Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

центров сна которое вызывает общее снижение функций организма активные теории сна

Работа добавлена на сайт samzan.net:


Глава 13.  СОН И СНОВИДЕНИЯ

13.1. АКТИВНОЕ НАСТУПЛЕНИЕ СНА ИЛИ ЛИШЕНИЕ БОДРСТВОВАНИЯ?

Уже в самых ранних исследованиях механизмов сна четко намечаются две основные точки зрения на эту проблему. Первая — сон возникает в результате активного процесса, возбуждения определенных структур («центров сна»), которое вызывает общее снижение функций организма (активные теории сна). Вторая — это пассивные теории сна, или теории деафферентации, согласно которым сон наступает пассивно в результате прекращения действия каких-то факторов, необходимых для поддержания бодрствования. Различия между этими направлениями удачно определил Н. Клейтман, писавший, что «заснуть» и «не суметь остаться бодрствующим» — это не одно и то же, так как первое предполагает активное действие, а второе — пассивное устранение активного состояния.

В первых неврогенных теориях сна, возникших в конце XIX и начале XX столетия в результате клинических наблюдений после эпидемии летаргического энцефалита, отражаются эти две противоположные тенденции. Так, Л. Маутнер пришел к выводу, что причиной наступления сна при этом заболевании была опухоль в области среднего мозга, вызывавшая сдавление афферентных путей и прекращение потока сенсорных импульсов в высшие отделы мозга. Фон Экономо же считал, что сон наступает в результате торможения таламуса и коры больших полушарий «центром сна». Исходя из противоположного ха-

242

рактера ведущих симптомов заболевания (сонливости или бессонницы) он полагал, что центр сна состоит, по крайней мере, из двух частей — каудальной части, являющейся как бы центром бодрствования, и ростральной, действующей как центр сна.

Первыми экспериментальными исследованиями, свидетельствующими о существовании центра сна, явились работы В. Гесса. Показав, что слабое электрическое раздражение четко ограниченной области промежуточного мозга у подопытных кошек вызывало сон со всеми подготовительными фазами (потягивание кошки, умывание, принятие характерной позы), В. Гесс высказал предположение, что существует центр, возбуждение которого обеспечивает наступление естественного сна. В дальнейшем опыты В. Гесса были подтверждены многочисленными исследователями, которые вызывали наступление сна у подопытных животных при помощи электрического и химического раздражения гипоталамуса и прилежащих структур, и теория о центре сна получила значительное признание.

Однако против подобного локализационистского объяснения механизма возникновения сна решительно выступал И. П. Павлов. Он рассматривал сон как результат торможения коры больших полушарий; при этом его теория сна не исключала участия и подкорковых структур в возникновении сна. В качестве основных этапов в дальнейшем развитии «пассивных» теорий можно отметить работы Н. Клейтмана, который пришел к выводу о том, что сон — это «легко обратимая пассивность высших функциональных центров коры», которая наступает в результате уменьшения потока афферентной импульсации. Эксперименты Ф. Бремера с поперечными перерезками на разных уровнях ствола мозга кошки, показавшие, что межколликулярная перерезка приводит к картине сна на ЭЭГ (спящий cerveau isole), тогда как перерезка на границе головного и спинного мозга не изменяет картину бодрствования на ЭЭГ (бодрствующий encephale isole), подтверждали представление о сне как результате деафферентации коры больших полушарий. В результате опытов с разрушением различных областей промежуточного мозга у обезьян, приводивших к наступлению сна, С. Рэнсон пришел к выводу о том, что гипоталамус является центром «интеграции эмоционального выражения» и сон наступает в результате периодического снижения активности этого центра бодрствования.

Открытие Дж. Моруцци и X. Мэгуном в 1949 г. восходящего активирующего влияния неспецифической ретикулярной системы (ВРАС) значительно усилило позиции пассивных теорий сна. Поддержание бодрствующего состояния объяснялось теперь тоническим влиянием ВРАС. Дальнейшие исследования привели к открытию и других активирующих систем — диффузной и специфической тала-мической систем и активирующих структур заднего гипоталамуса (см. гл. 8).

Впоследствии в целом ряде работ было показано, что раздражение ретикулярных структур ствола мозга может вызывать не только пробуждение, но и сон. Так, низкочастотное раздражение почти всех исследуемых пунктов ретикулярной формации (область среднего мозга, моста и продолговатого мозга) у кошек вызывало наступление сна, что позволило Дж. Росси и А. Цанкетти предположить существование в стволе мозга двух антагонистических механизмов — десинхронизиру-

243

ющего (пробуждающего) и синхронизирующего (вызывающего сон), — поэтому сон — это не пассивное состояние отсутствия бодрствования, а результат активного торможения деятельности мозга. Моруцци также привел экспериментальные доказательства того, что в нижних отделах ствола мозга имеются синхронизирующие структуры, действующие как антагонисты ВРАС. К синхронизирующим структурам, раздражение которых может вызвать наступление сна у животного, позже были отнесены и хвостатое ядро, и неспецифическая таламическая система, и структуры базальной части переднего мозга, в частности преоптическая область (подробнее см. обзоры [Вейн и др., 1971; Шевченко, 1971; Блум и др., 1988]).

Одна из попыток создания единой теории сна была предпринята П. К. Анохиным [1945,1968]. Состояние сна он представлял как результат проявления целостной деятельности организма, строго координирующей корковые и подкорковые структуры в единую функциональную систему. В своей гипотезе П. К. Анохин исходил из того, что гипоталамические «центры сна» находятся под тоническим угнетающим влиянием со стороны коры больших полушарий. Именно поэтому при ослаблении этого влияния вследствие снижения рабочего тонуса корковых клеток («активный сон» по Павлову) гипоталамические структуры как бы «высвобождаются» и определяют всю ту сложную картину перераспределения вегетативных компонентов, которая характерна для состояния сна. При этом гипоталамические центры оказывают угнетающее влияние на восходящую активирующую систему, прекращая доступ в кору всего комплекса активирующих воздействий (и наступает «пассивный сон» по Павлову). Эти взаимодействия представляются циклическими, поэтому состояние сна может быть вызвано искусственно (или в результате патологического процесса) воздействием на любую часть этого цикла (рис. 13.1).

Рис. 13.1. Схема взаимодействия «центров сна» и «пробуждающих» структур при бодрствовании и наступлении сна (по П. К. Анохину):

А. Бодрствование. Корковые влияния (I) тормозят «центры сна» (II), и восходящие активирующие влияния ретикулярных структур (III) и возбуждения, идущие по лемнисковым путям (IV), свободно достигают коры. Б. Сон. Заторможенные отделы коры (I) перестают оказывать сдерживающие влияния на «центры сна» (II), и они блокируют восходящие активирующие влияния (III), не затрагивая возбуждений по лемнисковым путям (IV)

244

В качестве иллюстрации этой гипотезы рассматривается сон новорожденного — поскольку в коре еще не имеется достаточно зрелых элементов для активного нисходящего тормозного влияния на уже значительно созревшие гипоталамические структуры, основным состоянием новорожденного является состояние сна. Причиной пробуждения является голод — возбуждаемые «голодной» кровью гипоталамические структуры реципрокно затормаживают «центры сна», устраняя их угнетающее влияние на активирующие системы, и ребенок просыпается. После насыщения восстанавливаются прежние соотношения, и ребенок снова засыпает.

В настоящее время после открытия целого ряда активирующих и синхронизирующих структур мозга, а также многочисленных пептидов и нейротрансмиттеров (см. далее), участвующих в регуляции цикла «сон—бодрствование», эта схема наполняется новым содержанием.

13.2. ЕДИНЫЙ ПРОЦЕСС ИЛИ РАЗЛИЧНЫЕ СОСТОЯНИЯ?

В 1953 г. Е. Азеринский и Н. Клейтман открыли феномен «быстрого» сна, и тем самым — новую эру в изучении сна. Если раньше пассивные и активные теории регуляции сна рассматривали бодрствование как состояние, противоположное сну, а сон сам по себе считался единым феноменом, то теперь идея монолитного сна оказалась разрушенной и стали изучаться механизмы как медленного, так и быстрого сна. В итоге в настоящее время регуляторные процессы медленного сна связываются со структурами промежуточного мозга, а быстрого сна — главным образом со стволовыми структурами моста.

В 1960-1970 гг. М. Жуве, основываясь на обширных исследованиях с пересечениями и повреждениями мозга, а также фармакологических и нейроанатомических данных, предложил моноаминергическую теорию регуляции цикла «сон—бодрствование», согласно которой медленный и быстрый сон связаны с активностью различных групп моноаминергических нейронов — в регуляцию медленного сна включены серотонинергические нейроны комплекса шва, в то время как норадренергические нейроны ответственны за наступление быстрого сна. Впоследствии было показано участие различных нейротрансмиттеров в регуляции медленного и быстрого сна. В табл. 13.1 представлены эти данные [Drucker-Colin, Merchant-Nancy, 1995].

Различие механизмов медленного и быстрого сна подтверждается также и в нейрогуморальных концепциях сна, основоположником которых является А. Пьерон. Еще в начале текущего столетия, на основании результатов своих экспериментов на собаках, у которых сон вызывался введением спинномозговой жидкости других собак, лишенных сна в течение нескольких суток, А. Пьерон предположил, что наступление сна связано с накоплением в организме определенных веществ

245

Таблица 13.1 Характер влияния нейротрансмиттеров на сон

Вещество

Относительное количество

Влияние на

медленный сон

быстрый сои

Серотонин

избыток недостаток

+

Норадреналин

избыток недостаток

нет

+

разнонаправл.

Ацетилхолин

избыток недостаток

нет

+

Дофамин

избыток недостаток

+

+

Гистамин

избыток недостаток

+

нет

нет

ГАМК

избыток

+

разнонаправл.

(гипнотоксинов). Впоследствии «фактор сна» многочисленные исследователи выделяли из спинномозговой жидкости, крови и мочи различных животных, и с каждым годом увеличивался список обнаруженных в организме веществ, связанных со сном. В табл. 13.2 представлены все пептиды, изучавшиеся на предмет влияния на сон. Р. Друкер-Колин и Н. Мерчант-Нэнси [Drucker-Colin, Merchant-Nancy, 1995], суммировав полученные данные, объясняют обилие этих веществ тем, что все они действуют через посредство какого-то еще неизвестного механизма, ответственного за наступление сна, а единственного фактора сна в понимании А. Пьерона реально не существует.

Ко всем перечисленным веществам нужно добавить мелатонин, который выделяется эпифизом только ночью и также играет важную роль в поддержании сна (о механизме действия различных групп веществ на сон см. обзор [Lemoine, Allain, 1996]).

Таким образом, результаты обширных нейрофизиологических, нейрохимических и нейрогуморальных исследований свидетельствуют не только о сложности и многообразии взаимодействия различных факторов в регуляции цикла «сон—бодрствование», но и о различии механизмов медленного и быстрого сна.

Таблица 13.2 Характер влияния пептидов на сон

Вещество

Влияние на

медленный сон

быстрый сон

Нейропептиды

Вазоактивный кишечный полипептид

нет

+

ССК-8 (холецистокининовый октапептид)

+

+

Эндорфины, энкефалины

нет

нет

Аргинин-вазотоцин

+

нет

Ангиотензин

+

нет

Ренин

нет

DSIP (пептид, вызывающий медленный сон)

+

нет

Интерлейкин-1

+

нет

Интерферон-а2

+

нет

Мурамил-дипептид

+

нет

Субстанция Р

нет

Гормон роста и его производные

нет

+

Фактор, высвобождающий гормон роста

+

+

Кортикотропино-подобный пептид

нет

+

Соматостатин

нет

+

a-MSH

+

нет

Инсулин

+

+

АКТГ (адренокортикотропный гормон)

-

-

Другие вещества

Спинномозговая жидкость депривированных животных

нет

+

Простагландин D2

+

нет

Уридин

+

нет


247

13.3. СТАДИИ МЕДЛЕННОГО СНА И БЫСТРЫЙ СОН

Основные данные, полученные за годы многочисленных и разнообразных исследований сна, сводятся к следующему. Сон — не перерыв в деятельности мозга, это просто иное состояние. Во время сна мозг проходит через несколько различных фаз, или стадий, активности, повторяющейся с примерно полуторачасовой цикличностью. Сон состоит из двух качественно различных состояний, называемых медленным и быстрым сном. Они отличаются по суммарной электрической активности мозга (ЭЭГ), двигательной активности глаз (ЭОГ), тонусу мышц и многочисленным вегетативным показателям (частоте сердечных сокращений и дыхания, электрической активности кожи и т. д.; см. гл. 2).

Медленный сон подразделяется на несколько стадий, выделенных на основании изменений ЭЭГ (рис. 13.2) и отличающихся по глубине. В первой стадии исчезает основной биоэлектрический ритм бодрствования — альфа-ритм. Он сменяется низкоамплитудными колебаниями различной частоты. Это стадия дремоты, засыпания. При этом у человека могут возникать сноподобные галлюцинации. Вторая стадия (поверхностный сон) характеризуется регулярным появлением веретенообразного ритма 14-18 колебаний в секунду («сонные» веретена). С появлением первых же веретен происходит отключение сознания; в паузы между веретенами человека легко разбудить. Третья и четвертая стадии объединяются под названием дельта-сна, потому что во время этих стадий на ЭЭГ появляются высокоамплитудные медленные волны — дельта-волны. В третьей стадии они занимают от 30 % до 50 % всей ЭЭГ. В четвертой стадии дельта-волны занимают более 50 % всей ЭЭГ. Это наиболее глубокая стадия сна, здесь наивысший порог пробуждения, самое сильное отключение от внешнего мира. При пробуждении в этой стадии человек с трудом ориентируется, в наибольшей степени компрессирует время (недооценивает длительность предшествующего сна). Дельта-сон преобладает в первую половину ночи. При этом снижается мышечный тонус, становятся регулярными и урежаются дыхание и пульс, понижается температура тела (в среднем на 0,5°), отсутствуют движения глаз, может регистрироваться спонтанная кожно-гальваническая реакция.

Быстрый сон — самая последняя стадия в цикле сна. Она характеризуется быстрыми низкоамплитудными ритмами ЭЭГ, что делает ее похожей на ЭЭГ при бодрствовании. Усиливается мозговой кровоток, на фоне глубокого мышечного расслабления наблюдается мощная активация вегетатики. Помимо тонических компонентов стадии быстрого сна, выявляются фазические компоненты — быстрые движения глазных яблок при закрытых веках (БДГ, или REM — rapid eye movements), мышечные подергивания в отдельных группах мышц, резкие изменения частоты сердечных сокращений (от тахикардии к брадикардии) и дыхания (серия частых вдохов-выдохов, потом пауза), эпизодические подъемы и падения кровяного давления, эрекция полового члена у мужчин и клитора у женщин. Порог

248

пробуждения колеблется от высокого до низкого. Именно в этой стадии возникает большая часть запоминающихся сновидений. Синонимы быстрого сна — парадоксальный (активированный характер ЭЭГ при полной мышечной атонии), REM, или БДГ-сон, ромбэнцефальный (в связи с локализацией регулирующих механизмов).

