулевую гипотезу, состоящую в том, что выборочные средние различаются незначимо, т.е. математические ожидания (генеральные средние) равны между собой:  

Но: М(Х)=М(Y).

Сравнение производится с помощью специально подобранной случайной величины – статистического критерия Z, имеющего нормированный нормальный закон распределения с параметрами М(Z)=0, σ( Z)=1:

Критическая область строится в зависимости от вида альтернативной (конкурирующей) гипотезы.

Первый случай. 

Выдвигаем нулевую гипотезу Но: М(Х)=М(Y).

Выдвигаем альтернативную гипотезу Н1: М(Х)≠М(Y).

В этом случае строят двустороннюю критическую область.

Порядок проверки нулевой гипотезы:

  1.  по выборке определяем наблюдаемое значение критерия .
  2.  по таблице функции Лапласа (см. Приложение 1) определяем критическое значение критерия  из равенства
  3.  Если , то нулевая гипотеза принимается.

Если , то нулевая гипотеза отвергается и принимается альтернативная.

Второй случай. 

Выдвигаем нулевую гипотезу Но: М(Х)=М(Y).

Выдвигаем альтернативную гипотезу Н1: М(Х)>М(Y).

В этом случае строят правостороннюю критическую область.

Порядок проверки нулевой гипотезы:

  1.  по выборке определяем наблюдаемое значение критерия.
  2.  по таблице функции Лапласа (см. Приложение 1) определяем критическое значение критерия  из равенства
  3.  Если , то нулевая гипотеза принимается.

Если , то нулевая гипотеза отвергается и принимается альтернативная.

 Третий случай. 

Выдвигаем нулевую гипотезу Но: М(Х)=М(Y).

Выдвигаем альтернативную гипотезу Н1: М(Х)<М(Y).

В этом случае строят левостороннюю критическую область.

Порядок проверки нулевой гипотезы:

  1.  по выборке определяем наблюдаемое значение критерия.
  2.  по таблице функции Лапласа (см. Приложение 1) определяем критическое значение критерия  из равенства
  3.  Если , то нулевая гипотеза принимается.

Если , то нулевая гипотеза отвергается и принимается альтернативная.

ПРИМЕР 1. Для проверки эффективности новой технологии отобраны две группы рабочих. В первой группе рабочих численностью 50 человек, где применялась новая технология, выборочная средняя выработка составила 85 изделий. Во второй группе численностью 70 человек выборочная средняя составила 78 изделий. Генеральные дисперсии в группах соответственно равны 100 и 74 (изделия)2. При уровне значимости 0,05 необходимо выяснить значимо ли влияние новой технологии на среднюю выработку.

РЕШЕНИЕ. По условию n1=50; изд.;  D(X)=100 изд.2;

n2=70; изд.;  D(Y)=74 изд.2, α=0,05. Выдвигаем нулевую гипотезу Но: М(Х)=М(Y). Относительно альтернативной гипотезы возможны два случая: а) М(Х)≠М(Y); б) Н1: М(Х)>М(Y) (так как ). Рассмотрим эти случаи.

а) Но: М(Х)=М(Y)

   Н1: М(Х)≠М(Y).

В этом случае строят двустороннюю критическую область.

Порядок проверки нулевой гипотезы:

  1.  по выборке определяем наблюдаемое значение критерия:

  1.  по таблице функции Лапласа (см. Приложение 1) определяем критическое значение критерия  из равенства

3) Так как , то нулевая гипотеза отвергается и принимается альтернативная.

б)  Но: М(Х)=М(Y).

    Н1: М(Х)>М(Y).

В этом случае строят правостороннюю критическую область.

Порядок проверки нулевой гипотезы:

  1.  по выборке определяем наблюдаемое значение критерия
  2.  по таблице функции Лапласа (см. Приложение 1) определяем критическое значение критерия =1,645 из равенства

3) Так как , то нулевая гипотеза отвергается и принимается альтернативная.

Таким образом, с вероятностью 0,95 можно утверждать, что выборочные средние различаются значимо и, следовательно, новая технология позволяет повысить среднюю выработку рабочих.

1.2. Генеральные дисперсии неизвестны (малые независимые выборки n<30)

Пусть генеральные совокупности исследуемых случайных величин Х и Y распределены нормально: Х~N(mхх) и  Y~N(myy).

Генеральные дисперсии D(X) и D(Y) неизвестны, но можно полагать, что равны между собой*.

