Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
PAGE 355
МАКСИМИЗАЦИЯ ПРИБЫЛИ
ГЛАВА 18
МАКСИМИЗАЦИЯ
ПРИБЫЛИ
В предшествующей главе мы обсудили способы описания технологического выбора фирмы. В настоящей главе рассмотрим модель выбора фирмой объема производства и применяемого ею метода производства. Воспользуемся моделью максимизации прибыли: фирма выбирает производственную программу таким образом, чтобы максимизировать свою прибыль.
В этой главе мы предположим, что цены применяемых фирмой факторов производства и цена ее выпуска постоянны. Как говорилось ранее, рынок, на котором отдельные производители считают цены находящимися вне сферы своего контроля, экономисты называют конкурентным рынком. Так вот, в настоящей главе мы рассмотрим задачу максимизации прибыли фирмой, сталкивающейся с конкурентными рынками факторов производства и выпускаемых товаров.
18.1. Прибыль
Прибыль определяется как общий доход за вычетом издержек. Предположим, что фирма производит n выпусков (y1, ..., yn) и использует m факторов производства (x1, ..., xm). Обозначим цены выпускаемых товаров (p1, ..., pn), а цены факторов (w1, ..., wm).
Прибыль, получаемую фирмой , можно выразить как
.
Первый член выражения есть общий доход (выручка), а второй издержки.
Мы должны убедиться в том, что в выражение для издержек включены все используемые фирмой факторы производства, оцененные по их рыночной цене. Обычно это достаточно очевидно, но в тех случаях, когда фирмой руководит лицо, которому она принадлежит, можно упустить из виду некоторые факторы производства. Например, если индивид работает на своей собственной фирме, то его труд является фактором производства и должен быть учтен как часть издержек. Ставка его заработной платы есть просто рыночная цена его труда то, что он получал бы, продавая свой труд на свободном рынке. Аналогичным образом, если фермер владеет участком земли и использует его в своем производстве, при подсчете экономических издержек эта земля должна быть оценена по ее рыночной стоимости.
Как мы видели, экономические издержки, подобные указанным, часто называют альтернативными. Это название отражает ту идею, что, применяя, например, свой труд в одной сфере, вы упускаете возможность применить его где-либо еще. Следовательно, эта потерянная заработная плата есть часть издержек производства. Аналогичен и пример с землей: у фермера имеется возможность сдать свою землю в аренду кому-то другому, однако он предпочитает отказаться от этого рентного дохода в пользу варианта сдачи земли в аренду самому себе. Потерянная арендная плата есть альтернативные издержки его производства.
Экономическое определение прибыли требует, чтобы мы оценивали все факторы производства и выпускаемую продукцию по их альтернативным издержкам. На основе бухгалтерского определения прибыли не всегда можно точно измерить экономическую прибыль, так как бухгалтеры обычно используют прошлые издержки, т. е. сумму, в которую обошлась покупка данного фактора раньше, а не экономические издержки, т. е. сумму, в которую обошлась бы покупка данного фактора сейчас. Существует много вариантов использования термина "прибыль", но мы будем придерживаться экономического определения прибыли.
Другого рода путаница может возникнуть в связи со смешением временного масштаба.
Обычно мы считаем факторы производства измеряемыми в единицах потоков. Затраты определенного количества рабочих часов в неделю и определенного количества машинных часов в неделю позволят произвести соответствующий выпуск в неделю. Цены факторов в этом случае должны измеряться в единицах, соответствующих покупке таких потоков. Заработная плата, естественно, выражается в долларах в час. Аналогом этой величины для машин служит ставка арендной платы ставка, по которой вы можете арендовать машину на данный период времени.
Во многих случаях развитый рынок аренды машин отсутствует, поскольку фирмы, как правило, покупают свое капитальное оборудование. Поэтому мы должны рассчитывать вмененную арендную плату путем сопоставления суммы, в которую обошлась бы покупка машины в начале периода, с суммой, которую можно было бы выручить, продав машину в конце периода.
18.2. Организационные формы фирм
В капиталистической экономике фирмы находятся в собственности частных лиц. Фирмы являются лишь юридическими субъектами; в конечном счете именно владельцы фирм несут ответственность за их деятельность и именно владельцы фирм получат вознаграждение или оплачивают издержки этой деятельности.
Вообще говоря, фирмы могут быть организованы в форме единоличных владений, партнерств или корпораций. Единоличное владение это фирма, находящаяся в собственности одного лица. Партнерство фирма, которая находится в собственности двух или более лиц. Корпорация обычно также находится в собственности нескольких лиц, но по закону имеет право существовать отдельно от своих владельцев. Следовательно, партнерство существует лишь до тех пор, пока оба партнера живы и согласны поддерживать его существование. Корпорация же может существовать дольше срока жизни любого из ее владельцев. Именно поэтому большинство крупных фирм имеет организационную форму корпорации.
