Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

а. Вероятность этого превышает 095

Работа добавлена на сайт samzan.net: 2015-12-27

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 19.5.2024

. Проверка гипотез

Положим, есть два статистических распределения некоторых случайных величин X и Y. Пусть генеральные средние этих распределений с доверительной вероятностью р — 0,95 находятся в доверительных интервалах в ± zx) и (ув ± еу), и пусть при этом ув > хв. Если соблюдается неравенство (ув - Су) > (хв + е^.), то не вызывает сомнения, что случайная величина Y существенно больше случайной величины X (см. рис. 3.3, а). Вероятность этого превышает 0,95.

Условием существенности различия двух опытных распределений, являющихся выборками из различных генеральных совокупностей, является выполнение следующего неравенства для опытного и теоретического значений критерия Стьюдента: ton > fTeop. Для нахождения значения t используют следующую формулу:

Здесь ахп ау — выборочные средние квадратические отклонения, пх и пу — число вариант в выборках (объемы выборок), хв и ув — выборочные средние значения. Теоретическое значение treop находят по таблице, входными величинами которой являются доверительная вероятность р и параметр f, связанный с числом вариант в выборках. Этот параметр определяют следующим образом. Если а ~ а, то f = и + пп - 2.Используя этот способ оценки достоверности различия выборочных средних значений двух выборок, следует придерживаться такой последовательности действий. Во-первых, по экспериментальным данным нужно найти значения выборочных средних и средних квадратических отклонений для каждой выборки. Затем, сравнив величины от и а , найти величину f. После этого еледует задать определенное значение доверительной вероятности и по таблице 10 найти t . Затем по формуле рассчитать t .

Если при сравнении теоретического и опытного критериев Стью- дента окажется, что ton > £теор, то различие между выборочными средними значениями случайных величин X и Y можно считать существенным с заданной доверительной вероятностью. В противоположном случае различия несущественны.

Представленный выше способ оценки достоверности различий выборок по выборочным средним является довольно простым. Существует большое число тестов и критериев для сравнения выборок и составления заключения о достоверности их различий. Как правило, при этом рассматривают вероятность двух взаимоисключающих гипотез. Одна из них, условно называемая «нулевой» гипотезой, заключается в том, что наблюдаемые различия между выборками случайны (т. е. фактически различий нет). Альтернативная гипотеза означает, что наблюдаемые различия статистически достоверны. При этом для оценки обоснованности вывода о достоверности различий используют три основных доверительных уровня, при которых принимается или отвергается нулевая гипотеза. Первый уровень соответствует уровню значимости Р0 < 0,05; для второго уровня Р0 < 0,01. Наконец, третий доверительный уровень имеет ро < 0,001. При соблюдении соответствующего условия нулевая гипотеза считается отвергнутой. Чем выше доверительный уровень, тем более обоснованным он считается. Фактически значимость вывода соответствует вероятности р = 1 - Р0. В медицинских и биологических исследованиях считают достаточным уже первый уровень, хотя наиболее ответственные выводы предпочтительнее делать с большей точностью. Одной из методик, позволяющих судить о достоверности различий статистических распределений, является ранговый тест Уилкоксона. Под рангом (Д;) понимают номер, под которым стоят исходные данные в ранжированном ряду. Если в двух сравниваемых выборках данному номеру соответствуют одинаковые варианты, то рангом этих вариант является среднее арифметическое двух рангов — данного и следующего за ним.

Корреляционная зависимость. Уравнения регрессии

При изучении объектов в биологии и медицине приходится иметь дело с функциональными связями другого рода. При этом определенному значению одного признака соответствует не одно значение другого, а целое распределение значений. Такая связь называется корреляционной связью, или просто корреляцией. Корреляционная связь, например, между возрастом и ростом детей выражается в том, что каждому значению возраста соответствует определенное распределение роста (а не одно единственное значение). При этом с увеличением возраста (до определенных пределов) возрастает и среднее значение роста.

Количественную характеристику взаимосвязи изучаемых признаков можно дать на основании вычисления показателя силы связи между ними (коэффициента корреляции) и определения зависимости одного признака от изменений другого (уравнения регрессии). Коэффициент корреляции определяет не только степень, но и направление связей между величинами. Если отсутствие функциональной зависимости между величинами условно соответствует нулевой корреляции, а полная функциональная зависимость — корреляции, равной единице, то сила корреляционной связи, вообще говоря, измеряется промежуточными значениями (от 0 до +1). При этом при положительном коэффициенте корреляции с увеличением одной величины возрастает и другая. Если же коэффициент корреляции отрицателен, то возрастание одного параметра сопровождается уменьшением другого. В простом случае при линейной зависимости между исследуемыми параметрами используют коэффициент корреляции Бравэ—Пирсона. Рассчитанный коэффициент корреляции сравнивают с теоретическим, который находят в специальной таблице с учетом определенного уровня значимости и объема выборки Входными значениями таблицы являются число пар исследуемых признаков (п) и уровень значимости (0,05 или 0,01). При этом нулевая гипотеза заключается в том, что корреляционной связи между исследуемыми параметрами не существует. Если получают значения коэффициента корреляции больше табличного, с определенной степенью вероятности полагают, что корреляция в генеральной совокупности отличается от нуля.