Из генеральных совокупностей Х и  Y сделаем выборки объемами n1 и n2. Найдем соответственно выборочные средние и и «исправленные» дисперсии и .

При заданном уровне значимости α необходимо проверить нулевую гипотезу, состоящую в том, что выборочные средние различаются незначимо, т.е. математические ожидания (генеральные средние) равны между собой:  

Но: М(Х)=М(Y).

Сравнение производится с помощью специально подобранной случайной величины – статистического критерия Т, имеющего закон распределения Стьюдента с k=n1+n2-2 степенями свободы:

Критическая область строится в зависимости от вида альтернативной (конкурирующей) гипотезы.

Первый случай. 

Выдвигаем нулевую гипотезу Но: М(Х)=М(Y).

Выдвигаем альтернативную гипотезу Н1: М(Х)≠М(Y).

В этом случае строят двустороннюю критическую область.

Порядок проверки нулевой гипотезы:

  1.  по выборке определяем наблюдаемое значение критерия .
  2.  по таблице критических точек распределения Стьюдента (см. Приложение 2) определяем критическое значения критерия  для двусторонней критической области в зависимости от уровня значимости α и числа степеней свободы k=n1+n2-2.
  3.  Если , то нулевая гипотеза принимается.

Если , то нулевая гипотеза отвергается и принимается альтернативная.

Второй случай. 

Выдвигаем нулевую гипотезу Но: М(Х)=М(Y).

Выдвигаем альтернативную гипотезу Н1: М(Х)>М(Y).

В этом случае строят правостороннюю критическую область.

Порядок проверки нулевой гипотезы:

  1.  по выборке определяем наблюдаемое значение критерия .
  2.  по таблице критических точек распределения Стьюдента (см. Приложение 2) определяем критическое значение критерия  для односторонней критической области в зависимости от уровня значимости α и числа степеней свободы  k=n1+n2-2.
  3.  Если , то нулевая гипотеза принимается.

Если , то нулевая гипотеза отвергается и принимается альтернативная.

Третий случай. 

Выдвигаем нулевую гипотезу Но: М(Х)=М(Y).

Выдвигаем альтернативную гипотезу Н1: М(Х)<М(Y).

В этом случае строят левостороннюю критическую область.

Порядок проверки нулевой гипотезы:

1) по выборке определяем наблюдаемое значение критерия .

  1.  по таблице критических точек распределения Стьюдента (см. Приложение 2) определяем критическое значение критерия  для односторонней критической области в зависимости от уровня значимости α и числа степеней свободы k=n1+n2-2.
  2.   Если , то нулевая гипотеза принимается.

Если , то нулевая гипотеза отвергается и принимается альтернативная.

ПРИМЕР 2. Технологи механосборочного цеха считают, что применение нового резца позволит сократить время обработки детали. Пять деталей были изготовлены старым резцом. Среднее время обработки одной детали составило 3,3 мин с «исправленной» дисперсией 0,25 мин2. Шесть деталей были изготовлены новым резцом. Среднее время обработки одной детали составило 2,48 мин с «исправленной» дисперсией 0,108 мин2. При уровне значимости 0,05 проверьте, позволило ли использование нового типа резцов сократить время обработки детали.

РЕШЕНИЕ. По условию n1=5; мин;  мин.2; n2=6; мин;   мин2, α=0,05. Генеральные дисперсии неизвестны, но будем полагать, что они одинаковы*.

Выдвигаем нулевую гипотезу Но: М(Х)=М(Y). Относительно альтернативной гипотезы возможны два случая: а) М(Х)≠М(Y); б) Н1: М(Х)>М(Y) (так как ). Рассмотрим эти случаи.

а) Но: М(Х)=М(Y)

   Н1: М(Х)≠М(Y).

В этом случае строят двустороннюю критическую область.

Порядок проверки нулевой гипотезы:

  1.  по выборке определяем наблюдаемое значение критерия :

  1.  по таблице критических точек распределения Стьюдента (см. Приложение 2) определяем критическое значение критерия =2,26 для односторонней критической области в зависимости от уровня значимости α=0,05 и числа степеней свободы k=n1+n2-2=5+6-2=9.
  2.   Так как , то нулевая гипотеза отвергается и принимается альтернативная.

б)  Но: М(Х)=М(Y).

    Н1: М(Х)>М(Y).

В этом случае строят правостороннюю критическую область.