Владельцы каждого из указанных типов фирм могут иметь различные цели в отношении управления деятельностью фирмы. В единоличном владении или в партнерстве владельцы фирмы, как правило, играют непосредственную роль в фактическом управлении ее повседневной деятельностью, поэтому они имеют возможность добиваться осуществления преследуемых ими целей деятельности фирмы. Как правило, владельцы заинтересованы в максимизации прибыли своей фирмы, однако при наличии у них каких-то других целей, не связанных с прибылью, они, разумеется, будут всячески способствовать их осуществлению.
Владельцы корпорации, как правило, отличны от менеджеров корпорации: существует разделение собственности и контроля. Владельцы корпорации должны определять ту цель, которой должны руководствоваться менеджеры при управлении фирмой, а затем контролировать деятельность менеджеров. Основная цель деятельности менеджеров максимизация прибыли. Как мы увидим далее, эта цель, будучи должным образом интерпретирована, с большой вероятностью побуждает менеджеров фирмы выбирать действия, отвечающие интересам ее владельцев.
18.3. Прибыль и рыночная стоимость фирмы
Часто применяемый фирмой производственный процесс занимает много временных периодов. Факторы производства, вводимые в момент t, приносят целый поток услуг в более поздние периоды. Например, возведенное фирмой здание фабрики может прослужить 50 или 100 лет. В этом случае фактор производства, введенный в один момент времени, способствует производству выпуска в другие моменты времени в будущем.
В таком случае нам приходится определять стоимость потока издержек и потока доходов во времени. Как мы видели в гл.10, это следует делать, используя концепцию текущей стоимости. При наличии у людей возможности получения и предоставления ссуд на финансовых рынках для определения естественной цены потребления в разные моменты времени можно использовать ставку процента. Фирмы имеют доступ к такого же рода финансовым рынкам, и ставка процента может быть точно так же использована и для оценки инвестиционных решений.
Рассмотрим ситуацию совершенной определенности, в которой поток будущих прибылей фирмы широко известен. В этом случае текущая стоимость указанных прибылей была бы текущей стоимостью фирмы. Она показывала бы сумму, которую готов был бы заплатить кто-либо за покупку фирмы.
Как уже отмечалось, многие крупные фирмы имеют организационную форму корпорации, а это означает, что они находятся в совместной собственности ряда индивидов. Корпорация выпускает акционерные сертификаты, свидетельствующие о собственности на акции корпорации. В определенные моменты времени корпорация выдает дивиденды на эти акции, представляющие собой долю в прибылях фирмы. Акции корпорации покупаются и продаются на фондовом рынке. Цена акции представляет собой текущую стоимость потока дивидендов, который люди рассчитывают получить от корпорации. Общая рыночная стоимость фирмы есть текущая стоимость ожидаемого потока прибылей фирмы. Следовательно, цель фирмы максимизация текущей стоимости создаваемого ею потока прибылей могла бы быть также представлена в виде цели максимизации рыночной стоимости фирмы. В мире определенности эти две цели совпадают.
Владельцы фирмы, как правило, стремятся, чтобы фирма выбирала производственные программы, максимизирующие ее рыночную стоимость, поскольку это максимально повышает стоимость принадлежащих им акций. Как мы видели в гл.10, каковы бы ни были вкусы индивида в отношении потребления в различные периоды времени, он всегда предпочтет начальный запас с большей текущей стоимостью начальному запасу с меньшей текущей стоимостью. Максимизируя свою рыночную стоимость, фирма максимально увеличивает бюджетные множества своих акционеров и тем самым действует в их интересах.
При наличии неопределенности в отношении потока прибылей фирмы не имеет смысла поручать ее менеджерам максимизировать прибыли фирмы. Должны ли они максимизировать ожидаемые прибыли? Следует ли им максимизировать ожидаемую полезность прибылей? Как должны относиться менеджеры к рисковым инвестициям? В условиях неопределенности цели трудно придать определенный смысл максимизации прибыли. Однако максимизация рыночной стоимости фирмы сохраняет смысл и в условиях неопределенности. Если менеджеры фирмы пытаются сделать стоимость акций фирмы возможно более высокой, они тем самым максимально возможным образом повышают благосостояние владельцев фирмы акционеров. Максимизация рыночной стоимости фирмы выступает четко определенной целевой функцией фирмы практически в любой экономической среде.