Количественное представление зависимости изменений одного признака от изменений другого позволяет получить показатели регрессии. Как правило, анализ регрессии начинают с графического изображения данных. При большом числе исходных данных для выявления общей закономерности вычисляются средние значения одного признака (у) в группах (классах), соответствующих определенному интервалу значений другого признака (х). При построении графика по усредненным данным точки на графике располагаются вдоль так называемой эмпирической линии регрессии. Затем проводят подбор и составление уравнения регрессии. С помощью такого уравнения можно теоретически рассчитать значения, которые должен принимать один признак при определенных значениях другого (уравнение прогноза).

Если предполагается существование линейной зависимости между исследуемыми признаками (линейная регрессия), то проводить регрессионный анализ наиболее просто. Часто при этом применяют графический метод. Для проведения линии регрессии используют прозрачную линейку, придавая ей такое положение, чтобы выше и ниже предполагаемой линии регрессии оказалось приблизительно одинаковое число эмпирических точек. На полученной прямой определяют координаты двух наиболее отдаленных точек xv уг и х2, у2- Затем составляют систему двух уравнений:

у1 = а + bxv у2 = а + bх2.

Из полученной системы уравнений определяют неизвестные а и b: b =2 - ул)/(х2 - хг), а = уу - х = у2 - 2. Наконец, при известных коэффициентах а и Ь записывают уравнение прогноза, на основании которого можно рассчитать значение параметра у при известном значении х.

Задача корреляционного анализа сводится к установлению направления и формы связи между признаками, измерению ее тесноты и к оценке достоверности выборочных показателей корреляции.
Корреляционная связь между признаками может быть линейной и криволинейной (нелинейной), положительной и отрицательной. 
Прямая корреляция отражает однотипность в изменении признаков: с увеличением значений первого признака увеличиваются значения и другого, или с уменьшением первого уменьшается второй.
Обратная корреляция указывает на увеличение первого признака при уменьшении второго или уменьшение первого признака при увеличении второго.
Например, больший прыжок и большее количество тренировок — прямая корреляция, уменьшение времени, затраченного на преодоление дистанции, и большее количество тренировок — обратная корреляция.

В практических исследованиях возникает необходимость аппроксимировать (описать приблизительно)диаграмму рассеяния математическим уравнением. То есть зависимость между переменными величинами Yи Х можно выразить аналитически с помощью формул и уравнений и графически в виде геометрического места точек в системе прямоугольных координат. График корреляционной зависимости строится по уравнениям функции  и , которые называются регрессией (терминрегрессия происходит от лат. regressio — движение назад). Здесь  и   средние арифметические из числовых значений зависимых переменных Y и X.
Для выражения регрессии служат эмпирические и теоретические ряды, их графики  линии регрессии, а также корреляционные уравнения (уравнения регрессии) и коэффициент линейной регрессии.
Показатели регрессии выражают корреляционную связь двусторонне, учитывая изменение средней величины признака Y при изменении значений xi признака X, и, наоборот, показывают изменение средней величины  признака Х по измененным значениям yi признака Y. Исключение составляют временные ряды, или ряды динамики, показывающие изменение признаков во времени. Регрессия таких рядов является односторонней.
Ряды регрессии, особенно их графики, дают наглядное представление о форме и тесноте корреляционной связи между признаками,в чем и заключается их ценность. Форма связи между показателями, влияющими на уровень спортивного результата и общей физической подготовки занимающихся физической культурой и спортом, может быть разнообразной. И поэтому задача состоит в том, чтобы любую форму корреляционной связи выразить уравнением определенной функции (линейной, параболической и т.д.), что позволяет получать нужную информацию о корреляции между переменными величинами Y и X, предвидеть возможные изменения признака Y на основе известных изменений X, связанного с Y корреляционно.

Механические колебания и волны

Повторяющиеся движения или изменения состояния называют колебаниями (переменный электрический ток, движение маятника, работа сердца и т. п.). Всем колебаниям, независимо от их природы, присущи некоторые общие закономерности. В зависимости от характера взаимодействия колеблющейся системы с окружающими телами различают колебания свободные, вынужденные и автоколебания. Колебания распространяются в среде в виде волн. В данной главе рассматриваются механические колебания и волны.

. Свободные механические колебания (незатухающие и затухающие)

Свободными (собственными) колебаниями называют такие, которые совершаются без внешних воздействий за счет первоначально полученной телом энергии. Характерными моделями таких механических колебаний являются материальная точка на пружине (пружинный маятник) и материальная точка на нерастяжимой нити (математический маятник).