Весь ночной сон состоит из 4-5 циклов, каждый из которых начинается с первых стадий медленного и завершается быстрым сном. Каждый цикл продолжается около 90-100 мин. В двух первых циклах преобладает дельта-сон, эпизоды быстрого сна относительно коротки. В последних циклах преобладает быстрый сон, а дельта-сон резко сокращен и может отсутствовать (рис. 13.2). В отличие от многих животных, человек не просыпается после каждого цикла сна. Структура сна у здоровых людей более или менее сходна — 1-я стадия занимает 5-10 % сна, 2-я — 40-50 %, дельта-сон - 20-25 %, быстрый сон - 17-25 %.

Рис. 13.2. Фазы сна:

ЭЭГ при различных фазах сна (вверху). Изменения глубины сна на протяжении ночи, удлинение периодов БДГ-сна (внизу) [по Блуму и др., 1988]

249

Таким образом, каждую ночь 4-5 раз мы видим сны, и «разглядывание» сновидений занимает в общей сложности от 1 до 2 ч. Люди, утверждающие, что они видят сновидения очень редко, просто не просыпаются в фазе сновидений. Интенсивность самих сновидений, степень их необычности и эмоциональной насыщенности может быть различной, но факт их регулярного возникновения во время сна не вызывает сомнений.

Распространенное в прошлом представление о том, что сон необходим для «отдыха» нейронов головного мозга и характеризуется снижением их активности, исследованиями нейрональной активности не подтвердились. Во время сна в целом не происходит уменьшения средней частоты активности нейронов по сравнению с состоянием спокойного бодрствования. В быстром же сне спонтанная активность нейронов может быть выше, чем в напряженном бодрствовании. В медленном и быстром сне активность различных нейронов организована по-разному (см. гл. 8).

Кроме электрофизиологических, для отдельных стадий сна характерны определенные гормональные сдвиги. Так, во время дельта-сна увеличена секреция гормона роста, стимулирующего тканевой обмен. Во время быстрого сна усилена секреция гормонов коры надпочечников, которая в бодрствовании возрастает при стрессе. Интенсивность энергетического обмена в мозговой ткани во время медленного сна почти такая же, как в состоянии спокойного бодрствования, а во время быстрого сна значительно выше.

Таким образом, можно утверждать, что мозг активен во время сна, хотя эта активность качественно иная, чем при бодрствовании, и в разных стадиях сна имеет свою специфику.

13.4. СОН В ОНТО- И ФИЛОГЕНЕЗЕ

В онтогенезе соотношение «сон—бодрствование» изменяется. Так, у новорожденных состояние бодрствования составляет лишь незначительную часть суток, и значительную часть сна занимает быстрый сон. По мере взросления уменьшается общее количество сна, изменяется соотношение фаз внутри цикла сна — сокращается быстрый сон и относительно возрастает медленный сон, к 14 годам цикл сна достигает 90 мин. У взрослого человека, как уже говорилось, быстрый сон занимает около 1/4 всего времени сна. В старческом возрасте происходит уменьшение общего количества сна, при этом сокращается и медленный, и быстрый сон. После 75 лет часто наблюдается невротическая бессонница — редуцируется медленный сон, сон становится прерывистым, нарушаются циклы сна.

Чередование периодов активности и покоя происходит у всех живых существ;

возможно, периоды покоя — это аналоги медленного сна. В том или ином виде сон наблюдается у всех позвоночных. Но сон, состоящий из нескольких циклов, внутри которых развертываются стадии медленного и быстрого сна, присущ только теплокровным. По своей организации сон млекопитающих и птиц не отличается от сна человека, хотя медленный сон у животных менее дифференцирован, процентное соотношение медленного и быстрого сна различно у разных животных, а циклы сна, как правило, короче. «Короткая интенсивная жизнь идет рука об руку с долгим сном и коротким циклом сна» [Борбели, 1989, с. 97]. У крысы цикл сна продолжается 12 мин, у собаки — 30 мин, у слона — около 2 ч. Особенности организации сна связаны с экологией животных.

У птиц периоды быстрого сна очень короткие — при этом, в связи с полной мышечной атонией, опускается голова, падают крылья. Если птица сидит на ветке, то при падении тонуса мышц ног сжимаются пальцы, и птица может спать, не падая с ветки.

Сон копытных также связан с их образом жизни — стадностью, боязнью хищников — и имеет характер «рваного» сна (после каждого цикла сна животное поднимает голову и осматривается, поэтому в каждый данный момент некоторые особи обязательно бодрствуют). Характер растительной пищи требует длительного пережевывания, и поверхностные стадии сна протекают у жвачных во время жевания.

У норных млекопитающих хорошо выражена цикличность, они много спят, и быстрый сон занимает до 1/3 всего времени сна. Для многих из них характерна сезонная спячка. Она характеризуется потерей способности к терморегуляции, резким уменьшением количества дыхательных движений и сердечных сокращений, падением общего уровня обмена веществ. У некоторых крупных млекопитающих (медведи, еноты, отчасти барсуки) наблюдается сезонный сон, или факультативная спячка. В этом случае температура тела, количество дыхательных движений и общий уровень обменных явлений снижаются мало. При изменении внешних условий подобный сон легко может быть прерван.

Особенности сна морских млекопитающих также связаны с их экологией. Для каждого дыхательного акта как во время сна, так и во время бодрствования они должны всплыть, чтобы выставить ноздри в воздух. В зависимости от образа жизни возникли разные формы адаптации. Так, при электрофизиологической регистрации сна у дельфинов Л. Мухаметов [1985] обнаружил феномен «однополушарного» сна — дельта-волны возникали только в одном полушарии (поочередно в правом или левом). При этом в другом полушарии картина ЭЭГ соответствовала поверхностным стадиям медленного сна или бодрствованию. ЭЭГ, соответствующая поверхностным стадиям медленного сна, могла наблюдаться и в обоих полушариях одновременно; признаков быстрого сна выявить не удалось. Такой же «однополушарный» медленный сон появляется у так называемых ушастых тюленей (котики и сивучи), когда они находятся в бассейне и не могут выйти на сушу. Когда же они спят на суше, в обоих полушариях у них наблюдается ЭЭГ, свойственная обычному медленному сну; регистрируется много эпизодов быстрого сна.

251

У тюленей и морских львов, которые только часть жизни проводят в воде, весь цикл сна развивается в течение дыхательной паузы. Они хорошо «продыхиваются», делая несколько глубоких вдохов, и ныряют. За 15-20 мин происходит смена стадий медленного сна и быстрый сон, и они выныривают для следующего «продыхивания».

Таким образом, сон является жизненно необходимым для высокоорганизованных животных. При этом особенности сна различных животных отражают его приспособительный характер к условиям обитания и факторам внешней среды.

13.5. ПОТРЕБНОСТЬ В СНЕ

Многие люди хотели бы спать меньше, так как сон, по их мнению, — это потерянное для жизни время. Другие, наоборот, хотели бы спать больше, так как недостаточно хорошо себя чувствуют. «Мы хронически недосыпаема; «Должны ли мы больше спать?» — это названия двух статей, опубликованных недавно в журнале Sleep, отражающих полярное отношение к вопросу о длительности сна [Bonnet, Arand, 1995; Harrison, Home, 1995]. Одна из обычных сентенций в медицине сна состоит в том, что наше современное общество сильно недосыпает, и это отражается на состоянии человека и общества, являясь в значительной мере причиной аварий и катастроф. Эта точка зрения подтверждается многочисленными исследованиями, свидетельствующими о негативных эффектах недосыпания на настроение испытуемых и выполнение ими психомоторных задач. С использованием различных психологических тестов показано, что если длительность ночного сна уменьшена на 1,3-1,5 ч, то это сказывается на состоянии бдительности днем. Последние исследования по выяснению необходимой длительности сна [Bonnet, Arand, 1995] показали, что потребность сна у молодежи в среднем составляет 8,5 ч за ночь. Продолжительность ночного сна в 7,2-7,4 ч является недостаточной, а сон менее 6,5 ч в течение длительного времени может подорвать здоровье. Другая точка зрения состоит в том, что у большинства людей нет хронического недосыпания, но они могут спать больше, также как мы едим и пьем свыше физиологических потребностей. Основанием служат значительные индивидуальные вариации потребности во сне, а также тот факт, что после длительного сна улучшение дневной бдительности минимально, а усталость успешно устраняется кратковременными перерывами в работе.

Эффект «накопления нехватки сна» полностью исчезает уже после первого 10-часового периода «восстановительного» сна. Поэтому хроническое недосыпание по рабочим дням и пересыпание по утрам в выходные — явления взаимосвязанные. Тем не менее в заявлении созданного в США комитета «Катастрофы,

252

сон и общественная политика» подчеркивается, что даже небольшое хроническое недосыпание на 1-2 ч чревато серьезными нарушениями в работе, если она постоянно требует высокого уровня сосредоточенности и внимания [Ковальзон, 1989].

13.6. ДЕПРИВАЦИЯ СНА

Эксперименты с депривацией (искусственным лишением сна) позволяют предполагать, что организм особенно нуждается в дельта-сне и быстром сне. После длительной депривации сна основным эффектом является увеличение дельта-сна. Так, после 200-часового непрерывного бодрствования процент дельта-сна в первые 9 ч регистрации восстановительного сна увеличивался в 2 раза по сравнению с нормой, а длительность быстрого сна увеличилась на 57 %. Депривация менее 100 ч не вызывала увеличения длительности быстрого сна в первую восстановительную ночь. При уменьшении общего количества сна продолжительность дельта-сна не меняется или даже увеличивается, а длительность быстрого сна уменьшается.

В целях изучения роли отдельных фаз сна разработаны способы, позволяющие избирательно предотвращать их появление. Для подавления дельта-сна используют метод «подбуживания» — при появлении дельта-волн на ЭЭГ подаются звуковые сигналы такой интенсивности, чтобы обеспечить переход к более поверхностным стадиям сна. При этом у испытуемых появляется чувство разбитости, усталости, ухудшается память и снижается внимание. Исследованиями В. Ротенберга показано, что чувство разбитости и повышенной утомляемости, особенно нарастающее ко второй половине дня, у больных неврозом обусловлено хроническим дефицитом дельта-сна [Ротенберг, 1984].

Для исключения быстрого сна человека или животное будят при первых признаках этой фазы сна — появлении быстрых движений глаз и падении мышечного тонуса. Депривация быстрого сна у животных обычно осуществляется по методу, предложенному М. Жуве. Животное (чаще всего в этих экспериментах используются крысы) помещается на небольшую площадку, окруженную водой, и приспосабливается спать на ней. Но в самом начале каждого эпизода быстрого сна, как только у животного падает мышечный тонус, оно сваливается в холодную воду и сразу просыпается. В результате в течение многих суток животное можно лишать фазы быстрого сна, существенно не нарушая медленный сон. После такой депривации у животных отмечалась повышенная возбудимость, агрессивность, двигательное беспокойство, т. е. симптомы сильнейшего стресса. Для того чтобы отделить эффект лишения быстрого сна от эффекта стресса (безвыходная ситуация нахождения на ограниченной площадке с неизбежными падениями в воду), В. Ковальзоном [1982] был разработан способ депривации быстрого сна без стресса — раздражением активирующей ретикулярной формации ствола мозга слабыми импульсами электрического тока, пробуждающего животное при наступлении быстрого сна.

253

При этом крысы находились в просторной экспериментальной клетке, в периоды бодрствования нормально пили, ели, играли, и симптомы стресса у них отсутствовали — шерсть лоснилась, вес не снижался. Продолжительность быстрого сна у них была снижена в 3 раза при сохраненном медленном сне. Несмотря на отсутствие каких-либо поведенческих симптомов лишения быстрого сна, количество попыток перехода к быстрому сну у них увеличивалось день ото дня, повышался порог пробуждения.

При избирательном лишении быстрого сна у человека потребность в нем увеличивается, хотя никаких психических расстройств обнаружить не удается. Однако в первых опытах с депривацией быстрого сна у человека (проведенных В. Дементом [Dement, 1960] на трех испытуемых непрерывно в течение нескольких суток) были обнаружены значительные изменения психики — повышенная раздражительность, рассеянность, появление галлюцинаций и бредовых идей. Впоследствии оказалось, что эти испытуемые были не вполне здоровы. Когда же исследования проводились на здоровых испытуемых, оказалось, что депривация быстрого сна «не только не приводит к психическим расстройствам, но и вообще никак не сказывается на психическом состоянии — не меняет настроения, не ухудшает выполнения заданий, не влияет на память и работоспособность. Чем более комфортными были условия в период депривации, чем тщательнее экспериментаторы следили за тем, чтобы все потребности испытуемых были удовлетворены, чем увлекательнее и разнообразнее было времяпрепровождение в период исследования, тем меньше сказывался эффект депривации» [Ротенберг, Аршавский, 1984, с. 86].

Когда результаты депривации быстрого сна стали анализировать индивидуально, в связи с личностными особенностями испытуемых, были обнаружены определенные различия. Так, Р. Картрайт с коллегами [Cartwrite et al., 1967] установили, что лишение быстрого сна вызывает различные изменения психики и поведения в зависимости от исходного психического статуса. Тревожные субъекты реагировали на депривацию значительным усилением тревоги; они пытались немедленно компенсировать прекращенный быстрый сон. У испытуемых другого склада не было значительных нарушений поведения, а компенсаторное увеличение быстрого сна выявлялось в восстановительную ночь. Наконец, у людей третьего типа не отмечалось нарушений поведения, не было попыток немедленной компенсации быстрого сна и увеличения быстрого сна в восстановительную ночь, но при пробуждении еще до первых проявлений быстрого сна они давали подробные отчеты о сновидениях. Очевидно, сновидения протекали у них в медленном сне, и это заменяло им необходимость в быстром сне.

Значение быстрого сна для здоровья показал Е. Хартманн [Hartmann, 1973], выделив среди здоровых испытуемых две крайние группы — «долгоспящих» (кому для хорошего самочувствия необходимо не меньше 9 ч сна), и «короткоспящих» (достаточно 6 ч сна). По структуре сна эти люди различались в основном длительностью быстрого сна — у долгоспящих он занимал почти вдвое больше времени. При анализе их психических особенностей оказалось, что по сравнению с корот-

254

коспящими они были эмоционально менее устойчивыми — все проблемы принимали близко к сердцу, отличались беспокойством, тревожностью и перепадами настроения. Складывалось впечатление, что во сне они спасались от сложностей жизни, т. е. «ложились спать невротиками, а просыпались здоровыми людьми». Хартманн предположил, что такое восстановление душевного здоровья от вечера к утру определяется высокой представленностью в их ночном сне фазы быстрого сна. Опрашивая здоровых людей, у которых продолжительность сна не была постоянной в течение жизни, Хартманн установил, что сокращение сна обычно приходится на те периоды, когда человек хорошо себя чувствует, с интересом работает и свободен от тревог. Потребность в сне увеличивается, когда возникают неразрешимые проблемы, снижаются настроение и работоспособность.

13.7. СНОВИДЕНИЯ

Сновидения издавна поражают и волнуют людей. В древности сновидения рассматривались как «врата в иной мир»; считалось, что через сновидения может происходить контакт с другими мирами. Издавна люди пытались вызывать сновидения с помощью определенных ритуальных формулировок; подобные формулировки найдены даже в текстах, датированных примерно III тысячелетием до н. э. Уже первые цивилизации Среднего Востока, Египта, Индии и Китая оставили некоторые записи о сновидениях и методах их вызывания. Известна, например, специальная молитва древних ассирийцев для вызывания хороших сновидений и избавления от неприятных [Гарфильд, 1994]. Полон верований в сновидения был античный мир, а в Древней Греции сновидения играли руководящую роль даже при выработке законов. Огромное значение приобретали «вещие сны», предсказывающие развитие будущих событий. Однако уже Аристотель учил, что сновидения — это не «язык богов» или «странствие души», а явления, вытекающие из самой сущности человеческого духа, которые представляют собой результат особой деятельности мозга человека, в особенности его органов чувств. В своем трактате «О сновидениях и их толковании» Аристотель пытался понять самую природу сновидений (см. в [Анохин, 1945]). Внимание древних мыслителей было сосредоточено главным образом на вопросах о возникновении сновидений и возможности предсказывать события. Эти же вопросы волнуют людей и в настоящее время.