Несмотря на эти замечания в отношении факторов времени и неопределенности, мы, как правило, будем ограничиваться рассмотрением гораздо более простых задач максимизации прибыли, а именно тех, в которых речь идет об одном конкретном выпуске и о единственном периоде времени. Такой пример, несмотря на его простоту, все же позволяет сделать важные умозаключения и выработать должную интуицию, облегчающую переход к изучению моделей поведения фирмы, имеющих более общий вид. Большинство идей, которые мы рассмотрим, естественным образом переносится на эти более общие модели.
18.4. Постоянные и переменные факторы
Изменить количество некоторых применяемых факторов производства в течение заданного периода времени может оказаться очень трудно. Как правило, у фирмы могут иметься контрактные обязательства по использованию определенных факторов в определенных объемах. Примером может служить договор об аренде здания, согласно которому фирма юридически обязывается приобрести определенную площадь на рассматриваемый период времени. Тот фактор производства, который имеется у фирмы в постоянном количестве, мы называем постоянным, а фактор, используемый в разных количествах, переменным.
Как мы видели в гл.17, короткий период определяется как такой период времени, в котором существуют некоторые постоянные факторы факторы, которые могут использоваться только в неизменных количествах. Напротив, в длительном периоде фирма вольна изменять все факторы производства: все они являются переменными. Между коротким и длительным периодами не существует жесткой границы. Точный временной период, о котором идет речь, зависит от исследуемой проблемы. Важно лишь то, что некоторые факторы производства постоянны в коротком периоде и переменны в длительном периоде. Поскольку в длительном периоде все факторы являются переменными, фирма всегда может принять решение о нулевом использовании факторов и о производстве нулевого выпуска, т.е. о прекращении деятельности. Поэтому наименьшая прибыль, которую может получить фирма в длительном периоде, есть нулевая прибыль.
В коротком периоде фирма обязуется использовать некоторые факторы, даже если решит производить нулевой выпуск. Следовательно, фирма вполне может иметь в коротком периоде отрицательную прибыль.
По определению, постоянные факторы это такие факторы производства, которые должны оплачиваться, даже если фирма решит производить нулевой выпуск: если у фирмы имеется договор о долгосрочной аренде здания, она должна производить арендные платежи в каждом периоде независимо от того, решает она производить что-либо в данном периоде или нет. Однако существует другая категория факторов производства, которые должны оплачиваться только в случае, если фирма решит производить положительный объем выпуска. Один из примеров такого рода факторов электричество, используемое в целях освещения. Если фирма производит нулевой выпуск, ей не требуется обеспечивать никакого освещения; но если она производит какой-то положительный выпуск, ей придется покупать определенное количество электричества для использования в целях освещения.
Факторы такого рода называются квазипостоянными факторами. Это факторы производства, которые должны использоваться в постоянном количестве, не зависящем от объема выпуска фирмы, до тех пор пока этот выпуск положителен. При анализе экономического поведения фирмы проведение различия между постоянными и квазипостоянными факторами производства иногда бывает полезным.
18.5. Максимизация прибыли в коротком периоде
Рассмотрим задачу максимизации прибыли в коротком периоде, когда фактор 2 фиксирован на некотором уровне . Пусть f(x1, x2) производственная функция фирмы, p цена выпуска, а w1 и w2 цены двух факторов производства. Тогда задача нахождения максимума прибыли, стоящая перед фирмой, может быть записана в виде
max pf(x1, ) w1x1 w2.
x1
Условие оптимального выбора фактора 1 определить нетрудно.
Если выбор фактора 1, максимизирующий прибыль, то произведение цены выпуска на предельный продукт фактора 1 должно равняться цене фактора 1. В условных обозначениях
pMP1(,) = w1.
Другими словами, стоимость предельного продукта фактора должна равняться цене фактора.
Чтобы понять суть этого правила, представьте, что будет, если фирма примет решение об использовании чуть большего количества фактора 1. Если добавить чуть-чуть этого фактора, x1, то вы будете производить больше на y = MP1x1, и этот прирост выпуска будет стоить pMP1x1. Но производство этого предельного выпуска обойдется в w1x1. Если стоимость предельного продукта превышает издержки на него, можно увеличить прибыль путем увеличения количества фактора 1. Если стоимость предельного продукта ниже издержек на него, прибыль можно увеличить путем уменьшения объема использования фактора 1. Если прибыль фирмы максимальна, она не должна возрастать при увеличении или уменьшении количества фактора 1. Это означает, что при максимизирующем прибыль выборе факторов и объемов выпуска стоимость предельного продукта pMP1(,) должна равняться цене фактора w1.
Это условие можно вывести и графически. Взгляните на рис.18.1. Изображенная на нем кривая представляет производственную функцию при условии сохранения фактора 2 неизменным на уровне . Используя y для обозначения выпуска фирмы, получаем, что прибыль задается выражением
= py w1x1 w2.