В этих примерах колебания возникают либо за счет первоначальной потенциальной энергии (отклонение материальной точки от положения равновесия и движение без начальной скорости), либо за счет кинетической (телу сообщается скорость в начальном положении равновесия), либо за счет и той и другой энергии (сообщение скорости телу, отклоненному от положения равновесия).

Рассмотрим пружинный маятник. В положении равновесия упругая сила F1 уравновешивает силу тяжести mg. Если оттянуть пружину на расстояние х, то на материальную точку будет действовать большая упругая сила. Изменение значения упругой силы (F), согласно закону Гука, пропорционально изменению длины пружины или смещению х точки:

F = -kx, 

где k — коэффициент пропорциональности между силой и смещением, который в данном случае является жесткостью пружины; знак минус показывает, что сила всегда направлена в сторону положения равновесия: F < 0 при х > О, F > 0 при х < 0.

Другой пример. Математический маятник отклонен от положения равновесия на такой небольшой угол а, чтобы можно было считать траекторию движения материальной точки прямой линией, совпадающей с осью ОХ. При этом выполняется приближенное равенство:

а= sin tg а ~ у, 

где х — смещение материальной точки относительно положения равновесия, I — длина нити маятника.

На материальную точку действуют сила натяжения нити Fu и сила тяжести mg, модуль их равнодействующей равен

= mg tg a = mgj = kx, 

где k — коэффициент пропорциональности между силой и смещением 

Сравнивая видим, что в этом примере равнодействующая сила подобна упругой, так как пропорциональна смещению материальной точки и направлена к положению равновесия. Такие силы, неупругие по природе, но аналогичные по свойствам силам, возникающим при малых деформациях упругих тел, называют квазиупругими.

На материальные точки, рассмотренные в этих примерах, кроме упругой и квазиупругой силы действует и сила сопротивления (трения), модуль которой обозначим F

При преобразовании дифференциального уравнения гармонического колебания величина со0 была введена формально [см. (5.6)],

однако она имеет важный физический смысл, так как определяет , юп

частоту колебании v = — системы и показывает, от каких факто-

ров (параметров) эта частота зависит: от жесткости пружины и массы в одном примере, длины нити и ускорения свободного падения в другом.

период колебаний пружинного маятника

период колебаний математического маятника

Затухающие колебания. В реальном случае на колеблющееся тело действуют силы сопротивления (трения), характер движения изменяется, и колебание становится затухающим. Для того чтобы из уравнения найти временную зависимость затухающего колебания, необходимо знать, от каких параметров и как зависит сила сопротивления. Обычно предполагают, что при не очень больших амплитудах и частотах эта сила пропорциональна скорости движения и, естественно, направлена противоположно скорости: Fc = -rv, где г — коэффициент трения (сопротивления), характеризующий свойства среды оказывать сопротивление.

Применительно к одномерному движению последней формуле придадим следующий вид:

Быстрота убывания амплитуды колебаний определяется коэффициентом затухания: чем сильнее тормозящее действие среды, тем больше Р и тем быстрее уменьшается амплитуда. На практике, однако, степень затухания часто характеризуют логарифмическим декрементом затухания, понимая под этим величину, равную натуральному логарифму отношения двух последовательных амплитуд, разделенных интервалом времени, равным периоду колебаний При сильном затухании видно, что период колебания является мнимой величиной. Движение в этом случае уже не будет периодическим и называется апериодическим2.

?




1. память на любой вкус Сергей Пахомов Устройство ячейки флэшпамяти Архитектура ПЗУпамяти
2. Финансы и финансовые ресурсы предприятий
3. Текстовий процесор англ
4. философское учение настаивающее на ограниченности познавательных возможностей разума и мышления призна
5. реферат дисертації на здобуття наукового ступеня кандидата наук з державного управління
6. Взгляды историков на правление Ивана ГрозногоВыполнила- студ
7. Реферат- Гидроэлектростанции и связанные с ними экологические проблемы
8. социально мировоззренческая общественно политическая Профессиональные склонности- запускающие ме
9. Процессуальные сроки
10. весёлой она точно не покажется
11. Понятие, предмет, метод и система трудового права
12. угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратн
13. К ним относятся острые заболевания органов брюшной полости- острый аппендицит прободная язва желудка ущем
14. Анализ загрязнений и перспективных направлений методов очистки выбросов и сбросов
15. Курсовая работа- Музыкальный фольклор как средство развития творческих способностей младших школьников
16. СН 2014 Имя файла должно включать фамилию инициалы город номер направления ИвановВНБарановичи2
17. .А101 1 спалня 4818 кв
18. 1 Понятие государственных пенсий5 1
19. МЭРИ КЭЙ Новый гаджет для очистки кожи это не просто щеточка1
20. Икона в переводе с греческого означает