Когда мы говорим о сновидениях, то прежде всего имеем в виду присутствие в них необычных и фантастичных картин. Субъект ощущает себя находящимся в быстро меняющейся обстановке, очевидные пространственно-временные зако-


255

номерности отсутствуют, могут появляться события и люди из прошлого. При этом сознание не блуждает, как в бодрствовании, возникает ощущение полного одиночества и нет возможности поделиться чувствами с кем-то другим [Борбели, 1989]. Человек не осознает себя видящим сновидение, в результате чего нет критического отношения к воспринимаемым событиям [Ротенберг, 1984]. Несмотря на разнообразие и фантастичность мира сновидений, этот мир не содержит ничего абсолютно нового: сновидения — следствие жизненного опыта человека, отражение событий, происшедших с ним ранее, недаром И. М. Сеченов назвал сновидения «небывалыми комбинациями бывалых впечатлений». Любое воздействие может послужить поводом для развертывания целостной картины сновидения. В качестве примера П. К. Анохин [1945] приводит эксперимент, когда спящему человеку поднесли к подошве бутылку с теплой водой. Проснувшись, испытуемый рассказал, что ходил во сне по горячему песку и путешествовал по склонам Везувия, из которого прямо ему под ноги извергалась горячая лава.

Результаты многочисленных исследований позволяют предполагать, что одной из основных функций сновидений является эмоциональная стабилизация [Ротенберг, 1984]. Это хорошо сформулировано Робертсом [цит. по: Борбели, с. 53]: «Человек, лишенный способности видеть сновидения, через некоторое время впадает в безумие, ибо масса несформировавшихся, обрывочных мыслей и поверхностных впечатлений будет накапливаться у него в мозгу и подавлять те мысли, которые должны целиком сохраняться в памяти». Впервые систематические исследования роли сновидений предпринял основоположник психоанализа 3. Фрейд. Рассматривая сновидения как особый и весьма важный язык мозга, он отмечал, что сновидения являются продуктом нашей собственной психической активности и в то же время завершенное сновидение поражает нас как нечто внешнее по отношению к нам. В работе «Толкование сновидений» 3. Фрейд показал, что сновидения содержат не только явный, очевидный смысл, который можно изложить в пересказе, но и скрытый, неявный, который невозможно сразу осознать или уяснить. Чтобы понять этот второй смысл, необходима дополнительная информация о личности того, кто видел этот сон. На основании этого, используя метод «свободных ассоциаций», психоаналитик приводит пациента к осознанию замаскированных в сновидении вытесненных желаний, что снимает эмоциональную напряженность.

Современные психотерапевты и психоаналитики пришли к выводу, что сны можно контролировать. Примером может служить отношение к сновидениям в синойском племени в Малайзии, где каждый член племени умеет уничтожать ночные кошмары [Гарфильд, 1994]. Синои учат своих детей воспринимать сны как важную часть формирования личности и сумели так организовать свою жизнь, что у них отсутствуют психические болезни.

Мощным импульсом к экспериментальному изучению сновидений послужило открытие быстрого сна и его связи со сновидениями. Появилась возможность по-

256

лучения отчетов о сновидениях сразу же после их завершения. Было обнаружено, к удивлению тех, кто считал, что не видит снов или видит их очень редко, что каждый человек видит сны несколько раз за ночь. Экспериментальным путем был решен и вопрос о длительности сновидений. Оказалось, что субъективная длительность сновидений соответствует объективной длительности периода быстрого сна. Испытуемый, разбуженный в начале периода быстрого сна, отчитывается о коротком сновидении, а разбуженный в конце — о длинном. После очень длинных эпизодов быстрого сна (30-50 мин) испытуемые отчитывались о необычно длительных сновидениях. Интересно, что отчеты о содержании этих сновидений были не длиннее, чем в тех случаях, когда испытуемых пробуждали уже через 15 мин после начала быстрого сна. По-видимому, сновидения начинают забываться, несмотря на продолжение длительного эпизода быстрого сна. Многочисленные эксперименты свидетельствуют о том, что содержание сновидений коррелирует с особенностями фазических компонентов быстрого сна. Показано, что степень эмоциональной окраски сновидений связана с частотой сердечных сокращений и дыхания, степенью вазоконстрикции и выраженностью электрической активности кожи в последние минуты быстрого сна перед пробуждением.

По-видимому, у животных также есть сновидения во время быстрого сна — об этом свидетельствуют опыты М. Жуве с разрушением у кошек ядер синего пятна (locus coeruleus), обеспечивающих угнетение мышечного тонуса в фазе быстрого сна. Спящее животное с разрушенным синим пятном при наступлении быстрого сна вставало на лапы с закрытыми глазами, принюхивалось, царапало пол камеры, совершало внезапные прыжки, как бы преследуя противника или спасаясь от опасности. Эти данные, а также результаты многочисленных лабораторных исследований сна у людей, позволяют считать фазу быстрого сна физиологической основой сновидений.

Однако является упрощением рассматривать быстрый сон как единственную фазу сна со сновидениями, так как испытуемые отчитываются о сновидениях и при пробуждениях из медленного сна. Но отчеты о сновидениях в быстром сне более яркие, более сложные, фантастичные, более эмоционально окрашенные по сравнению со сновидениями в медленном сне, где преобладают рациональные и реалистические элементы, сходные с мышлением в бодрствовании. Главное же различие заключается в их длительности — сновидения в быстром сне более длительны. Видимо, этим объясняется тот факт, что при пробуждении из быстрого сна сновидения лучше запоминаются.

Явлением, в определенном смысле противоположным сновидениям, является сомнамбулизм (снохождение, или лунатизм). Лабораторные исследования показали, что сомнамбулизм возникает на фоне дельта-сна; выраженность и длительность приступа значительно варьируют. В самом легком случае человек может сесть в кровати, что-то пробормотать и снова заснуть — в таких случаях на ЭЭГ наблюдается картина глубокого дельта-сна. В других случаях сомнамбула встает, ходит, может одеться и выйти из дома (при этом глаза обычно открыты, лицо маскообразное); сомнамбула может давать односложные ответы на простые вопросы —

257

в таких случаях на ЭЭГ появляются признаки дремоты или даже бодрствования. Утром сомнамбула ничего не помнит о происшедшем с ним ночью. В противоположность сновидениям, с их насыщенным яркими красками и событиями миром при полной мышечной атонии, сомнамбулизм характеризуется сумеречным состоянием сознания (которое вообще не фиксируется в памяти) при сохранении способности передвигаться как при бодрствовании.

Существование двух крайних явлений (сновидений и сомнамбулизма) свидетельствует о том, что сон — это целый набор различных состояний, среди которых есть и глубокое погружение во внутренний мир, и демонстрация внешней активности.

13.8. ПОЧЕМУ МЫ СПИМ? (ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ СНА)

Лучшим доказательством необходимости сна является то, что «вечно занятое и постоянно спешащее население современных городов не смогло освободиться от этой "привычки"» [Рожанский, 1954, с. 5]. Дж. Моруцци, отвечая на вопрос о том, почему мы спим, сказал, что главным считает восстановительные процессы мозга, но не быстрые, связанные с синаптической передачей и совершающиеся по закону «все или ничего», а медленные, тонические процессы, лежащие в основе обучения, восприятия и сознания. Это предположение косвенно подтверждается экспериментальными данными, свидетельствующими о том, что импульсная активность небольших нейронов моторной коры, для которых характерна тоническая активность при отсутствии движений, уменьшается во время сна [Evarts, 1965]. Л. Латаш считает, что психическая активность в медленном сне сохраняет «нормальное взаимодействие в сфере бессознательного между эмоциональными процессами, влечениями и собственно интеллектуальной деятельностью», а целостная психическая активность сна связана «с формированием, на основе видового и индивидуального опыта, витальных мозговых механизмов стратегии поведения» [Латаш, 1985, с. 117].

Функциональное значение цикла «сон—бодрствование» в связи с эволюцией биологической регуляции рассматривает Н. Моисеева [1985]. То, что выраженная картина сна сформировалась в процессе эволюции с появлением теплокровности в классе млекопитающих и (независимо) в классе птиц, она оценивает как свидетельство необходимости сна в цени эволюционных преобразований, обеспечивающих повышение уровня организации живых систем. Параллельно с формированием

258

нервной системы, по мнению Н. Моисеевой, формировалось повторяющееся состояние, в котором клетки и ткани обретают определенную долю независимости и могут осуществить саморегуляцию. Действительно, у больных, на которых в течение ночного сна изучали динамику ЭЭГ, ЭОГ, импульсной активности и медленных электрических потенциалов, было обнаружено, что в процессе развития сна на какой-то момент возникает функциональное разобщение как структур, так и отдельных клеток. Н. Моисеева считает, что в состоянии бодрствования на первый план выходят свойства организма как системы, в состоянии же сна на первый план выступают свойства отдельных элементов, поскольку в процессе эволюции оказалось необходимым сохранить автономную биологическую регуляцию структурно-функциональных единиц, из которых состоит организм.

«Восстановительные» функции обычно приписывают медленному сну, а для объяснения функций быстрого сна последнее время все больше привлекаются информационные теории, сущность которых сводится к пониманию задач сна в переработке поступающей в бодрствовании информации. Так, основываясь на данных о преобладании быстрого сна на ранних этапах жизни человека и животных, М. Жуве предположил, что быстрый сон обеспечивает процессы программирования в мозге, необходимые для развития и поддержания генетически предопределенных функций, таких, например, как инстинкты. Фазическая активность нервных клеток подкорковых структур, проявляющаяся в сновидениях и быстрых движениях глаз в быстром сне, отражает информацию, касающуюся главным образом врожденного, инстинктивного поведения; во время быстрого сна происходит ее объединение с информацией, приобретенной в бодрствовании [Жуве, цит. по: Борбели,1989].

Согласно гипотезе В. Ротенберга и В. Аршавского, в быстром сне осуществляется поисковая активность, задачей которой является компенсация состояния отказа от поиска в бодрствовании. Они приводят целый ряд фактов в пользу этой точки зрения. Прежде всего тот факт, что в состоянии отказа от поиска повышается потребность в быстром сне. Об этом свидетельствует уменьшение латентного периода фазы быстрого сна, обнаруженное при депрессиях и невротической тревоге (что является конкретным проявлением отказа от поиска у человека). Так, время от начала засыпания до наступления быстрого сна может сокращаться до 40 мин, в то время как в норме оно колеблется от 70 до 110 мин. У животных после пассивно-оборонительного поведения, вызванного неизбежным электрическим раздражением определенных зон мозга, доля быстрого сна в последующие часы увеличивалась почти в 2 раза по сравнению с фоном. Приводятся также данные о том, что у опоссума, всегда дающего на стресс пассивно-оборонительную реакцию, быстрый сон представлен особенно хорошо. В то же время выраженное поисковое поведение и у человека, и у животных приводит к уменьшению фазы быстрого сна. У животных эта фаза сокращается во время острого стресса, пока они активно ищут выход из ситуации. Так, при схватке двух животных в естественных условиях в последующем сне уменьшается доля быстрого сна. У человека попадание в новую, незнакомую обстановку повышает готовность к активному реагированию на не-

259

ожиданности, усиливает ориентировочно-исследовательское поведение и приводит к уменьшению быстрого сна (например, во время первого исследования сна испытуемого в лабораторных условиях). При маниакальных состояниях, характеризующихся высокой, хотя совершенно неупорядоченной поисковой активностью, явно доставляющей удовольствие самим больным, быстрый сон сокращен. Он может составлять всего 15-18 мин за ночь (при норме 90-100 мин). Эта гипотеза позволяет объяснить и результаты Е. Хартманна [Hartmann, 1973], приведенные ранее, которые получены при исследовании людей с различной потребностью в длительности сна.

Всем известно, что потребность в сне усиливается при удлинении бодрствования. Между тем многочисленные наблюдения за людьми и животными, помещенными в условия световой изоляции, свидетельствуют о том, что потребность в сне определяется также мощным влиянием циркадного процесса (суточная биологическая периодичность, в соответствии с которой циклично изменяются различные физиологические характеристики организма, например температура тела, выброс некоторых гормонов; о циркадных ритмах см. (Блум и др., 1988; Борбели, 1989;

Физиология человека, 1996]). Циркадный процесс рассматривается обычно как филогенетическая адаптация к временной структуре окружающего мира, благодаря которой происходит опережающее отражение (см. гл. 14); организм заранее приспосабливается к ожидаемому изменению условий существования.

Некоторые авторы [Snyder, Scott, 1972] рассматривают цикл «сон—бодрствование» как одно из проявлений эндогенной циркадиой периодичности. А. Борбели [1989] считает, что это самостоятельные процессы. В соответствии с его гипотезой, потребность в сне определяется двумя процессами — процессом расслабления, утомления, который нарастает во время бодрствования, и циркадным процессом, циклом «активности—покоя» (пик покоя — около 4 ч утра, пик активности — около 4 ч дня). Уровень потребности в сне (процесс S sleep) увеличивается во время бодрствования и уменьшается во время сна (по мере снижения доли дельта-сна), циркадный же ритм (процесс С — circadian) независим от предшествующего сна или бодрствования, он находится под воздействием «внутренних, биологических часов организма». Таким образом, потребность в сне в каждый данный момент представляет собой сумму процессов S и С; нормальный сон наступает при максимальном ^ и совпадает с периодом покоя. Именно нарушением взаимоотношения этих процессов можно объяснить тяжелые субъективные переживания в связи со смещением суточного ритма при резкой смене часовых поясов — цикл «сон—бодрствование» (процесс S) смещается в соответствии с новыми условиями, в то время как процесс С не изменяется. Поэтому время засыпания приходится на период активности и человек не может уснуть, а днем чувствует постоянную сонливость из-за нарастающей потребности во сне, так как по С — это период покоя.

Взаимодействием этих же процессов можно объяснить лечебный эффект депривации сна на состояние больных эндогенной депрессией. Угнетенное состояние этих больных, особенно выраженное по утрам, связано с тем, что ко времени засыпания процесс S не достигает своего максимума. Депривация же сна приводит к

260

повышению процесса S до нормы и, тем самым, временно (к сожалению, лишь до следующего периода сна) устраняет депрессивное состояние.

Примером нарушения баланса систем «сна—бодрствования» является и нарколепсия (состояние, характеризующееся дневными приступами непреодолимого сна). В самые неподходящие моменты, например во время еды или езды на велосипеде, возникает внезапная потеря мышечного тонуса и наступает сон, часто сопровождаемый яркими сновидениями. После короткого сна человек просыпается, чувствуя себя свежим и бодрым. Характерные черты приступов засыпания (мышечная атония, яркие сновидения) свидетельствуют о том, что на фоне бодрствования внезапно наступает быстрый сон. При длительной регистрации периодов активности и покоя у больных нарколепсией обнаружены отклонения от нормального соотношения между дневным и ночным уровнем активности.