Из этого выражения можно получить y, выразив тем самым выпуск как функцию x1:
+x1. (18.1)
Это уравнение описывает изопрофитные линии все комбинации применяемых факторов производства и выпуска, дающие постоянный уровень прибыли . По мере изменения мы получаем семейство параллельных прямых линий, наклон каждой из которых равен w1/p, а точка пересечения с вертикальной осью задана выражением (/p) + (w2/p), измеряющим сумму прибыли и постоянных издержек фирмы.
Постоянные издержки постоянны, так что единственная величина, которая действительно изменяется при перемещении с одной изопрофитной линии на другую, есть уровень прибыли. Поэтому более высокие уровни прибыли связываются с теми изопрофитными линиями, точки пересечения которых с вертикальной осью лежат выше.
Тогда задача максимизации прибыли сводится к нахождению точки кривой производственной функции, связываемой с самой высокой изопрофитной линией. Такая точка показана на рис.18.1. Как обычно, она характеризуется условием касания: наклон кривой производственной функции должен равняться наклону изопрофитной линии. Поскольку наклон производственной функции есть предельный продукт, а наклон изопрофитной линии есть w1/p, это условие может быть записано также в виде
MP1 =,
что эквивалентно условию, выведенному нами выше.
18.6. Сравнительная статика
Можно воспользоваться геометрической интерпретацией, представленной на рис.18.1, чтобы исследовать, как изменяется выбор количества факторов производства и объемов выпуска фирмы с изменением цен факторов и цены выпускаемой продукции. Это дает нам способ проведения сравнительно-статического анализа поведения фирмы.
Как, например, меняется оптимальный выбор фактора 1 при изменении цены этого фактора w1? Из уравнения (18.1), определяющего изопрофитную линию, мы видим, что возрастание w1, как показано на рис.18.2A, делает изопрофитную линию круче. Когда изопрофитная линия становится круче, касание должно быть левее, чем раньше. Следовательно, оптимальный объем использования фактора 1 должен понизиться. Это означает, что по мере возрастания цены фактора 1 спрос на фактор 1 должен снижаться: кривые спроса на факторы должны иметь отрицательный наклон.
Максимизация прибыли. Фирма выбирает комбинацию факторов производства и выпуска, лежащую на самой высокой изопрофитной линии. В этом случае точкой максимизации прибыли является точка (, y*). |
Рис. 18.1 |
Аналогичным образом, как показано на рис.18.2B, изопрофитная линия должна стать круче, если происходит понижение цены выпуска. Согласно той же аргументации, что и выше, количество фактора 1, максимизирующее прибыль, должно уменьшиться. Если количество фактора 1 уменьшается, а объем использования фактора 2 в коротком периоде согласно принятой предпосылке постоянен, то предложение выпуска должно уменьшиться. Это дает нам еще один результат сравнительно-статического анализа: сокращение цены выпуска должно приводить к сокращению предложения выпуска. Другими словами, функция предложения должна иметь положительный наклон.
Наконец, можно задать вопрос о том, что произойдет при изменении цены фактора 2. Поскольку речь идет об анализе в коротком периоде, изменение цены фактора 2 не изменит выбираемого фирмой количества фактора 2 в коротком периоде уровень использования фактора 2 постоянен и равен . Изменение цены фактора 2 не оказывает влияния на наклон изопрофитной линии. Следовательно, оптимальный выбор фактора 1 не изменится, как не изменится и предложение выпуска. Единственное, что меняется при этом, это прибыли, получаемые фирмой.
A B
Рис. 18.2 |
Сравнительная статика. Рис.A возрастание w1 приводит к уменьшению спроса на фактор 1, рис.B возрастание цены выпуска приводит к увеличению спроса на фактор 1 и, следовательно, к возрастанию предложения выпуска. |
18.7. Максимизация прибыли в длительном периоде
В длительном периоде фирма вольна выбирать уровень использования всех факторов производства. Поэтому задачу максимизации прибыли в длительном периоде можно сформулировать как
max pf(x1, x2) w1x1 w2x2.
x1, x2
В основном это та же задача, что и описанная выше для короткого периода, но теперь могут изменяться количества обоих факторов производства.
Условие, описывающее оптимальный выбор, остается по существу тем же, что и раньше, но только теперь мы должны применять его к каждому фактору. Как мы видели ранее, независимо от уровня использования фактора 2 стоимость предельного продукта фактора 1 должна равняться цене этого фактора. Теперь такого же рода условие должно соблюдаться для выбора каждого фактора производства:
pMP1(, ) = w1.
pMP2(, ) = w2.