Порядок проверки нулевой гипотезы:

  1.  по выборке определяем наблюдаемое значение критерия
  2.  по таблице критических точек распределения Стьюдента (см. Приложение 2) определяем критическое значение критерия =1,83 для односторонней критической области в зависимости от уровня значимости α=0,05 и числа степеней свободы k=n1+n2-2=5+6-2=9.
  3.   Так как , то нулевая гипотеза отвергается и принимается альтернативная.

Таким образом, с вероятностью 0,95 можно утверждать, что выборочные средние различаются значимо и, следовательно, использование нового типа резцов позволило сократить время обработки детали.

ПРИМЕР 3. Годовой оборот 4 бирж в регионе А составил 120 тыс. у.е., а в регионе В годовой оборот 5 бирж – 125 тыс. у.е. Исправленная выборочная дисперсия в регионе А оказалась равной 30 тыс. у.е., в регионе В – 20 тыс. у.е. Можно ли при уровне значимости 0,05 утверждать, что средний оборот бирж в регионе А меньше, чем в регионе В?

РЕШЕНИЕ. По условию n1=4; тыс. у.е..;   тыс. у.е.2; n2=5; тыс. у.е.;   тыс. у.е.2. Генеральные дисперсии неизвестны, но будем полагать, что они одинаковы*.

Выдвигаем нулевую гипотезу Но: М(Х)=М(Y).

Выдвигаем альтернативную гипотезу Н1: М(Х)<М(Y).

В этом случае строят левостороннюю критическую область.

Порядок проверки нулевой гипотезы:

  1.  по выборке определяем наблюдаемое значение критерия :

  1.  по таблице критических точек распределения Стьюдента (см. Приложение 2) определяем критическое значение критерия =1,89 для односторонней критической области в зависимости от уровня значимости α=0,05 и числа степеней свободы k=n1+n2-2=4+5-2=7.
  2.   Так как , то нулевая гипотеза отвергается и принимается альтернативная.

Таким образом, с вероятностью 0,95 можно утверждать, что выборочные средние различаются значимо и, следовательно, средний оборот бирж в регионе А меньше, чем в регионе В.

  1.  ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

По исходным данным, приведенным в методических указаниях «Первичная статистическая обработка экспериментальных данных. Часть 3. Задания» [5], проверить параметрические гипотезы при уровне значимости =0,05:

  1.  Проверить гипотезу о равенстве двух математических ожиданий М(Х)=М(У) для больших выборок (n1=n2=n, где n – объем выборки задания).
    1.  Проверить гипотезу о равенстве двух математических ожиданий М(Х)=М(У) для малых выборок (n1=8; n2=10).

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Сформулируйте основные принципы проверки гипотез.
  2.  Как проверяется гипотеза о равенстве двух математических ожиданий, если дисперсии известны?
  3.  Как проверяется гипотеза о равенстве двух математических ожиданий, если дисперсии неизвестны?

Приложение 1

Таблица значений функции Лапласа

х

Ф(х)

х

Ф(х)

х

Ф(х)

х

Ф(х)