Рассматривая процессы S и С в эволюции, Борбели отмечает, что наличие циркадных биоритмов создает не только преимущества, так как эти ритмы обычно жестко запрограммированы и при внезапном изменении внешних условий не могут быстро перестроиться. По-видимому, цикл «сон—бодрствование» возник в эволюции как дополнительный механизм, дающий возможность более гибко приводить время активности и отдыха в соответствие с окружающими условиями и текущими потребностями организма, временно выводя эти периоды из-под жесткого контроля «биологических часов».

П. К. Анохин [1945, 1968], с позиции имевшихся в то время системных представлений об организации активности мозга, рассматривал наступление сна как итог интегративной деятельности мозга, объединяющей все — и нервные, и нейрохимические, и гуморальные — «гипногенные» механизмы в единую функциональную систему, деятельность которой «обеспечивает перевес ассимиляторных процессов и создает условия для покоя тех нервных элементов, которые своей тонической деятельностью поддерживают бодрствование».

В настоящее время с позиций системной психофизиологии активность нейрона рассматривается как отражение актуализации системы, по отношению к которой данный нейрон специализирован. В бодрствовании актуализация систем определяет достижение результатов внешнего и внутреннего поведения. Каждый поведенческий акт, направленный на достижение конкретного результата, может быть охарактеризован через набор актуализированных в нем систем разного возраста и динамику межсистемных отношений (см. гл. 14).

Можно предположить, что во время сна актуализация систем обусловливает реорганизацию сложившихся к моменту сна межсистемных отношений. Во сне, по-видимому, могут быть сняты запреты, существующие в поведении бодрствования на совместную актуализацию оппонентных систем — элементов опыта, и опробованы даже такие комбинации актуализированных систем и отношений между ними, которые нарушили бы адаптивное поведение, будучи реализованными в

261

состоянии бодрствования. Перебор, «тестирование» комбинаций, приводящие к согласованию вновь сформированных в состоянии бодрствования систем с уже имеющимися в памяти индивида системами разного фило- и онтогенетического возраста, может привести к неожиданным решениям, затрудненным в бодрствовании. Этим объясняется то, что во сне может осуществляться проверка гипотез, решение важных проблем, постоянно волнующих человека и занимающих все его мысли, например, открытие Д. И. Менделеевым периодической системы или Ф. А. Кекуле — структуры бензольного кольца [Гарфильд, 1994].

Тот уже упомянутый ранее факт, что потребность в сне увеличивается при возникновении проблем и сложных периодов в жизни человека [Hartmann, 1973 и др.], можно объяснить с наших позиций необходимостью устранения противоречий между отдельными частями индивидуального опыта, которое почему-либо не может быть достигнуто в бодрствовании (например, вследствие «отказа от поиска», по Ротенбергу, или из-за запретов на совместную актуализацию определенных элементов опыта и т. д.).

Из приведенных соображений, с одной стороны, следует, что запоминание материала, включающее «вписывание» новых элементов опыта в структуру уже имеющегося индивидуального опыта, т. е. модификация межсистемных отношений, будет улучшаться, если интервал между обучением и тестированием заполнен естественным сном, во время которого осуществляется перебор новых комбинаций элементов опыта. Экспериментальные данные, указывающие, что это действительно так, были получены еще в 1920-е гг. (Jenkins, Dallenbach, 1924). С тех пор эти данные многократно подтверждались (см. обзор [Kavanau, 1996]).

С другой стороны, было бы логично ожидать, что блокирование активности нейронов новых систем, т. е. уменьшение материала для комбинаций, должно сказаться на потребности в сне. Действительно, прием алкоголя, который избирательно угнетает активность нейронов новых систем (см. гл. 14), уменьшает фазу быстрого сна (Zornetzer et al., 1982).

Повторные реализации акта дефинитивного поведения отличаются друг от друга за счет модификации межсистемных отношений, которая, в частности, может лежать в основе совершенствования поведения (см. гл. 14). Эти экстренные модификации, по-видимому, должны согласовываться с межсистемными отношениями, характеризующими весь опыт индивида. Именно поэтому важным материалом для опробования новых вариантов объединения нейронов во сне могут быть нейроны не только вновь сформированных систем, но также систем, реализовавшихся в период бодрствования, который предшествует данному эпизоду сна. Подтверждением этому являются эксперименты с регистрацией в гиппокампе крысы активности клеточных ансамблей [Wilson, McNaughton, 1994], а также отдельных

262

одновременно регистрируемых «нейронов места» (place cells — клетки, избирательно активирующиеся в определенном пространственном «поле» — месте пространства) с неперекрывающимися полями. Показано, что во время сна разряжается тот нейрон, в пространственном поле которого побывало животное непосредственно перед сном, т. е. тот, который активировался в предшествовавшем периоде бодрствования. Авторы рассматривают эти данные как свидетельство того, что информация, полученная в бодрствовании, подвергается повторной обработке во время сна [Pavlides, Winson, 1989; Уинсон, 1991].

Глава 14. СИСТЕМНАЯ ПСИХОФИЗИОЛОГИЯ

14.1. АКТИВНОСТЬ И РЕАКТИВНОСТЬ

14.1.1. Две парадигмы в исследовании поведения и деятельности

При всем многообразии теорий и подходов, используемых в психологии, психофизиологии и нейронауках, их можно условно разделить на две группы. В первой группе в качестве основного методологического принципа, определяющего подход к исследованию закономерностей организации поведения и деятельности, рассматривается реактивность, во второй — активность.

Известны попытки, заменив проблему «активность-реактивность» проблемой сопоставления внутренних и внешних детерминант поведения, доказать, что упомянутые принципы не обусловливают кардинальным образом различающиеся способы описания поведения и деятельности [Кругликов, 1993]. Однако эта замена неадекватна. Внутренняя детерминанта вполне, так же как и внешняя, может быть рассмотрена в качестве стимула, вызывающего реакцию. Например, при описании постулируемых механизмов поведения, которое возникает при увеличении мотивации в отсутствие внешнего стимула, используется понятие «мо-тивационный рефлекс». Основное различие между двумя парадигмами («реактивностиой» и «активностной») состоит, как это будет подробно показано далее, в том, куда на временной шкале «помещается» детерминанта текущего поведения — в прошлое или в будущее. Под парадигмой, вслед за Т. Куном [1975], мы будем здесь и

264

далее понимать модель жизни научного сообщества, которая подразумевает специфический набор теорий, методов и необходимого оборудования, принимаемых и применяемых в данном сообществе.

14.1.2. Реактивность

Использование принципа реактивности как объяснительного в научном исследовании базируется на идеях Рене Декарта, изложенных им в первой половине XVII в. Декарт полагал, что организм может быть изучен как машина, основной принцип действия которой — рефлекс, обеспечивающий связь между стимулом и ответом. Животные при этом оказывались живыми машинами, и крики боли животных рассматривались как «скрип несмазанных машин» (см. в [Роуз, 1995]). Человека, тело которого рассматривалось в качестве машины, наличие души освободило от автоматического реагирования. Душа его состоит из разумной субстанции, отличной от материи тела, и может влиять на последнее через эпифиз. Идеи Декарта давно уже стали достоянием не только науки, но и основой бытовой или обыденной психологии (см. Предисловие), которая свободно оперирует понятиями «стимул», «рефлекс», «реакция» и т. д. Эти идеи не противоречат логике, имеющей корни в первобытном мышлении, логике, в соответствии с которой предшествующее обстоятельство смешивается с причиной [Леви-Брюль, 1980]. Что же касается науки, совершенно очевидно, что серебрящийся «благородной сединой столетий» рефлекс [Анохин, 1945] оставался центральным инвариантным звеном психофизиологических теорий, несмотря на целый ряд изменений, которые претерпели эти теории [Соколова, 1995]. С рефлекторных позиций события, лежащие в основе поведения, в общем представляются как линейная последовательность, начинающаяся с действия стимулов на рецепторные аппараты и заканчивающаяся ответным действием.

14.1.3. Активность

Рассмотрение поведения и деятельности как активности, направленной в будущее, исходит из понимания активности как принципиального свойства живой материи, причем конкретная форма проявления активности зависит от уровня организации этой материи [Анохин, 1978]. Категориальное ядро представлений данной группы теорий значительно менее гомогенно по сравнению с первой. Это ядро сформировалось в результате многочисленных, особенно в последнем столетии, попыток, исходя из разнообразных теоретических посылок, преодолеть механистические реактивностные схемы, заменив их представлениями об активном, целенаправленном поведении (см. в [AlexandrovJarvilehto, 1993]).

Так, Дж. Икскюль [Uexkull, 1957] полагал, что поведение должно быть рассмотрено не как линейная последовательность событий, начинающаяся с возбуждения

265

рецепторов, а как функциональное кольцо. Дж. Гибсон [1988] считал, что среда и организм не существуют раздельно, но образуют функциональное единство, к анализу которого принцип «стимул—реакция» не может быть применен. Был разработан целый ряд других существенно различающихся концепций, которые, однако, объединяло признание активности в качестве базового методологического принципа [Tolman, 1932; Koffka, 1935; Бернштейн, 1966; Dewey, 1969 и мн. др.].

14.1.4. Эклектика в психологии и психофизиологии

В последнее время представление об активном целенаправленном характере поведения человека и животного становится все более распространенным. Наряду с позитивными последствиями этот процесс имеет и негативные. Необходимость в поиске «механизмов» очевидно целенаправленной активности ориентироваться на нейронауки (ту область исследований, в которой позиции рефлекса очень прочны), а также недооценка того, что парадигмам активности и реактивности соответствуют принципиально различающиеся способы описания поведения и деятельности, обусловливают эклектичность многих теорий в психологии и психофизиологии [Александров,1995].

Утверждения, базирующиеся на разных видах эклектического объединения понятий сопоставляемых парадигм (активности и реактивности), можно упрощенно свести к следующим четырем связанным группам: а) «филогенетическая» эклектика. Люди ведут себя целенаправленно, а животные отвечают на стимулы. Целенаправленность — преобразованная в процессе эволюции реактивность (см. ранее о «живых машинах»); б) «онтогенетическая» эклектика. В пренатальном периоде и/или на ранних стадиях постнатального онтогенеза организмы реагируют на стимулы. Лишь на более поздних этапах индивидуального развития у них формируется целенаправленное поведение. Целенаправленность — преобразованная в процессе индивидуального развития реактивность; в) «уровневая» эклектика. В основе целенаправленного поведения и деятельности — рефлекторные «механизмы» или «реализаторы». На высших уровнях организации деятельности, психических процессов, поведения, движения и т. д. действует принцип активности, целенаправленности, а на низших — реактивности. Целостный организм осуществляет целенаправленное поведение, а его отдельный элемент — нейрон — реагирует на стимул; г) «анатомическая», или «центрально-периферическая»,

Нейроны центральных структур пластичны, их активность зависит от поведенческого контекста, мотивации, цели и т. д. Периферические элементы ригидны и являются лишь преобразователями энергии внешних воздействий в импульсные коды или исполнителями центральных команд.

Оценивая системность как один из основных объяснительных принципов в науке, М. Г. Ярошевский [1996] справедливо замечает, что «антиподом системности является эклектизм» — смешение разнородных, часто противоположных, положений и принципов, замена одних логических оснований другими. Именно эклектика, наряду с неадекватным решением психофизиологической проблемы (см. пара-

266

граф 5), является наиболее серьезным препятствием на пути синтеза психологического и физиологического знания в рамках методологически непротиворечивой психофизиологии.

Основная задача этой главы состоит в том, чтобы изложить целостную и, как нам кажется в данный момент, свободную от эклектики систему представлений, объединяющую в рамках единой теории понимание активности отдельного нейрона и целостного поведения организма, соотношения функционирования и развития, структуры и функции, психики и мозга, индивида и среды, нормы и патологии. Здесь будет продемонстрировано, как последовательное развитие системного подхода заставило отказаться от представления о реактивности не только на уровне организма, но и на клеточном уровне в пользу представлений об активности и целенаправленности, что, в свою очередь, обусловило существенное изменение методологии, задач и методов объективного исследования субъективного мира и привело к формированию нового направления в психологии — системной психофизиологии.

Концептуальные построения многих авторов, относящиеся к парадигме активности, могут быть, с теми или иными оговорками, рассмотрены как варианты методологии системного подхода. Системный подход — не новость в психологии [Зинченко, Моргунов, 1994], а сам термин «системный подход» стал использоваться в нашей литературе уже больше трех десятилетий назад [Блауберг, Юдин, 1986]. Понимание системности изменялось на последовательных этапах развития науки; не одинаково оно и для разных вариантов системного подхода, существующих на одном и том же этапе [Анохин, 1975]. В частности, и в психофизиологии системный подход далеко не однородное направление, и общим для таких авторов, как П. К. Анохин, Н. Ю. Беленков, Н. П. Бехтерева, М. Н. Ливанов, А. Р. Лурия, Е. Р. Джон (Е. R.John) и многие другие оказывается главным образом лишь признание того, что «функция» (что бы под ней ни понимали разные авторы) реализуется не отдельными структурами или клетками, а их системами [Швырков, 1995]. Системная психофизиология является развитием теории функциональных систем (ТФС), разработанной акад. П. К. Анохиным и его школой. Что это за теория, в чем ее отличие от других вариантов системного подхода и чем определяется особое значение ТФС для психологии и психофизиологии?

14.2. ТЕОРИЯ ФУНКЦИОНАЛЬНЫХ СИСТЕМ

14.2.1. Что такое система?

Термин «система» обычно применяется для того, чтобы указать на собранность, организованность группы элементов и отграниченность ее от других групп и элементов. Давалось множество определений системы, которые характеризовали ее, выделяли из «несистем». В общем, все эти определения сводились к пониманию

267

системы как комплекса взаимодействующих элементов, объединенных определенной структурой. При этом под структурой понимались законы связи и функционирования элементов. П. К. Анохин [1975], подробно проанализировав разные варианты системного подхода, пришел к следующим аргументированным заключениям. Взаимодействие элементов само по себе, с одной стороны, не дает исследователю в какой-либо конкретной области науки ничего нового, так как является даже для начинающего исследователя аксиомой. С другой стороны, взаимодействие не может рассматриваться как механизм ограничения огромного числа степеней свободы каждого из множества элементов живых систем; их взаимодействие создаст не систему, а хаос.

Главным препятствием для использования проанализированных вариантов системного подхода в конкретном исследовании П. К. Анохин считал отсутствие в их методологии понятия о системообразующем факторе, детерминирующем формирование и реализацию системы. До тех пор, пока исследователь не определит такой фактор, который: а) являясь неотъемлемым компонентом системы, ограничивал бы степени свободы ее элементов, создавая упорядоченность их взаимодействия, и б) был бы изоморфным для всех систем, позволяя использовать систему как единицу анализа в самых разных ситуациях, — все разговоры о системах и преимуществах системного подхода перед несистемным останутся только разговорами [Анохин, 1975, с. 32].

14.2.2. Результат — системообразующий фактор

Важнейшим событием в развитии ТФС стало определение системообразующего фактора (результата системы), под которым понимался полезный приспособительный эффект в соотношении «организм—среда», достигаемый при реализации системы. Таким образом, в качестве детерминанты поведения в ТФС рассматривается не прошлое по отношению к поведению событие — стимул, а будущее — результат. При анализе внешнего поведения индивида мы можем описать результат как определенное соотношение организма и внешней среды, которое прекращает действие, направленное на его достижение, и делает возможной реализацию следующего поведенческого акта [Швырков, 1978]. Как выглядит достижение результата «изнутри», станет ясно, когда мы обсудим проблему системной детерминации активности нейронов.