При оптимальном выборе фирмой количества факторов 1 и 2 стоимость предельного продукта каждого фактора должна равняться его цене. В точке оптимального выбора прибыль фирмы не может быть увеличена путем изменения уровня использования какого-либо из факторов.
Доводы в пользу этого те же, что и при обсуждении принятия решений о выпуске, максимизирующем прибыль в коротком периоде. Если бы, например, стоимость предельного продукта фактора 1 превысила цену фактора 1, использование чуть большего количества фактора 1 привело бы к увеличению выпуска на величину MP1, которая продавалась бы за pMP1 долларов. Если стоимость этого выпуска превышает издержки на фактор, используемый для его производства, то расширение использования этого фактора явно окупится.
Эти два условия дают нам два уравнения с двумя неизвестными и . Если нам известно поведение предельных продуктов как функций x1 и x2, мы сможем выразить оптимальный выбор каждого фактора как функцию цен. Получаемые при этом уравнения известны как уравнения кривых спроса на факторы.
18.8. Обратные кривые спроса на факторы
Кривые спроса фирмы на факторы показывают взаимосвязь между ценой фактора и максимизирующим прибыль фирмы выбором этого фактора. Выше мы видели, как найти количества факторов, максимизирующие прибыль фирмы: при любых ценах (p, w1, w2) мы просто находим такие значения спроса на факторы (, ), которые удовлетворяют условию равенства стоимости предельного продукта каждого фактора цене этого фактора.
Обратная кривая спроса на фактор показывает ту же самую взаимосвязь, но с другой точки зрения, а именно: каковы должны быть цены фактора, чтобы предъявлялся спрос на некоторое заданное количество факторов. При заданном оптимальном выборе фактора 2 можно изобразить взаимосвязь между оптимальным выбором фактора 1 и его ценой на графике, подобном представленному на рис.18.3. Это просто график уравнения
pMP1(x1, ) = w1.
Вследствие предпосылки об убывании предельного продукта эта кривая будет нисходящей. Для любого уровня x1 эта кривая показывает, какова должна быть цена фактора, чтобы побудить фирму предъявить спрос на данное количество x1 при сохранении постоянным использования фактора 2 в объеме .
Рис. 18.3 |
Обратная кривая спроса на фактор. Эта кривая показывает, какова должна быть цена фактора 1, чтобы при постоянном объеме использования другого фактора, равном , спрос на фактор 1 составил x1 единиц. |
18.9. Максимизация прибыли и отдача от масштаба
Существует важная взаимосвязь между максимизацией прибыли конкурентной фирмой и отдачей от масштаба. Предположим, что фирма выбрала максимизирующий прибыль в длительном периоде выпуск y* = f(, ), который она производит, используя количества факторов производства, равные (, ).
Тогда прибыль фирмы задается выражением
p* = py* w1 w2.
Предположим, что производственная функция этой фирмы характеризуется постоянной отдачей от масштаба и что в равновесии фирма имеет положительную прибыль. Рассмотрим, что произойдет, если фирма удвоит объем использования ею фактора производства. Согласно гипотезе постоянной отдачи от масштаба это удвоило бы объем выпуска фирмы. Что произошло бы при этом с прибылью?
Нетрудно увидеть, что прибыль фирмы также удвоилась бы. Но это противоречит предположению о том, что исходный выбор фирмы максимизировал ее прибыль! Мы получили это противоречие, предположив, что исходный уровень прибыли был положительным; если бы исходный уровень прибыли был нулевым, проблемы бы не возникло: дважды ноль по-прежнему ноль.
Эти рассуждения показывают, что в длительном периоде единственным разумным уровнем прибыли конкурентной фирмы с постоянной отдачей от масштаба при всех уровнях выпуска является нулевой уровень прибыли. (Разу-меется, если в длительном периоде фирма имеет отрицательную прибыль, ей следует прекратить деятельность.) Большинство людей находит это заявление удивительным. Ведь смысл деятельности фирм в максимизации прибыли, не правда ли? Как же может случиться, что в длительном периоде они получают лишь нулевую прибыль?
Представьте себе, что бы могло произойти с фирмой, которая попыталась бы бесконечно расширять свою деятельность. Она могла бы попасть в одну из следующих трех ситуаций.
1) Эта фирма могла бы стать настолько крупной, что ей уже не удавалось бы функционировать по-настоящему эффективно. Это равносильно утверждению о том, что на самом деле фирму не характеризует постоянная отдача от масштаба при всех объемах выпуска. С течением времени из-за проблем с координацией деятельности такая фирма могла бы вступить в область убывающей отдачи от масштаба.