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0,11

0,12

0,13

0,14

0,15

0,16

0,17

0,18

0,19

0,20

0,21

0,22

0,23

0,24

0,25

0,26

0,27

0,28

0,29

0,30

0,31

0,32

0,33

0,34

0,35

0,36

0,37

0,38

0,39

0,40

0,41

0,0000

0,0040

0,0080

0,0120

0,0160

0,0199

0,0239

0,0279

0,0319

0,0359

0,0398

0,0438

0,0478

0,0517

0,0557

0,0596

0,0636

0,0675

0,0714

0,0753

0,0793

0,0832

0,0871

0,0910

0,0948

0,0987

0,1026

0,1064

0,1103

0,1141

0,1179

0,1217

0,1255

0,1293

0,1331

0,1368

0,1406

0,1443

0,1480

0,1517

0,1554

0,1591

0,42

0,43

0,44

0,45

0,46

0,47

0,48

0,49

0,50

0,51

0,52

0,53

0,54

0,55

0,56

0,57

0,58

0,59

0,60

0,61

0,62

0,63

0,64

0,65

0,66

0,67

0,68

0,69

0,70

0,71

0,72

0,73

0,74

0,75

0,76

0,77

0,78

0,79

0,80

0,81

0,82

0,83

0,1628

0,1664

0,1700

0,1736

0,1772

0,1808

0,1844

0,1879

0,1915

0,1950

0,1985

0,2019

0,2054

0,2088

0,2123

0,2157

0,2190

0,2224

0,2257

0,2291

0,2324

0,2357

0,2389

0,2422

0,2454

0,2486

0,2517

0,2549

0,2580

0,2611

0,2642

0,2673

0,2703

0,2734

0,2764

0,2794

0,2823

0,2852

0,2881

0,2910

0,2939

0,2967

0,84

0,85

0,86

0,87

0,88

0,89

0,90

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1,00

1,01

1,02

1,03

1,04

1,05

1,06

1,07

1,08

1,09

1,10

1,11

1,12

1,13

1,14

1,15

1,16

1,17

1,18

1,19

1,20

1,21

1,22

1,23

1,24

1,25

0,2995

0,3023

0,3051

0,3078

0,3106

0,3133

0,3159

0,3186

0,3212

0,3238

0,3264

0,3289

0,3315

0,3340

0,3365

0,3389

0,3413

0,3438

0,3461

0,3485

0,3508

0,3531

0,3554

0,3577

0,3599

0,3621

0,3643

0,3665

0,3686

0,3708

0,3729

0,3749

0,3770

0,3790

0,3810

0,3830

0,3849

0,3869

0,3883

0,3907

0,3925

0,3944

1,26

1,27

1,28

1,29

1,30

1,31

1,32

1,33

1,34

1,35

1,36

1,37

1,38

1,39

1,40

1,41

1,42

1,43

1,44

1,45

1,46

1,47

1,48

1,49

1,50

1,51

1,52

1,53

1,54

1,55

1,56

1,57

1,58

1,59

1,60

1,61

1,62

1,63

1,64

1,65

1,66

1,67

0,3969

0,3980

0,3997

0,4015

0,4032

0,4049

0,4066

0,4082

0,4099

0,4115

0,4131

0,4147

0,4162

0,4177

0,4192

0,4207

0,4222

0,4236

0,4251

0,4265

0,4279

0,4292

0,4306

0,4319

0,4332

0,4345

0,4357

0,4370

0,4382

0,4394

0,4406

0,4418

0,4429

0,4441

0,4452

0,4463

0,4474

0,4484

0,4495

0,4505

0,4515

0,4525

х

Ф(х)

х

Ф(х)

х

Ф(х)

х

Ф(х)

1,68

1,69

1,70

1,71

1,72

1,73

1,74

1,75

1,76

1,77

1,78

1,79

1,80

1,81

1,82

1,83

1,84

1,85

1,86

1,87

1,88

1,89

1,90

0,4535

0,4545

0,4554

0,4564

0,4573

0,4582

0,4591

0,4599

0,4608

0,4616

0,4625

0,4633

0,4641

0,4649

0,4656

0,4664

0,4671

0,4678

0,4686

0,4693

0,4699

0,4706

0,4713

1,91

1,92

1,93

1,94

1,95

1,96

1,97

1,98

1,99

2,00

2,02

2,04

2,06

2,08

2,10

2,12

2,14

2,16

2,18

2,20

2,22

2,24

2,26

0,4719

0,4726

0,4732

0,4738

0,4744

0,4750

0,4756

0,4761

0,4767

0,4772

0,4783

0,4793

0,4803

0,4812

0,4821

0,4830

0,4838

0,4846

0,4854

0,4861

0,4868

0,4875

0,4881

2,28

2,30

2,32

2,34

2,36

2,38

2,40

2,42

2,44

2,46

2,48

2,50

2,52

2,54

2,56

2,58

2,60

2,62

2,64

2,66

2,68

2,70

2,72

0,4887

0,4893

0,4898

0,4904

0,4909

0,4913

0,4918

0,4922

0,4927

0,4931

0,4934

0,4938

0,4941

0,4945

0,4948

0,4951

0,4953

0,4956

0,4959

0,4961

0,4963

0,4965

0,4967

2,74

2,76

2,78

2,80

2,82

2,84

2,86

2,88

2,90

2,92

2,94

2,96

2,98

3,00

3,20

3,40

3,60

3,80

4,00

4,50

5,00

0,4969

0,4971

0,4973

0,4974

0,4976

0,4977

0,4979

0,4980

0,4981

0,4982

0,4984

0,4985

0,4986

0,49865

0,49931

0,49966

0,499841

0,499928

0,499968

0,499997

0,499997

Приложение 2

Критические точки распределения Стьюдента

Число

степеней

свободы k

Уровень значимости α

(двусторонняя критическая область)

0,1

0,05

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

6,31

2,92

2,35

2,13

2,01

1,94

1,89

1,86

1,83

1,81

1,80

1,78

1,77

1,76

1,75

1,75

1,74

1,73

1,73

1,73

12,70

4,30

3,18

2,78

2,57

2,45

2,36

2,31

2,26

2,23

2,20

2,18

2,16

2,14

2,13

2,12

2,11

2,10

2,09

2,09

0,05

0,025

Уровень значимости α

(односторонняя критическая область)

ЛИТЕРАТУРА

Гмурман В.С. Теория вероятностей и математическая статистика. Изд.7-е, стер. М.: Высш. шк., 2001. 479 с.

Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. Изд.5-е, стер.– М.: Высш. шк., 2001. 400 с.

Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ-ДАНА, 2001 . 543 с.

Ниворожкина Л.И., Морозова З.А. Основы статистики с элементами теории вероятностей для экономистов. – Ростов н/Д: Феникс, 1999.– 320 с.

Егорова Ю.Б., Мамонов И.М. Первичная статистическая обработка экспериментальных данных. Часть 3. Задания: методические указания к практическим занятиям по дисциплине «Математическая статистика». – М.: МАТИ, 2008. – 20 с.

ОГЛАВЛЕНИЕ

    Введение…………………………………………………………   3

  1.  Проверка гипотезы о сравнении двух генеральных средних

(двух математических ожиданий) …………………………………  3

  1.  Генеральные дисперсии известны (большие независимые

выборки n≥30)……………………………………………………….. 3

  1.  Генеральные дисперсии неизвестны  (малые независимые выборки n<30) ……………………………………………………. 7
  2.  Индивидуальные задания………………………………………   13

Контрольные вопросы………………………………………….   14

Приложения ……….……………………………………………...15

Литература …………………………………………………….. .. 17

Юлия Борисовна Егорова

Игорь Михайлович Мамонов

ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ.

Гипотезы о средних (о математических ожиданиях).

Сравнение двух средних

Методические указания к практическим занятиям

по дисциплине «Математическая статистика»

Редактор А.Н. Прохорова

Подп. в печать 27.03.09 Уч.-изд.л. – 0,7 Тираж 50 экз.  Зак. №35

Издательский центр МАТИ

109240 Москва, Берниковская наб., 14

* Если нет оснований считать дисперсии одинаковыми, то прежде чем сравнивать  средние, предварительно необходимо проверить гипотезу о равенстве генеральных дисперсий.

* Предварительно необходимо проверить гипотезу о равенстве генеральных дисперсий.

* Предварительно необходимо проверить гипотезу о равенстве генеральных дисперсий.




1. I. БЛИЗНЕЦОВЫЙ МЕТОД ИЗУЧЕНИЯ ГЕНЕТИКИ ЧЕЛОВЕКА
2. Землеустроительный менеджмент Вопросы к зачету по дисциплине Землеустроительный менеджмент 1
3.  МАНИПУЛЯЦИЯ Техника обработки пуповинного остатка и пупочной ранки в условиях родильного дома и в дома
4. Проблемы лесопользования и охраны ценных естественных лесов Карелии
5. Кинетический рисунок семьи
6. Основные проблемы психологии управления командир
7. е гг. и отражала реалии этих стран
8. Прибор ночного видения ТВН-2Б
9. Организация производства на предприятии
10. Лекция 21 Процесс взаимодействия системы с клавиатурой в ОС MSDOS Клавиатура ~ это устройство компьютер
11. А Пихов ВЗАИМОДЕЙСТВИЕ СУБЪЕКТОВ УГОЛОВНОГО ПРЕСЛЕДОВАНИЯ С КОМПЕТЕНТНЫМИ ОРГАНАМИ И ДОЛЖН
12. Введение Краткая характеристика предприятия Отраслевые особенности ведения бухгалтерского учета и
13. ФИЛОСОФИЯ ГОСУДАРСТВА И ПРАВА ГЕГЕЛЯ
14. Договор найма жилого помещения
15. а МНОГИЕ ЛЮДИ ДУМАЮТ что жить по вере и исполнять волю Божию очень трудно
16. грузовая таможенная декларация; 2 декларирование товаров при их перемещении физическими лицами не для к
17. Мы в полной мере ощутили что одной нефти недостаточно Нужно сокращать неэффективные издержки нужно дум
18. Характеристики семейства гоминид
19. І.Франко Д.Донцов та ін
20. Власть как общественное явлени