На основании результатов уже самых ранних своих экспериментов П. К. Анохин пришел к выводу о том, что для понимания приспособительной активности индивида следует изучать не «функции» отдельных органов или структур мозга в их традиционном понимании как непосредственных отправлений того или иного субстрата (см. в [Александров, 1989]), а организацию целостных соотношений

268

организма со средой. Суть подобных организаций состоит в том, что отдельные вовлеченные в них компоненты не взаимодействуют, а взаимосодействуют, т. е. координируют свою активность для получения конкретного результата. Рассмотрев функцию как достижение этого результата, П. К. Анохин дал следующее определение функциональной системы: системой можно назвать только такой комплекс избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношение приобретают характер взаимосодействия компонентов, направленного на получение полезного результата.

14.2.3. Временной парадокс

Каким образом результат (событие, которое наступит в будущем) может детерминировать текущую активность, быть ее причиной? Решением этого «временного парадокса» была разработка представления об «информационном эквиваленте результата», о модели будущего результата (цели), которая и выступает в качестве такой детерминанты. Введение понятия об акцепторе результатов действия, формируемом до реального появления результата и содержащем его прогнозируемые параметры, стало существеннейшим этапом в развитии ТФС. Закономерности формирования и функционирования акцептора были проанализированы в многочисленных экспериментах и на самых разных уровнях: от поведенческого до тончайших нейрофизиологического и молекулярно-биологического. Почему же формулировке представления об акцепторе результатов действия придается такое значение в развитии ТФС?

14.2.4. Целенаправленность поведения

Уже для Аристотеля [1937] была очевидна целенаправленность поведения. Таким образом, идея целенаправленности никак не может считаться новой, хотя в истории можно выделить период, когда она была надолго вытеснена из научного обихода формирующимся механицизмом. В результате открытий эпохи Возрождения в области анатомии и физиологии, а главное — вследствие появления классической механики, в которой детерминистическое описание исключало ссылки на цель, возникло представление о природе, оказавшееся полностью механистическим [Бор, 1961].

Однако позже понятие целенаправленности вновь стали использовать в своих теоретических построениях как физиологи, так и психологи. И в самое последнее время утверждается, что цель должна быть «центральной концепцией в любой модели поведения» [Heisenberg, 1994]. Но в связи с отсутствием у авторов адекватной теории, позволяющей изучать целевую детерминацию естественнонаучными методами, целенаправленность, присутствующая у них на уровне концептуальных схем, сразу исчезает, сменяясь реактивностью, как только дело доходит до «реаль-

269

ных механизмов» обеспечения активности организма и, в частности, мозга. В результате неизменно появляются эклектические представления (см. параграф 1).

По-видимому, подмена активности и целенаправленности реактивностью определялась и определяется тем, что естественнонаучные и вообще экспериментальные методы сочетаются, как правило, с каузальным объяснением поведения. Это объяснение традиционно связывается с парадигмой реактивности, в то время как парадигма активности, целенаправленности соотносится с телеологическим объяснением (см. в [Дружинин, 1993]). Данная ситуация противоречия между «респектабельным» каузальным и «сомнительным» телеологическим объяснением остроумно описывается словами М. Месаровича, которые любил цитировать П. К. Анохин: «Телеология — это дама, без которой ни один биолог не может жить, но стыдится появляться с ней на людях».

Итак, заслуга П. К. Анохина состоит не в том, что он использовал понятие цели в анализе поведения, а в том, что, введя представление об акцепторе результатов действия, он устранил противоречие между каузальным и телеологическим описанием поведения. Именно поэтому рассмотрение поведенческого акта с позиций ТФС и как целенаправленного, и как причинного вполне правомерно [Швырков, 1978].

Проблема цели, которая организует части в целое, придавая ему особые свойства, тесно связана с вопросом о специфике жизни. С виталистических позиций она решалась постулированием существования особой силы, такой как «мнема Блейлера», «руководящая сила Бернара» или «энтелехия Дриша». Так, Г. Дриш [1915] на вопрос о том, есть ли в цели нечто, объясняемое присущей только живому закономерностью, отвечал утвердительно. В качестве такой закономерности, не сводимой к явлениям неорганического мира, рассматривалась энтелехия — «элементарное начало» или «витальный фактор» жизни. Разработка представления об энтелехии способствовала критике механистических взглядов на причинность в биологии. Именно поэтому данное представление можно оценить, используя терминологию Ю. А. Шрейдера, как плюс-фикцию, сыгравшую позитивную роль в развитии науки наряду с такими фикциями, как флогистон, «демоны» Максвелла и многие другие представления, фиктивный характер которых очевиден [Клайн, 1984].

14.2.5. Опережающее отражение

Анализ проблем происхождения и развития жизни с позиций ТФС привел П. К. Анохина [1978] к необходимости введения новой категории: опережающее отражение. Опережающее отражение появилось с зарождением на Земле жизни и является отличительным свойством последней. Как условие, определившее возможность появления жизни, П. К. Анохин рассматривал существование «предбиологических

270

систем». Они обладали свойствами, обеспечивавшими устойчивость против возмущающих воздействий. Примером могут служить «аллостерические системы», устойчивость которых достигается за счет ретроингибирования: торможения начальных стадий химических превращений при достижении определенной концентрации конечного продукта этих превращений.

Опережающее отражение связано с активным отношением живой материи к пространственно-временной структуре мира и состоит в опережающей, ускоренной подготовке к будущим изменениям среды. Ясно, что опережающее отражение могло появиться только постольку, поскольку в мире имелись повторяющиеся ряды событий.

Если бы временная структура мира была представлена только рядами никогда не повторяющихся событий, то опережающее отражение и, следовательно, жизнь не могли бы возникнуть. Так как принцип активного опережающего отражения начал действовать вместе с возникновением жизни, он представлен на всех уровнях ее организации. Именно поэтому речь должна идти не о смене реактивности активностью на определенном этапе онто- или филогенеза, на определенном уровне организации тех или иных процессов, а только о том, в какой форме этот принцип представлен на данном этапе и уровне.

Рассматривая в связи со сказанным утверждение В. М. Бехтерева о том, что «реакция на внешнее воздействие происходит не в одних только живых организмах, но и в телах мертвой природы» [Бехтерев, 1991, с. 21], мы можем согласиться только с последней его частью. Да, тела мертвой природы реагируют, т. е. отвечают реакциями на внешние воздействия. Принципиальной характеристикой физического, в отличие от физиологического, является «неинтенциональность» [Дубровский, 1980]. Что же касается живого организма, если рассматривать его не как физическое тело, а как целостный индивид, совершающий приспособительное поведение, то следует признать, что он отражает мир опережающе: его активность в каждый данный момент — не ответ на прошлое событие, а подготовка и обеспечение будущего.

14.2.6. Теория П. К. Анохина как целостная система представлений

Итак, первое важнейшее преимущество и признак, отличающий ТФС от других вариантов системного подхода, — введение представления о результате действия в концептуальную схему. Таким образом, ТФС, во-первых, включила в концептуальный аппарат системного подхода изоморфный системообразующий фактор и, во-вторых, кардинально изменила понимание детерминации поведения.

271

Следует отметить, что когда некая теория уже четко сформулирована, при ретроспективном анализе литературы могут быть обнаружены высказывания, предвосхитившие какие-либо из набора ее положений. Такова ситуация и с ТФС. Так, Дж. Дьюи еще в конце прошлого века отмечал, что «действие детерминировано не предшествующими событиями, а потребным результатом» [Dewey, 1969, р. 100]. В 20-е гг. XX столетия А. А. Ухтомский [1978] выдвигал положение о «подвижном функциональном органе», под которым понималось любое сочетание сил, приводящее к определенному результату. Тем не менее обоснованную не только теоретически, но и богатейшим экспериментальным материалом, целостную систему представлений мы находим именно в ТФС. Ее целостность и последовательность состоит в том, что идея активности, целенаправленности не просто включается в ТФС наряду с другими положениями, но, действительно, определяет основное содержание, теоретический и методический аппарат теории. Эта идея определяет и подходы к анализу конкретных механизмов достижения результата поведения, действующих на уровне целостного организма, и понимание организации активности отдельного нейрона (см. параграф 3). Как же отвечает ТФС на вопрос о механизмах, обеспечивающих объединение элементов в систему и достижение ее результата? Какие положения рефлекторной теории заставила отвергнуть П. К. Анохина (ученика И. П. Павлова) логика последовательного развития системных представлений, которая вывела ТФС за «рамки рефлекса» [Судаков, 1996]?

14.2.7. Системные процессы

В качестве ключевых положений рефлекторной теории П. К. Анохин выделял следующие: а) исключительность пускового стимула как фактора, детерминирующего действие, которое является его причиной; б) завершение поведенческого акта рефлекторным действием, ответом и в) поступательный ход возбуждения по рефлекторной дуге. Все эти положения отвергаются при рассмотрении поведения с позиций ТФС [Анохин, 1978].

Наличие пускового стимула не является достаточным для возникновения адекватного поведения. Оно возникает: а) после обучения, т. е. при наличии соответствующего материала памяти; б) при наличии соответствующей мотивации и в) в соответствующей обстановке. Эти компоненты рассматривали, конечно, и другие авторы, но лишь как модуляторы или условия, при которых данный стимул вызывает данную, связанную с ним реакцию. П. К. Анохин же отмечал, что при появлении одного и того же стимула и изменении условий животное может достигать результата поведения самыми разными способами, никогда с этим стимулом не связывавшимися. Например, оно может использовать вместо подхода к кормушке подплывание к ней, если вода вдруг становится преградой.

Согласно ТФС, интеграция всех этих компонентов осуществляется в рамках специального системного механизма афферентного синтеза, в процессе которого на основе мотивации, при учете обстановки и прошлого опыта создаются условия

272

для устранения избыточных степеней свободы — принятия решения о том, что, как и когда сделать, чтобы получить полезный приспособительный результат. Принятие решения завершается формированием акцептора результатов действия, который представляет собой аппарат прогнозирования параметров будущих результатов: этапных и конечного, и их сличения с параметрами результатов, реально полученных при реализации программы действия. При сличении с параметрами полученных этапных результатов выявляется соответствие хода выполнения программы запланированному (подробнее см. [Батуев, 1978; Пашина, Швырков, 1978J) при сравнении с параметрами конечного — соответствие достигнутого соотношения организма и среды тому, для достижения которого была сформирована система. Эти системные механизмы составляют операциональную архитектонику любой функциональной системы (рис. 14.1). Их введение в концептуальную схему — второе важнейшее преимущество и признак, отличающий ТФС от других вариантов системного подхода.

Формирование в ТФС представления о том, что интеграция элементарных физиологических процессов осуществляется в рамках качественно отличных от них специфических системных процессов, имело принципиальное значение для развития психофизиологического подхода к анализу поведения и деятельности, а также системного решения психофизиологической проблемы (см. параграф 5). Разработка представлений о качественной специфичности процессов интеграции явилась открытием нового вида процессов в целостном организме — системных процессов, организующих частные физиологические процессы, но не сводимых к последним.

Открытие системных процессов позволило, в отличие от рассмотрения в качестве основы поведения материально-энергетических отношений между локальным воздействием и реакцией, проинтерпретировать поведение как обмен организованностью, или информацией, между организмом и средой, осуществляемый в рамках этих информационных процессов. При этом было обосновано положение о том, что системные категории ТФС описывают одновременно и организацию активности элементов организма, и связь этой активности с организацией внешней среды [Швырков, 1995].

В стабильных условиях, например в ситуации лабораторного эксперимента, появление пускового стимула делает возможной реализацию предпусковой интеграции, которую можно охарактеризовать как готовность систем будущего поведения, формирующуюся в процессе выполнения предыдущего. Она направлена в будущее, но стабильность ситуации делает очевидной связь «стимул—ответ». Однако анализ нейронной активности в поведении четко показывает, что организация последней определяется тем, какой результат достигается в данном поведении, тогда как стимул лишь «разрешает» реализацию поведения. В тех случаях, когда один

273

и тот же по физическим параметрам стимул «запускает» разные поведенческие акты (например, пищедобывательный или оборонительный), разными в этих актах оказываются не только характеристики активности нейронов, но даже и сам набор вовлеченных клеток, в том числе и в «специфических» по отношению к стимулу областях мозга (например, в зрительной коре при предъявлении зрительного стимула; см. [Швыркова, 1979; Александров, 1989]).

Рис. 14.1. Функциональная система и поведенческий континуум

Операциональная архитектоника функциональной системы по П. К. Анохину (вверху).

О системных механизмах, составляющих операциональную архитектонику, см. параграф 2. Стрелки от «доминирующей мотивации» к «памяти» демонстрируют, что характер информации, извлекаемой из памяти, определяется доминирующей мотивацией. Схема

также иллюстрирует представление о том, что в акцепторе результатов действия содержатся модели этапных результатов наряду с конечным результатом и что модель последнего представлена не единичной характеристикой, а комплексом параметров

Поведенческий континуум (внизу). Рn, Рn+1, — результаты поведенческих актов; р1,2 ,3  этапные результаты; Т— трансформационные процессы (см. парагра4) 2). О наборах систем, обеспечивающих реализацию последовательных актов континуума, и о вовлечении в трансформационные процессы систем, не участвующих в реализации актов, смена которых данными процессами обеспечивается (эти системы обозначены незаштрихованными овалами), см. в параграфе 7

274

Второе положение рефлекторной теории, которое отвергается ТФС, — оценка действия как завершающего этапа поведенческого акта. С позиций ТФС заключительный этап развертывания акта — сличение прогнозируемых в акцепторе параметров с параметрами реально полученного результата. Если параметры соответствуют прогнозируемым, то индивид реализует следующий поведенческий акт; если же нет, то в аппарате акцептора возникает рассогласование, ведущее к перестройке программ достижения результата.

Наконец, ТФС отвергает положение о поступательном ходе возбуждения по дуге рефлекса. В соответствии с этим положением, реализацию поведения обеспечивает активация последовательно включающихся в реакцию структур мозга: сначала сенсорных структур, обрабатывающих сенсорную информацию, затем эффекторных структур, которые формируют возбуждение, активирующее железы, мышцы и т. д. Однако нами [Александров, Швырков, 1974], а также работами лабораторий Дж. Олдса и особенно Е. Р. Джона (см. в [Thatcher, 1997]) было показано, что при реализации поведенческого акта имеет место не последовательное включение афферентных и эфферентных структур, а синхронная активация нейронов, расположенных в самых разных областях мозга. Паттерн активации нейронов в этих структурах оказывается общим, имеет общемозговой характер. Компоненты этого паттерна — последовательные фазы активации — соответствуют последовательности развертывания описанных ранее системных механизмов (см. [Швырков, 1978, 1995]). Сказанное касается не только нейронов головного мозга. Например, было обнаружено, что в латентном периоде поведенческого акта (см. ниже о трансформационных процессах), задолго до начала его реализации и синхронно с нейронами головного мозга, перестраивается активность элементов, которые принято связывать исключительно с «исполнительными» механизмами: мышечные единицы, рецепторы мышечных веретен [Александров, 1989].