2) Фирма могла бы укрупниться настолько, что стала бы полностью господствовать на рынке производимого ею продукта. В этом случае у нее нет причин вести себя так, как положено конкурентной фирме, а именно: считать цену выпуска заданной. Вместо этого такой фирме было бы разумнее попытаться использовать свои размеры для оказания влияния на рыночную цену. Модель конкурентной максимизации прибыли уже не являлась бы больше разумным способом поведения данной фирмы, поскольку у нее практически не было бы конкурентов. Мы обратимся к исследованию моделей поведения фирмы, более подходящих для подобной ситуации, когда будем изучать монополию.
3) Если одна фирма может получать положительную прибыль, пользуясь технологией с постоянной отдачей от масштаба, это может делать и любая другая фирма, имеющая доступ к той же самой технологии. Если одна фирма хочет расширять свой выпуск, так же могут поступить и другие фирмы. Но если все фирмы будут расширять выпуск, это, разумеется, собьет цену выпуска и понизит прибыли всех фирм отрасли.
18.10. Выявленная прибыльность
Когда максимизирующая прибыль фирма производит выбор факторов производства и объемов выпуска, она тем самым обнаруживает два момента: во-первых, выбранные объемы факторов производства и выпусков представляют собой выполнимую производственную программу, а во-вторых, эти выбранные комбинации более прибыльны, чем другие выполнимые варианты выбора, на которых могла бы остановиться фирма. Исследуем эти моменты более детально.
Предположим, что есть две комбинации факторов и выпуска, выбранные фирмой при двух разных наборах цен. В момент времени t фирма сталкивается с ценами () и выбирает комбинацию (). В момент времени s она сталкивается с ценами () и выбирает комбинацию (). Если с момента t до момента s производственная функция фирмы не изменилась и фирма максимизирует прибыль, то должно соблюдаться:
(18.2)
и
. (18.3)
Иначе говоря, прибыль, получаемая фирмой при ценах периода t, должна быть больше, чем если бы при этих ценах фирма использовала производственную программу периода s, и наоборот. В случае нарушения любого из этих двух неравенств фирма не могла бы максимизировать прибыль (при условии неизменности технологии).
Таким образом, если когда-либо мы столкнемся в наших наблюдениях с двумя временными периодами, в которых эти неравенства нарушаются, мы будем знать, что фирма не максимизировала прибыль по крайней мере в одном из этих периодов. Соблюдение этих неравенств является буквально аксиомой поведения, максимизирующего прибыль, поэтому его можно назвать слабой аксиомой максимизации прибыли (Weak Axiom of Profit Maximization (WAPM)).
Если сделанный фирмой выбор удовлетворяет WAPM, можно вывести полезное утверждение из области сравнительной статики о том, как ведут себя спрос на факторы и предложение выпуска при изменении цен. Поменяв местами обе стороны неравенства (18.3), получим при этом
(18.4)
а прибавив неравенство (18.4) к неравенству (18.2), получим
(pt ps)yt () ()
(pt ps)ys () (). (18.5)
Теперь преобразуем это неравенство:
(pt ps)(yt ys) ()() ()() 0. (18.6)
Наконец, определим изменение цен Dp = (pt ps), изменение объема выпуска, Dy = (yt ys) и т.д., чтобы найти
DpDy Dw1Dx1 Dw2Dx2 0. (18.7)
Это неравенство наш конечный результат. Оно свидетельствует, что изменение цены выпуска, умноженное на изменение объема выпуска, минус изменение цены каждого фактора, умноженное на изменение количества этого фактора, должно быть неотрицательной величиной. Это неравенство вытекает исключительно из определения максимизации прибыли. И тем не менее, оно содержит все результаты сравнительной статики в отношении выбора, максимизирующего прибыль!
Например, предположим, что мы рассматриваем ситуацию, в которой цена выпускаемой продукции меняется, а цена каждого фактора остается постоянной. Если w1 = w2 = 0, то неравенство (18.7) сводится к
DpDy 0.
Следовательно, если цена выпускаемой продукции растет, так что p > 0, то изменение объема выпуска также должно быть неотрицательным y 0. Это говорит нам о том, что кривая предложения конкурентной фирмы, максимизирующая прибыль, должна иметь положительный (или по крайней мере нулевой) наклон.
Аналогичным образом, если цена выпускаемой продукции и цена фактора 2 остаются постоянными, то неравенство (18.7) приобретает вид
w1x1 0,
или, что то же самое,
w1x1 0.
Следовательно, если цена фактора 1 растет, так что w1 > 0, то из неравенства (18.7) должно следовать, что спрос на фактор 1 будет падать (или в крайнем случае останется без изменений), так что x1 0. Это означает, что кривая спроса на фактор должна быть убывающей функцией цены фактора: кривые спроса на факторы имеют отрицательный наклон.