Уже более тридцати лет назад было очевидно важнейшее значение феномена синхронности. С позиций рефлекторной теории предполагалось, что синхронность дистантных структур обеспечивает улучшение проведения возбуждения по дуге рефлекса. С позиций же ТФС был сделан вывод о том, что это феномен - свидетельство синхронного вовлечения элементов различной анатомической локализации в системные процессы. Эти процессы — общеорганизменные и не могут быть локализованы в какой-либо области мозга или в какой-либо части тела. В различных областях мозга в поведенческих актах протекают не локальные афферентные или эфферентные, а одни и те же общемозговые системные процессы организации активности нейронов в систему, которая является не сенсорной или моторной, а функциональной. Активность нейронов этих областей отражает не обработку сенсорной информации или процессы регуляции движений, а вовлечение нейронов в определенные фазы организации (афферентный синтез и принятие решения) и реализации системы. Активность любой структуры одновременно соответствует как определенным свойствам среды, так и характеру двигательной активности [Швырков 1978; Швырков, Александров, 1973].

В последние годы феномен синхронности активации разных областей мозга (в том числе и спинного мозга) в поведении открывается вновь [Roelfsema et al., 1997; Thatcher, 1997; Prut, Fetz, 1999] и ему придается все большее значение. Приводятся аргументы в пользу того, что синхронность — характеристика активности мозга, обязательная для функционирования сознания [Crick, Koch, 1990; Engel et al., 1999], актуализации материала памяти [Pulvermuller et al., 1999], организации и реализации поведения [Desmedt, Tomberg, 1999; Pulvermiiller et al., 1999]. Поскольку организация и реализации поведения происходит за счет активации извлеченных из памяти систем (см. ниже), а сознание может быть рассмотрено как одна из характеристик системной организации поведения (см. в [Alexandrov, 1999]), постольку все выделенные выше термины — есть различные аспекты описания системной структуры последнего. Поэтому приведенные выше точки зрения разных авторов находятся в соответствии с системной трактовкой синхронности, данной нами ранее.

Единый паттерн активации и синхронность вовлечения нейронов разных областей мозга в общемозговые системные процессы не означают эквипотенциальности (равнозначности) мозговых структур; вклад этих структур в обеспечение поведения зависит от специфики проекции на них индивидуального опыта (см. параграф 8).

14.2.8. Поведение как континуум результатов

До сих пор мы с дидактическими целями, а также следуя традиции исходного варианта ТФС, использовали понятие пускового стимула. Однако ясно, что использование этого понятия в рамках парадигмы активности ведет к эклектике. Кажущаяся его необходимость отпадает при рассмотрении поведенческого акта не изолированно, а как компонента поведенческого континуума (последовательности поведенческих актов, совершаемых индивидом на протяжении своей жизни). При этом оказывается, что следующий акт в континууме реализуется после достижения и оценки результата предыдущего акта. Эта оценка — необходимая часть процессов организации следующего акта, которые, таким образом, могут быть рассмотрены как трансформационные, или процессы перехода от одного акта к другому. Места для стимула в таком континууме нет (см. рис. 14.1). С теми изменениями среды, которые традиционно рассматриваются как стимул для данного акта, на самом деле информационно связано предыдущее поведение, в рамках которого эти изменения ожидались и предвиделись в составе модели будущего результата — цели.

276

А что же с неожиданными изменениями? К каким модификациям на уровне последовательности поведенческих актов может привести изменение среды, которое не предвиделось в рамках предшествующего ему поведения и, следовательно, не является результатом последнего? Оно либо не изменит запланированной последовательности актов континуума (и в этом смысле «проигнорируется»), либо прервет ее, обусловив формирование разных, в зависимости от конкретной ситуации, видов поведения:

повтор прерванного акта, формирование нового поведения, в том числе ориентировочно-исследовательского (см. гл. 10), и т. д. И опять все это поведение будет направлено в будущее, и его организация явится информационным эквивалентом будущего события — определенного соотношения организма со средой.

Таким образом, поведение может быть охарактеризовано как континуум результатов [Анохин, 1978], а поведенческий акт рассмотрен как отрезок поведенческого континуума от одного результата до другого [Швырков, 1978].

14.3. СИСТЕМНАЯ ДЕТЕРМИНАЦИЯ АКТИВНОСТИ НЕЙРОНА

14.3.1. Парадигма реактивности: нейрон, как и индивид, отвечает на стимул

Как мы уже отмечали, с позиций парадигмы реактивности поведение индивида представляет собой реакцию на стимул. В основе реакции лежит проведение возбуждения по рефлекторной дуге: от рецепторов через центральные структуры к исполнительным органам.

Нейрон при этом оказывается элементом, входящим в рефлекторную дугу, а его функция — обеспечением проведения возбуждения. Тогда совершенно логично рассмотреть детерминацию активности этого элемента следующим образом: «...ответ на стимул, подействовавший на некоторую часть ее (нервной клетки. — Ю. А.) поверхности, может распространяться дальше по клетке и действовать как стимул на другие нервные клетки...» [Бринк, 1960, с. 93]. Следовательно, в рамках парадигмы реактивности рассмотрение нейрона вполне методологически последовательно: нейрон, как и организм, реагирует на стимулы. В качестве стимула выступает импульсация, которую нейрон получает от других клеток, в качестве реакции — следующая за синаптическим притоком импульсация данного нейрона (рис. 14.2).

К сожалению, такая методологическая последовательность отсутствовала в рамках парадигмы активности. Как правило, анализ «нейронных механизмов» целенаправленного поведения приводил авторов к тому, что мы назвали ранее

Рис. 14.2. Индивид и нейрон в парадигмах активности и реактивности

Цифрами на схеме обозначена последовательность событий. В соответствии с парадигмой реактивности за стимулом (1) следует реакция (2) — поведенческая у человека, импульсная у нейрона. В последнем случае в качестве стимула рассматривается импульсация нейрона, аксон которого (параллельный стрелке с надписью «Стимул») контактирует с дендритом реагирующего нейрона, окруженного глиальными клетками и соприкасающегося с кровеносным сосудом, который расположен над словом «Реакция». Реакция представляет собой импульсные разряды реагирующего нейрона. В соответствии с парадигмой активности действие (1) (поведенческое — у человека, импульсация — у нейрона) завершается достижением результата и его оценкой (2). Пунктирной линией обозначена модель будущего результата: для человека — контакт с объектом-целью, для нейрона — получение соответствующих метаболитов 1 — от контактирующего нейрона; М2 — от соседней глиальной клетки), которые соединяются с рецепторами нейрона 1  , Р2 )

278

«уровневой эклектикой»: представлению о том, что индивид осуществляет целенаправленное поведение, а его отдельный элемент — нейрон — реагирует на приходящее к нему возбуждение — стимул. Важнейшей задачей стало устранение подобной эклектики.

Подход к нейрону как к проводнику возбуждения встречал возражения уже давно, например со стороны Дж. Э. Когхилла, который, однако, не мог в отсутствие целостной и последовательной теории, вписывающейся в парадигму активности, дать решение, адекватное сформулированной задаче. В его концепции нейрон реагирует «на окружающую среду так же, как живой организм» [Когхилл, 1934, с. 56]. Решающий шаг в направлении решения этой задачи был сделан П. К. Анохиным [1975], который в своей последней работе подверг аргументированной критике общепринятую, как он ее назвал, «проведенческую концепцию» нейрона, и предложил вместо нее системную концепцию интегративной деятельности нейрона.

Вне зависимости от конкретных, усложняющихся с развитием науки представлений о функционировании нейрона, в традиционном рассмотрении центральной оставалась идея об электрической суммации потенциалов на мембране нейрона. В соответствии с ней предполагалось, что возбуждающие и тормозные постсинап-тические потенциалы, возникающие за счет изменения ионных градиентов на мембране постсинаптического («получающего») нейрона под действием пресинаптической импульсации, суммируясь, действуют на генераторный пункт нейрона, продуцирующий распространяющиеся потенциалы действия — импульсы.

П. К. Анохин назвал парадоксальным перенос на нейрон представлений, возникших при изучении функционирования нервного волокна и заставляющих рассматривать проведение возбуждения как главную деятельность нервной клетки. Если задача состоит лишь в том, чтобы передать возбуждение от одного нейрона к другому, то не ясно, для чего между входным и выходным импульсами «вставлены» сложные промежуточные этапы: выделение медиатора, его воздействие на субсинаптическую мембрану и химические превращения в ней. «Неужели для того, чтобы, начав с электрического потенциала терминали, сформировать в конце концов тот же спайковый потенциал, весьма сходный по своим физическим параметрам с потенциалом, пришедшим по аксонной терминали?» [Анохин, 1975, с. 368],

14.3.2. Парадигма активности: нейрон, как и индивид, достигает «результата», получая необходимые метаболиты из своей микросреды

Упомянутые ранее этапы перехода от пре- к постсинаптической активности приобретают смысл в том случае, считал П. К. Анохин, если принять, что процесс, обеспечивающий переход от пре- к постсинаптическим образованиям, продолжается в непрерывную цепь химических процессов внутри нейрона и, главное, что все межклеточные контакты служат обмену метаболическими субстратами между контактирующими клеточными образованиями. Переход от «проведенческой концеп-

279

ции» к рассмотрению нейрона как «организма», получающего необходимые ему метаболиты из окружающей «микросреды», и был тем шагом, который предопределил последующую разработку проблемы в направлении ее системного решения.

Необходимость дальнейшей разработки определялась тем, что в рамках концепции интегративной деятельности нейрона последовательность событий в принципе оставалась той же, что и в парадигме реактивности. В обоих случаях процесс начинался приходом возбуждения к нейрону и заканчивался генерацией этим нейроном потенциала действия. Разница, которую подчеркивал П. К. Анохин, состояла в том, какими процессами заполнялся интервал между действием медиатора на субсинаптическую мембрану нейрона и генерацией потенциала: химическими преобразованиями внутри нейрона в первом случае и электрической суммацией во втором.

Устранение эклектики и приведение представления о детерминации активности нейрона в соответствие с требованиями системной парадигмы было достигнуто отказом от рассмотрения активности нейронов как реакции на синаптический приток и принятием положения о том, что нейрон, как и любая живая клетка, реализует генетическую программу, нуждаясь при этом в метаболитах, поступающих к нему от других клеток [Швырков, 1995]. В связи с этим последовательность событий в деятельности нейрона становится аналогичной той, которая характеризует активный целенаправленный организм, а его импульсация — аналогичной действию индивида (см. рис. 14.2).

Активность нейрона, как и поведение организма, является не реакцией, а средством изменения соотношения со средой, «действием», которое обусловливает устранение несоответствия между его «потребностями» и микросредой, в частности за счет изменений кровотока, метаболического притока от глиальных клеток и активности других нейронов. Эти изменения, если они соответствуют текущим метаболическим «потребностям» нейрона, приводят к достижению им «результата» (получение набора метаболитов, соединяющихся с его рецепторами; см. далее) и прекращению его импульсной активности. Предполагается, что несоответствие между «потребностями», определяемыми генетически, и реально поступающими метаболитами может иметь место как при генетически обусловленных изменениях метаболизма клетки, так и при изменении притока метаболитов от других клеток. Таким образом, нейрон — не «кодирующий элемент», «проводник» или «сумматор», а организм в организме, обеспечивающий свои «потребности» за счет метаболитов, поступающих от других элементов.

С позиций традиционных представлений о нейроне, отвечающем реакциями на синаптический приток, его «обычная» активность представляется «экзогенной»,

280

вызванной внешним стимулом — притоком. В той же ситуации, когда она возникает в отсутствие «входной» импульсации, говорят об «эндогенной» активности, имеющей, так сказать, «внутреннее», а не «внешнее» происхождение. Ясно, что с системных позиций эти виды активности оказываются имеющими общее происхождение — они детерминированы метаболическими «потребностями» нейрона. И возникают при рассогласовании между состоянием микросреды нейрона и этими «потребностями», что может иметь место как при появлении несоответствующего «потребностям» притока (например, при электрической стимуляции пресинаптических элементов), так и в отсутствие синаптического притока к нейрону, когда он необходим.

«Действие» нейрона, его импульсная активность, не только влияет на его микросреду, но изменяет и сам импульсирующий нейрон. Здесь опять можно провести аналогию с индивидом. Когда человек протягивает руку к яблоку, он не только приближает ее к объекту-цели, но и готовит себя к контакту с яблоком: изменяет позу, суставные углы рабочей конечности в зависимости от положения яблока, его пальцы конфигурируются в соответствии с размером яблока, рецепторы претерпевают эфферентные влияния (см. далее раздел 14.4.5), связанные с предвидением будущего контакта тела с объектом-целью, и т. д. Что касается изменения состояния нейрона при его «действии», уже давно было известно, что «следовые», пост-спайковые процессы (такие как изменение поляризации, ионной проницаемости) играют существенную роль в регуляции чувствительности нейрона к последующему притоку [Шаповалов, 1966].

В последнее время как на препаратах, так и на бодрствующих животных показано, что потенциал действия, генерируемый нейроном, распространяется не только в «обычном» направлении — по аксону к другим клеткам, но и в обратном направлении — к дендритам данного нейрона (феномен «обратного распространения», backpropagation; [Buzsaki, Kandel 1998; Fregnac, 1999]). При этом его чувствительность к притоку существенно модифицируется. Изменения в дистальных дендритах, а также и в теле нейрона (например, длительная «кальциевая волна» после пресинаптической импульсации, дендритные кальциевые спайки, распространяющиеся к соме) возникают именно при сочетании эффектов «обратного распространения» с пресинаптической импульсацией. Обнаружено, что интенсивность поглощения нейроном меченных изотопами аминокислот значимо изменяется в микроинтервалах времени, приуроченных к моменту генерации спайка. Причем наиболее выраженные изменения, связанные с генерацией спайка, имеют место в постспай-ковом периоде: именно в этом временном интервале интенсивность трансмембранного переноса аминокислот достигает максимума [Бобровников, 1998].

С позиций развиваемых здесь представлений активность нейрона, как и поведение индивида, может быть рассмотрена как со стороны влияния на окружающую среду, так и со стороны модификации активного агента, модификации, соответствующей ожидаемым параметрам эффекта этих влияний и являющейся непре-

281

менной характеристикой активности. Тогда только что изложенные данные о модификации нейрона вследствие его собственной активности могут быть рассмотрены как показатель подготовки нейрона к будущему притоку, связанному с его активностью. Иначе говоря, эти данные свидетельствуют в пользу того, что, давая спайки, нейрон не только обеспечивает необходимый ему метаболический приток, но подготавливается к его «утилизации».

Следовательно, как и в случае с целостным индивидом, на уровне отдельной клетки результат, на достижение которого направлена активность — не новая среда и не новое состояние агента, а их новое соотношение.

Следует подчеркнуть, что для последовательно системного понимания детерминации активности нейрона существенны оба компонента: признание направленности активности нейрона в будущее и ее обусловленности метаболическими «потребностями» нейрона. То, что только первого из них недостаточно, видно на примере интересной концепции гедонистического нейрона, разработанной А. Г. Клопфом [Klopf, 1982]. Утверждая, что целенаправленный мозг состоит из целенаправленных нейронов, А. Г. Клопф отвечает на вопрос о том, в чем нейроны нуждаются и как они это получают в соответствии со следующей логикой. Аристотель рассматривал получение удовольствия как главную цель поведения. Следовательно, организм гедонистичен. Нейрон есть организм. Следовательно, нейрон гедонистичен. «Удовольствие» для нейрона — возбуждение, а «неудовольствие» — торможение. Активация нейрона — «действие», обеспечивающее получение им возбуждения. Нейрон является гетеростатом, т. е. системой, направленной на максимизацию «удовольствия», т. е. возбуждения.

Таким образом, отсутствие второго из двух необходимых компонентов ведет к необходимости предположить наличие у нейрона довольно странных и экзотически аргументированных «потребностей», особенно если принять во внимание популярную концепцию «токсического перевозбуждения» (excitotoxic), в рамках которой длительное перевозбуждение нейронов рассматривается как причина их гибели.

В то же время наиболее часто у авторов отсутствует первый из компонентов, что при анализе нейронного обеспечения поведения ведет к рассмотрению сложных метаболических превращений внутри нейрона главным образом как фактора, обеспечивающего проведение возбуждения и пластичность (модификацию проведения при разных видах научения). При этом сложнейшие механизмы изменения «белкового фенотипа» оказываются направленными, например на изменение чувствительности постсинаптической мембраны к пресинаптическому возбуждению.

14.3.3. «Потребности» нейрона и объединение нейронов в систему как способ их обеспечения

Охарактеризуем очень кратко некоторые существенные «потребности» нейрона. Они определяются необходимостью синтеза новых молекул, в том числе белков, расходуемых в процессе жизнедеятельности («типичная» белковая молекула раз-

282

рушается в среднем через два дня после того, как она была синтезирована [Албертс и др., 1986]) или обеспечивающих структурные перестройки нейрона, которые имели место при научении. Для этого в том случае, если в клетке нет соответствующей информационной РНК, направляющей синтез белка в цитоплазме, экспрессируются (становятся активными, «выраженными») гены (см. гл. 20), среди которых выделяют гены «домашнего хозяйства» (универсальные «потребности» клеток), гены «роскоши» (специфические «потребности» клетки) или «ранние» и «поздние» гены, экспрессируемые на последовательных стадиях формирования памяти, и т. д. Как предполагается, именно усложнение процессов регуляции экспрессии генов, а не их количество определяет эволюционное усложнение живых систем [Албертс и др., 1986; Анохин,1996].

Различие в экспрессии, а не потеря или приобретение генов, определяют различие специализации клеток организма. Особенно велики эти различия для клеток мозга, в которых экспрессируются десятки тысяч уникальных для мозга генов. Считается, что метаболическая гетерогенность нейронов, обусловленная генетически и зависящая от условий индивидуального развития, т. е. являющаяся результатом взаимодействия фило- и онтогенетической памяти, лежит в основе разнообразия функциональной специализации нейронов и определяет специфику их участия в обеспечении поведения [Пигарева, 1979; Шерстнев и др., 1987; Александров, 1989; Швырков, 1995; гл. 20].

Роль большинства химических соединений, поступающих в «микросреду» клетки, сводится к изменению свойств и скорости синтеза имевшихся в ней белков или к инициации синтеза новых белков. Гидрофобные молекулы (например, стероидные или тиреоидные гормоны) могут проникать внутрь нейрона и соединяться там с рецепторами. Рецепторы — это, главным образом, белковые структуры, роль которых состоит в «узнавании» соответствующих молекул и обеспечении последующего развертывания тех или иных метаболических процессов. Но как влияют на метаболизм нейрона нейромедиаторы, выделяемые из терминалей контактирующих с ним нейронов и являющиеся гидрофильными молекулами, не проникающими в клетку и сразу разрушающимися после действия на мембрану данного нейрона? Отправной точкой этого действия является соединение медиатора с рецептором постсинаптической мембраны..Соединяясь со «своим» рецептором, медиатор не только изменяет проницаемость ионных каналов, но и оказывает влияние на внутриклеточные процессы, например синтез протеинкиназ — ферментов, фосфорилирующих белки.                                              

Нейрон обеспечивает «потребности» своего метаболизма объединяясь с другими элементами организма в функциональную систему. Их взаимосодействие, совместная активность обеспечивает достижение результата — нового соотношения целостного индивида и среды. «Изнутри», на уровне отдельных нейронов достижение результата выступает как удовлетворение метаболических «потребностей» нейронов и прекращает их активность.

283

В рамках традиционного подхода к пониманию межнейронных отношений закономерно возникает вопрос, четко сформулированный Э. Кенделом (Kandel E.):

«Почему имеются разные нейротрансмиттеры, если лишь одного достаточно для того, чтобы опосредовать передачу всех электрических сигналов?» (см. в [Сахаров, 1990]). С позиций представлений о системной детерминации активности нейронов медиатор больше не рассматривается как стимул, действующий на нейрон (или отдельный его локус), а нейрон — как передатчик электрических сигналов. Медиаторы являются метаболитами, обеспечивающим удовлетворение «потребностей» клетки. Многообразие и сложность этих потребностей таковы, что разнообразие медиаторов само по себе не кажется удивительным. Проблема же «множественности нейротрансмиттеров» [Сахаров, 1990], т. е. множественности «передатчиков» гомогенных электрических сигналов, превращается при этом в проблему специфики метаболических паттернов, связанных с обеспечением тех или иных «потребностей», и проблему модификации паттернов при формировании специализации нейронов в процессе системогенеза (см. ниже).

Системный подход к пониманию активности нейронов заставил применить для ее анализа вместо традиционных «постстимульных» гистограмм, выявляющих закономерные изменения активности нейрона после предъявления стимула, «предрезультатные» гистограммы, которые позволяют обнаружить нейроны, импульсная активность которых закономерно увеличивается при реализации поведения, направленного на получение конкретного результата, и прекращается при его достижении.

В последнее время получены данные, которые позволяют связать частоту «предрезультатной» активности со степенью потребности, с одной стороны, и с появлением поведения, направленного на удовлетворение этой потребности, с другой. Показано, что у зависимых от кокаина животных, обученных нажимать на педаль для самовведения кокаина (через канюлю, вживленную в яремную вену), частота активности нейронов, вовлекающихся в обеспечение инструментального кокаиндобывательного поведения, тем выше, чем ниже концентрация кокаина в организме [Nicola, Deadwyler, 2000]. Когда частота активности, постепенно нарастая, достигает определенного уровня, развертывается инструментальное поведение, достижение результата которого — введение кокаина — проявляется в подавлении активности этих нейронов [Chang et al., 1994; Nicola, Deadwyler, 2000 ]. Затем, по прошествии некоторого времени, концентрация кокаина опять понижается, частота активности повышается, реализуется поведение добывания кокаина — цикл повторяется.

14.3.4. Значение системного понимания детерминации активности нейрона для психологии

Итак, поскольку системная психофизиология отвергает парадигму реактивности, основывая свои положения на представлении об опережающем отражении, о направленной в будущее активности не только

284

индивида, но и отдельных нейронов, постольку она обеспечивает для психологии, оперирующей понятиями активности и целенаправленности, возможность избавиться от эклектических представлений, часто появляющихся при использовании материала ней-ронаук.

14.4. СУБЪЕКТИВНОСТЬ ОТРАЖЕНИЯ

14.4.1. Активность как субъективное отражение

Рассмотрение соотношения индивида и среды с позиций ТФС уже давно привело к заключению о том, что поведенческий континуум целиком занят процессами организации и реализации функциональных систем (см. рис. 14.1). Специального временного интервала для процессов обработки сенсорной информации (и самих этих пороцессов [Швырков, 1995]) не обнаруживается [Швырков, Александров, 1973]. В последнее время в литературе высказываются представления, вполне согласующиеся с этими. Как устойчивое заблуждение характеризуется «метафора обработки информации», в рамках которой поведение рассматривается как следующая последовательность процессов: «обработка сенсорной информации» —> создание «сенсорной репрезентации» —> «генерация поведения». Существование сенсорной репрезентации отрицается, а перцепция и генерация поведения оказываются лишь аспектами рассмотрения одного и того же процесса [Miiller, 1997].

Представление о том, что индивид не реагирует на стимулы, кодируя и декодируя информацию об их свойствах, а реализует активность, которая направлена в будущее, т. е. опережающее отражение, связанное с формированием внутренней субъективной модели будущего события, — результата, с необходимостью требует признания отражения субъективным.

На начальных этапах формирования системной психофизиологии казалось обоснованным представление о том, что активации, возникающие с минимальным латентным периодом после стимула, могут быть сопоставлены с кодированием его физических параметров для последующего сличения с имеющейся в памяти моделью [Александров, 1971]. Однако скоро стало ясно, что даже самые ранние активации нейронов в поведенческом акте — не кодирование, а уже результат сличения с субъективными моделями, сформированными в рамках предыдущего акта континуума [Швырков, Александров, 1973; Швырков, 1978].

Сказанное выше о субъективном характере опережающего отражения находится в соответствии с положением о «пристрастности» отражения среды, о зависимости последнего от целей поведения и имеющегося у индивида опыта. Это свойство психического отражения обозначается как субъективность и предполагает несводи-

285

мость описания отражения к языку сенсорных модальностей, выражающих в «сенсорном коде» физические параметры объектов [Леонтьев, 1975; Ломов, 1984, и др.].

В четкой форме опережающий характер отражения представлен в когнитивной психологии концепцией У. Найссера [1981], который считает, что образы не «картинки в голове», появляющиеся после действия сенсорных стимулов, а «предвосхищения будущего». Автор подчеркивает, что предвосхищение не обязательно является реалистическим. Действительно, мы можем рассмотреть наш опыт как состоящий из актов-гипотез, включающих параметры планируемых результатов, отношения между ними, пути их достижения и т. д. Гипотезы тестируются во внутреннем и внешнем планах (см. раздел 7.3). И хотя можно полагать, что отбор из ряда «пробных» актов «удачного», попадающего в видовую память [Швырков, 1995], определяется соответствием гипотезы реальным свойствам и закономерностям среды, тем не менее возможность достижения конкретным индивидом в том или ином поведенческом акте требуемого соотношения организма и среды, т. е. результата, не означает, что данная удачная гипотеза целиком базируется на упомянутых свойствах и закономерностях.

В экологической психологии убедительные аргументы против того, что среда состоит из стимулов и отображается как «картинка», рассматриваемая гомункулюсом, приведены Дж. Гибсоном [1988]. Им разработана стройная теория, которая, как справедливо замечает А. Д. Логвиненко (см. в [Гибсон, 1988, с. 17]), в руководствах либо игнорируется, либо искажается до неузнаваемости в связи с невозможностью ее ассимилировать, оставаясь в рамках традиционной парадигмы. И это не удивительно, так как принципиальными положениями этой теории является отрицание не только схемы «стимул—реакция», но и самого понятия «стимул». Автор отвергает также идею о необходимости обработки и передачи сенсорной информации — ее некому принимать. Далее мы еще вернемся к теории Дж. Гибсона.

14.4.2. Физические характеристики среды и целенаправленное поведение

Более 30 лет назад Дж. Леттвин и др. [1963], изучив связь активности нейронов сетчатки лягушки с ее поведением, сформулировали в очень яркой форме свое представление о том, что выделяет организм в среде: «Лягушки интересуются жуками и мухами, в то время как границы и углы интересуют только ученых». Еще раньше в гештальтпсихологии были обоснованы положения о том, что среда должна определяться не физически, а психобиологически [Левин, 1980] и что целостное восприятие не составляется из отдельных элементарных «кусков» [Вертгеймер, 1980]. Следует согласиться с Дж.Гибсоном [1988] в том, что объект не складывается из качеств, но мы можем выделить их, если это надо для целей эксперимента. «Куски», физические характеристики, в соответствии с которыми ранжируются

286

стимулы и связь с которыми устанавливается при анализе активности нейронов или отчетов испытуемых, являются вовсе не «элементарными» свойствами, а сложными концепциями, которые появляются в результате специального поведения, направленного на выделение упомянутых характеристик: классификация, сравнение объектов, например в науке, искусстве и т. п.

Ярким примером рассмотрения таких культурных концепций в качестве «элементарных» свойств, присущих объекту, является представление о том, что восприятие объекта складывается из восприятия элементарных форм — «геонов» [Biederman, 1987]. Предполагается, что использование ограниченного набора (алфавита) геонов позволяет воспринять любой сколь угодно сложный объект. Подчеркнем, что геон понимается автором концепции как «примитив», а примитив — это понятие, выработанное в геометрии для обозначения элементарного геометрического объекта, используемого для построения более сложных объектов.

На что же мы дробим среду, что выделяем в ней, если не упомянутые физические характеристики?

С позиций парадигмы активности с давних пор представлялось очевидным, что из среды активно «отбирается» индивидом то, что может быть использовано для достижения цели [Dewey, 1969], причем количество объектов, которые может различить индивид, равно количеству функций, которые он может реализовать [Uexkull, 1957]. Анализ среды как обеспечивающей активность индивида в ней дан в теории «affordance» [Гибсон, 1988]. Неологизм affordance (эффорданс) — существительное, образованное Дж. Гибсоном от глагола afford — предоставлять, разрешать. Эффордансы — это то, что окружающий мир предоставляет индивиду, чем он его обеспечивает для совершения того или иного поведения. Эффордансы нельзя предъявить индивиду, так как они не являются стимулами, можно лишь обеспечить их наличие. Автор считает, что индивид соотносится не с миром, описываемым в физических терминах, а с экологическим миром. Он понимает экологическую нишу вида как набор эффордансов. Понятие «эффорданс» подразумевает взаимодополняемость мира и индивида. Дж. Гибсон отмечает, что понимает под ним «нечто, относящееся одновременно и к окружающему миру, и к животному таким образом, который не передается ни одним из существующих терминов» [Гибсон, 1988, с. 188].

14.4.3. «Дробление» среды индивидом определяется историей их соотношения

Как мы уже знаем, основным понятием в ТФС является результат, под которым понимается определенное соотношение организма и среды и который, следовательно, так же как эффорданс, относится одновременно к окружающему миру и к инди-

287

виду. Однако, в отличие от эффорданса, результат, как и валентность у К. Левина [1980], включает субъективный компонент, от которого отказывается Дж. Гибсон, постулируя независимость эффордансов от потребностей и опыта наблюдателя. Именно поэтому для ответа на вопрос о том, как дробит среду индивид и как она представлена в его субъективном мире, мы должны дополнить экологический мир субъективным компонентом, т. с. подчеркнуть аспект использования эффордансов индивидом.

При этом оказывается, что среда «дробится» тем или иным образом в соответствии с опытом совершения индивидом тех или иных поведенческих актов на протяжении его индивидуального развития. Индивид отражает не внешний мир как таковой, а историю своих соотношений с миром. Описание среды индивидом основано на оценках его соотношения с объектами-целями поведенческих актов, т. е. на оценках результатов. Образно говоря, можно рассматривать жизнь индивида как «ассимиляцию» экологического мира, превращающую для индивида экологический мир в мир результатов. Продолжая данную логику, можно заключить, что среда представлена для индивида результатами реализованных актов.

В этой части излагаемая здесь система представлений довольно близко примыкает к концепции У. Матурана [1996], который считает, что мнение об организме, имеющем входы и выходы, и о нервной системе, которая кодирует информацию об окружающей среде, заслуживает критики. Автор справедливо утверждает, что состояния активности репрезентируют отношения (между организмом и средой), а не являются описанием окружающей среды. Это описание может быть дано исключительно в терминах, содержащихся в «когнитивной области наблюдателя», — в терминах поведения организма.