Из простого неравенства, выражающего WAPM, и его следствия в виде неравенства (18.7) вытекают серьезные наблюдаемые ограничения в отношении возможного поведения фирмы. Естественно спросить, исчерпываются ли этим ограничения, налагаемые на поведение фирмы моделью максимизации прибыли. Другими словами, если мы наблюдаем ряд вариантов выбора фирмы и если эти варианты выбора удовлетворяют WAPM, то можем ли мы построить оценку технологии, для которой наблюдаемые варианты выбора являются максимизирующими прибыль? Оказывается, да. На рис.18.4 показано, как построить такую технологию.
Рис. 18.4 |
Построение возможной технологии. Если наблюдаемые варианты выбора максимизируют прибыль при каждом наборе цен, то мы можем дать оценку формы технологии, определявшей эти варианты выбора, используя изопрофитные линии. |
Чтобы графически проиллюстрировать проведенные рассуждения, предположим, что имеются один фактор производства и один выпуск. Допустим, что перед нами выбор, наблюдаемый в период t, и выбор, наблюдаемый в период s, обозначенные соответственно () и (). Мы можем подсчитать для каждого периода прибыль s и t и нанести на график все комбинации y и x1, которые приносят эту прибыль.
Иными словами, мы графически представляем две изопрофитные линии
pt = pty x1
и
ps = psy x1.
Точкам, лежащим над изопрофитной линией для периода t, соответствуют прибыли выше t по ценам периода t, а точкам, лежащим над изопрофитной линией для периода s, соответствуют прибыли выше s по ценам периода s. Соблюдение WAPM требует, чтобы выбор в период t лежал под изопрофитной линией для периода s, а выбор в период s под изопрофитной линией для периода t.
Если это условие удовлетворяется, то нетрудно построить технологию, для которой (yt, ) и (ys, ) комбинации, максимизирующие прибыль. Просто возьмите окрашенное пространство под указанными двумя линиями. Это и есть все комбинации фактора 1 и выпуска, которые приносят прибыль более низкую, чем наблюдаемые выбранные комбинации при наборах цен обоих периодов.
Доказательство того, что данная технология порождает наблюдаемые выбранные комбинации количества фактора производства и объема выпуска как комбинации, максимизирующие прибыль, геометрически очевидно. При ценах (pt, ) выбранная комбинация (yt, ) лежит на самой высокой изопрофитной линии из возможных, и то же самое относится к комбинации, выбранной для периода s.
Таким образом, когда наблюдаемые варианты выбора удовлетворяют WAPM, мы можем "воссоздать" оценку технологии, которая могла бы обусловить появление таких наблюдаемых вариантов выбора. В этом смысле любые наблюдаемые варианты выбора, совместимые с WAPM, могли бы быть комбинациями, максимизирующими прибыль. По мере наблюдения все большего числа выбранных фирмой комбинаций количества фактора производства и объема выпуска мы получаем, как показано на рис.18.5, все более точную оценку производственной функции.
Эта оценка производственной функции может использоваться для прогнозирования поведения фирмы в иной среде или для других целей экономического анализа.
Оценка технологии. По мере наблюдения все большего числа выбранных комбинаций количества фактора производства и объема выпуска мы получаем все более точную оценку производственной функции. |
Рис. 18.5 |
ПРИМЕР: Как реагируют фермеры на поддержание уровня цен?
В настоящее время правительство США ежегодно тратит от 40 до 60 млрд. долл. на поддержку фермеров. Большая часть этой суммы используется на субсидирование производства различных продуктов, включая молоко, пшеницу, кукурузу, соевые бобы и хлопок. Время от времени предпринимаются попытки сократить или отменить эти субсидии. Результатом отмены этих субсидий было бы сокращение цены продукта, получаемой фермерами.
Фермеры иногда доказывают, что отмена субсидий на молоко, например, не привела бы к сокращению общего предложения молока, поскольку фермеры, владеющие молочными хозяйствами, предпочли бы в этом случае увеличить свои стада и предложение молока с тем, чтобы сохранить свой прежний уровень жизни.
Однако если поведение фермеров направлено на максимизацию прибыли, это невозможно. Как было показано выше, логика максимизации прибыли требует, чтобы понижение цены выпускаемой продукции приводило к сокращению ее предложения: если Dp отрицательна, то Dy также должна быть отрицательной.
Возможно, конечно, что мелкие семейные фермы руководствуются иными целями, нежели просто максимизация прибыли, но крупные фермы системы агробизнеса скорее всего преследуют цель максимизации прибыли. Поэтому "извращенная" реакция на отмену субсидий, о которой шла речь выше, могла бы иметь место лишь в ограниченных пределах, если бы вообще была возможной.
18.11. Минимизация издержек
Если фирма максимизирует прибыль и решает производить какой-то объем выпуска y, то тогда она должна минимизировать издержки производства y. Если бы это было не так, то имелся бы какой-то более дешевый способ производства y единиц выпуска, а это означало бы, что поначалу фирма не максимизировала прибыль.
Эта простая мысль оказывается весьма полезной при изучении поведения фирмы. Удобно, оказывается, разбить решение задачи максимизации прибыли на две стадии: вначале мы выясняем, как минимизировать издержки производства любого желаемого объема выпуска y, а затем какой объем выпуска в действительности является максимизирующим прибыль. Мы начнем решать эту задачу в следующей главе.
Краткие выводы
Постоянные факторы это такие факторы, количество которых не зависит от объема выпуска; переменные факторы такие факторы, используемое количество которых изменяется по мере изменения объема выпуска.
В коротком периоде некоторые факторы должны использоваться в предопределенных количествах. В длительном периоде все факторы могут изменяться.
Если фирма максимизирует прибыль, то стоимость предельного продукта каждого переменного фактора должна равняться цене этого фактора.
Логика максимизации прибыли подразумевает, что функция предложения конкурентной фирмы должна быть возрастающей функцией цены выпускаемой продукции и что функция спроса на каждый фактор должна быть убывающей функцией цены этого фактора.
Если конкурентная фирма демонстрирует постоянную отдачу от масш-таба, то ее прибыль в длительном периоде должна равняться нулю.
ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ
Что произошло бы с прибылью фирмы, неизменно демонстрирующей возрастающую отдачу от масштаба, если бы при постоянных ценах она удвоила масштаб своих операций?
Что произошло бы с совокупной прибылью фирмы, если бы эта фирма, имея убывающую отдачу от масштаба при всех объемах выпуска, разделилась на две более мелкие фирмы равного размера?
Огородник восклицает: "Я вырастил продукции более чем на 20 долларов, и это обошлось мне всего в 1 доллар, затраченный на семена!" Какие за-мечания мог бы высказать циничный экономист по поводу этой ситуа-ции, не считая того факта, что большая часть выращенной им продукции цукини?
Всегда ли максимизация прибыли фирмы идентична максимизации ры-ночной стоимости фирмы?
Если pMP1 w1, то что следует сделать фирме, чтобы повысить прибыль увеличить количество фактора 1 или уменьшить его ?
Предположим, что фирма максимизирует прибыль в коротком периоде, используя переменный фактор x1 и постоянный фактор x2. Если цена фактора x2 снижается, то что произойдет с использованием фирмой фактора x1? Что произойдет с уровнем прибыли фирмы?
Может или не может иметь технологию с постоянной отдачей от масштаба максимизирующая прибыль конкурентная фирма, получающая положительную прибыль в длительном периоде.
ПРИЛОЖЕНИЕ
Задача максимизации прибыли фирмы имеет вид
max pf(x1, x2) w1x1 w2x2.
x1, x2
Условия первого порядка для нее таковы:
p w1 = 0,
p w2 = 0.
Это те же самые условия, что и условия равенства стоимости предельного продукта фактора цене этого фактора, приведенные в тексте. Посмотрим, как выглядит поведение фиры, максимизирующее прибыль в случае производственной функции КоббаДугласа.
Предположим, что функция КоббаДугласа задана в виде f(x1, x2) = . Тогда указанные два условия первого порядка принимают вид:
w1 = 0,
w2 = 0.
Умножим первое уравнение на x1, а второе на x2 и получим
w1x1 = 0,
w2x2 = 0.
Используя y = для обозначения объема выпуска этой фирмы, мы можем переписать эти выражения в виде
pay = w1x1,
pby = w2x2.
Выразив из них x1 и x2, мы получаем
,
.
Мы получили выражения для спроса на два фактора производства как функции выбора оптимального выпуска. Но нам все еще надо найти выражение для оптимального выбора объема выпуска. Подставляя выражения для оптимального спроса на факторы в производственную функцию КоббаДугласа, мы получаем выражение
= y.
Вынеся y за скобки в левой части уравнения, получаем
ya + b = y,
или
y = .
Это выражение для функции предложения фирмы с производственной функцией КоббаДугласа. Наряду с выведенными выше функциями спроса на факторы оно дает нам полное решение задачи максимизации прибыли.
Обратите внимание на то, что когда фирма демонстрирует постоянную отдачу от масштаба (т.е. a + b = 1), эта функция предложения становится неопределенной. До тех пор пока цены факторов и выпуска совместимы с нулевой прибылью, фирме с технологией КоббаДугласа безразличен объем ее предложения.