14.4.4. Зависимость активности центральных и периферических нейронов от цели поведения

Убедительные примеры того, как субъективность отражения проявляется в организации активности мозга, можно получить при анализе зависимости от целей поведения активности нейронов «сенсорных» структур, которую принято считать детерминированной модально-специфической стимуляцией.

Одним из способов изучения процессов обработки сенсорной информации является тестирование рецептивного поля нейрона, под которым понимается участок рецептивной поверхности, занимаемый совокупностью рецепторов, при стимуляции которых изменяется активность определенного нервного элемента (см. гл. 3). С точки зрения ТФС связь активности нейрона со стимуляцией данной рецептивной поверхности показывает, что одним из условий, при котором данный

288

нейрон вовлекается в достижение результата поведения, является контакт объектов среды с этой поверхностью [Швырков, 1978; Александров, 1989].

В экспериментах многих авторов показано, что при изменении цели поведения, реализуемого животным, рецептивное поле нейрона может изменяться по свойствам или даже «исчезать» (см. в [Александров, 1989]). Так, при сравнении активности одного и того же нейрона сенсорных областей коры мозга в разных поведенческих актах обнаруживается, что активация данного нейрона (повышение частоты его импульсной активности) может возникать при контакте объектов среды с соответствующей рецептивной поверхностью в одном поведении, но не в другом — «исчезновение» рецептивного поля. Следовательно, характеристики активности и набор вовлеченных нейронов сенсорных структур зависят от цели поведения, изменяясь при изменении цели даже в условиях постоянства «специфической стимуляции».

Зависит ли от цели поведения активность периферических сенсорных элементов — рецепторов? Традиционная точка зрения о ригидной периферии и пластичном центре (см. в параграфе 1 о «центрально-периферической» эклектике) предполагает отрицательный ответ на этот вопрос. В то же время понимание того, что организация процессов в функциональной системе детерминирована результатом и что система является не центральным, а общеорганизменным образованием, предполагает наличие подобной зависимости. Это предположение было подтверждено в экспериментах с регистрацией активности механорецептивных волокон лучевого нерва человека [Alexandrov, Jarvilehto, 1993]. Оказалось, что при одинаковом давлении плексигласового зонда на участок кожи руки в области рецептивного поля данного механорецептора характеристики активности последнего зависят от цели поведения испытуемого. Зависящие от цели изменения характеристики активности рецепторов при постоянстве физических свойств среды определяются эфферентными влияниями. Эти влияния оказываются через эфферентные волокна — аксоны нейронов центральной нервной системы, направляющиеся к исполнительным органам и периферическим сенсорным аппаратам.

Если мы утверждаем, что активность любой клетки, в том числе и нейрона сенсорной структуры, «целенаправленна» и не детерминирована специфическим «сенсорным входом», то следует ожидать, что она будет возникать при достижении соответствующего результата и в условиях искусственной блокады данного входа. Действительно, обнаружено, что для возникновения у нейронов зрительной коры и ганглиозных клеток сетчатки активации, приуроченных ко всем этапам реализуемого поведения, не нужен контакт со «зрительной средой» (контакт устранялся закрыванием глаз животного с помощью светонепроницаемых колпачков; подробно см. в [Александров, 1989]). С нашей точки зрения, эти результаты можно рассматривать как сильный аргумент в пользу представления о «целенаправленности» активности нейронов.

289

14.4.5. Значение эфферентных влияний

Связь активности ганглиозных клеток сетчатки с поведением при закрытых глазах обусловлена уже упоминавшимися эфферентными влияниями. Еще в начале нынешнего столетия С. Рамон-и-Кахал высказал предположение о том, что эфферентные влияния регулируют возбудимость рецепторов, и связал их функцию с механизмами внимания. В 1940-е гг. в нашей стране П. Г. Снякиным (1971) была разработана концепция функциональной мобильности рецепторов, в соответствии с которой изменение их чувствительности, обусловленное эфферентной активностью, рассматривалось как механизм настройки анализаторов на восприятие модально-специфических стимулов. С тех пор существенного прогресса в понимании значения эфферентных влияний не произошло. Вместе с тем данные о появлении активации ганглиозных клеток сетчатки и других периферических сенсорных элементов в отсутствие стимулов специфической модальности позволяют считать, что роль эфферентных влияний не может быть сведена к модуляции ответов периферических сенсорных элементов на специфическую стимуляцию. В рамках ТФС развито представление [Александров, 1989] о том, что эфферентные влияния отражают процесс согласования активности периферических и центральных элементов. Этот процесс необходим потому, что только их совместная активность (взаимосодействие) как в условиях контакта со средой специфической модальности, так и вне его может обеспечить достижение результата, а следовательно, и удовлетворить метаболические «потребности» клеток обеих групп (см. параграф 3).

14.5. ПСИХОФИЗИОЛОГИЧЕСКАЯ ПРОБЛЕМА И ЗАДАЧИ СИСТЕМНОЙ ПСИХОФИЗИОЛОГИИ

В настоящем параграфе мы ответим на перечисленные далее вопросы. Как зависят задачи психофизиологии от методологических установок? Существует ли среди них специфическая задача психофизиологии в общей проблематике психологии? Если да, то в чем она состоит, в рамках какой методологии может быть сформулирована и каково значение ее решения для психологии?

С позиций бихевиоризма можно полагать, что «рассмотрение проблемы "дух-тело" не затрагивает ни тип выбираемой проблемы, ни формулировку решения этой проблемы» [Уотсон, 1980, с. 25]. Напротив, мы считаем, что именно от решения этой проблемы зависит понятийный аппарат исследования, его задачи и методы. Именно поэтому ответы на поставленные вопросы мы дадим в контексте решения психофизиологической проблемы.

290

14.5.1. Коррелятивная психофизиология

Традиционные психофизиологические исследования проводятся, как правило, с позиций «коррелятивной (сопоставляющей) психофизиологии». В этих исследованиях психические явления напрямую сопоставляются с локализуемыми элементарными физиологическими явлениями. Задачей подобных исследований, формулируемой, как правило, в терминах парадигмы реактивности, является разработка представлений о физиологических механизмах психических процессов и состояний. В рамках подобных представлений «психические процессы» описываются в терминах возбуждения и торможения мозговых структур, свойств рецептивных полей нейронов сенсорных структур и т. п. Решение задач коррелятивной психофизиологии не требует какой-либо специальной методологии, которая могла бы, по выражению П. К. Анохина, стать «концептуальным мостом» между психологией и физиологией. Если психолог при изучении восприятия сложных зрительных паттернов регистрирует какой-либо электрофизиологический показатель или нейрофизиолог при обсуждении свойств активности нейронов сенсорных структур использует термины «восприятие», «образ» и т. п., то их работы могут рассматриваться как психофизиологические с позиций коррелятивной психофизиологии. Коррелятивная психофизиология неоднократно подвергалась аргументированной критике как со стороны психологов, так и со стороны психофизиологов [Гиппенрейтер, 1988; Швырков, 1989, 1995; Александров, 1995; и др.].

14.5.2. Варианты традиционного решения психофизиологической проблемы

Принципиальным недостатком коррелятивной психофизиологии является прямое сопоставление психического и физиологического, что с точки зрения психологии малопродуктивно [Шадриков, 1982; Рубинштейн, 1989; Ярошевский, 1996] и неизменно приводит к рассмотрению психологических и физиологических процессов как тождественных, параллельно протекающих (при этом психика оказывается эпифеноменом) или взаимодействующих (при этом допускается действие нематериальной психики на материю мозга). Названные варианты решения психофизиологической проблемы существуют уже столетия, меняются лишь термины в рамках все тех же альтернатив [Леонтьев, 1975]. Так, например, дуализм Декарта, предполагающий воздействие психики на мозг через эпифиз (см. параграф 1), сменяется «триализмом» у К. Поппера и Дж. Экклса [Popper, Eccles, 1977]. Они выделяют три мира: а) Мир I — физических объектов и состояний (включающий неорганические и биологические структуры, в том числе мозг); б) Мир II — состояний психического (включающий субъективные знания, мышление, эмоции и т. д.) и в) Мир III — знаний в объективном смысле (который включает знания,

291

зафиксированные на материальных носителях, и теоретические системы). Мир I взаимодействует с Миром II, а Мир II — с Миром III. Воздействие психики на мозг осуществляется в области синапсов.

Пытаясь избежать методологических проблем подобного рода, Г. Спенсер [1897] и В. М. Бехтерев [1991] утверждали, что субъективное и объективное являются характеристиками единого процесса (у Бехтерева — нейропсихического). Что же это за процесс? Возможность рассмотрения в качестве такового рефлекторного процесса как обеспечивающего поведение, специфический язык которого может служить для перевода с психологического на физиологический язык и наоборот (см. в [Ярошевский, 1996]), отпадает, что следует из логики самой рефлекторной теории. В соответствии с ней несопоставимость «рефлекторного механизма, составляющего фундамент центральной нервной деятельности» и «психологических понятий» аргументируется пространственной локализацией первых и непространственным характером вторых [Павлов, 1949, с. 385].

В настоящее время, как отмечает П. С. Чарчленд [Churchland, 1986], многие психологи и философы в качестве препятствия на пути к синтезу психологического и физиологического знания рассматривают эмерджентность психического, т. е. появление на уровне психического таких специфических качеств, которыми не обладает физиологическое. Системное решение психофизиологической проблемы, данное В. Б. Швырковым [1978, 1995], превращает эмерджентность, которая была пропастью, разделяющей психологию и нейронауки, в «концептуальный мост», объединяющий эти дисциплины и формирующий новое направление исследований — системную психофизиологию. В качестве «концептуального моста», соединяющего психологию и нейронауки, в системной психофизиологии использовано развитое в рамках ТФС представление о качественной специфичности, эмерджентности системных процессов, в которых для достижения результатов поведения организуются частные, локальные физиологические процессы, но которые несводимы к последним. С этих позиций, заменив рефлекторные механизмы поведения на системные, можно принять приведенное ранее положение о существовании специфического языка, связывающего психологию и нейронауки и относящегося к поведенческому уровню организации жизнедеятельности [Ярошевский, 1996].

14.5.3. Системное решение психофизиологической проблемы

Суть системного решения психофизиологической проблемы заключена в следующем положении. Психические процессы, характеризующие организм и поведенческий акт как целое, и нейрофизиологические процессы, протекающие на уровне

292

отдельных элементов, сопоставимы только через информационные системные процессы, т. е. процессы организации элементарных механизмов в функциональную систему. Иначе говоря, психические явления могут быть сопоставлены не с самими локализуемыми элементарными физиологическими явлениями, а только с процессами их организации. При этом психологическое и физиологическое описание поведения и деятельности оказываются частными описаниями одних и тех же системных процессов. Данное положение согласуется с представлением Д. И. Дубровского [1971,1980] о том, что связь между психическим и физиологическим не является причинной; психическое и физиологическое однопричинно и одновременно.

Психика в рамках системного решения психофизиологической проблемы рассматривается как субъективное отражение объективного соотношения организма со средой, а ее структура — как «система взаимосвязанных функциональных систем». Изучение этой структуры есть изучение субъективного психического отражения. Поскольку, исходя из сказанного, можно полагать, что психическое появляется в индивидуальном развитии вместе с функциональными системами, соотносящими организм со средой (см. разд. 7.4), постольку эти представления согласуются с гипотезой о том, что психика индивида зарождается еще в пренатальном (внутриутробном) периоде [Брушлинский, 1977].

Приведенное решение психофизиологической проблемы избегает: а) отождествления психического и физиологического, поскольку психическое появляется только при организации физиологических процессов в систему; 6) параллелизма, поскольку системные процессы есть процессы организации именно элементарных физиологических процессов, и в) взаимодействия, поскольку психическое и физиологическое — лишь аспекты рассмотрения единых системных процессов.

Интересно отметить, что уже в самое последнее время предлагается решать психофизиологическую проблему с привлечением концепции информации следующим образом. Физическое (мозговые процессы) и психическое рассматриваются как два базовых аспекта единого информационного состояния или, по крайней мере, «некоторого информационного состояния» [Chalmers, 1995]. Однако сразу возникает закономерный вопрос: какой именно информационный процесс обладает таким свойством? И этот вопрос оценивается как не менее трудный, чем сама исходная проблема [Crick, Koch, 1995]. Содержание настоящего параграфа позволяет дать на него определенный ответ.

14.5.4. Задачи системной психофизиологии и ее значение для психологии

Использование приведенного решения психофизиологической проблемы в системной психофизиологии в качестве одного из важнейших компонентов методологии

293

позволяет избежать редукционизма и эклектики — частых следствий психофизиологических корреляций [Анохин, 1980; Зинченко, Моргунов, 1994], т. е. избежать именно тех ошибок, от которых избавляет использование методологически последовательного системного подхода [Брушлинский, 1990]. При этом системный язык оказывается пригодным для описания субъективного отражения в поведении и деятельности с использованием объективных методов исследования. Этот подход позволяет объединить психологические и естественнонаучные стратегии исследования в рамках единой методологии системной психофизиологии. Специфические задачи последней состоят в изучении закономерностей формирования и реализации систем, их таксономии, динамики межсистемных отношений в поведении и деятельности. Значение системной психофизиологии для психологии состоит в том, что ее теоретический и методический аппарат позволяет избавить последнюю от эклектики при использовании материала нейронаук (см. параграф 1) и описать структуру и динамику субъективного мира на основе объективных показателей, в том числе электро-, нейрофизиологических и т. п.

Аппарат системной психофизиологии может быть также применен для системного описания состояний субъективного мира, соответствующих тем или иным понятиям не только научной, но и обыденной психологии (см. Предисловие) [Александров, 1997], которые отражают важные в практическом отношении характеристики поведения человека, такие как «сомнение», «уверенность», «ненависть», «внимание» (см. гл. 9) и др. Поскольку настроения, самооценка, поступки людей «определяются объективными законами субъективной реальности», постольку представляется очевидным, что изучение этих закономерностей в системной психофизиологии может быть чрезвычайно эффективным [Швырков, 1989].

14.5.5. Коррелятивная и системная психофизиологии

В философии науки утверждается полезность сосуществования альтернативных подходов, способствующего их взаимной критике и ускоряющего развитие науки. Хорошим примером справедливости этого утверждения являются коррелятивная и системная психофизиологии. Несмотря на различие их задач, они, в известном смысле, взаимосодействуют, являясь участниками общего процесса коэволюции психологии и нейронаук (см. Предисловие). В частности, выявление сходных положений при сравнении своих теоретических построений с формулируемыми в рамках другого направления и анализ причин подобного совпадения очень полезны для исследователя, так как способствуют сохранению целостности и последовательности системы развиваемых им представлений и, в конечном счете, «эволюционному интеллектуальному отбору», действующему внутри «концептуальных популяций» [Тулмин, 1984].

294

Конечно, взаимно используется и экспериментальный материал. Следует учесть, однако, что в случае, когда исследователь, получивший материал, проинтерпретировал его в полном соответствии с методологическими требованиями своего направления, представитель другого направления, также желающий оставаться последовательным, должен использовать для заимствования процедуру «меж-

парадигмалыюго перевода». Это объясняется тем, что факты, которыми оперируют ученые, есть эмпирические явления, описанные в терминах той или иной теории. Именно поэтому в рамках разных парадигм одно и то же явление превращается в разные факты [Черняк, 1986].

14.6. СИСТЕМОГЕНЕЗ

В предыдущем параграфе при формулировке задач системной психофизиологии не случайно на первое место поставлена задача изучения формирования систем. Мы увидим дальше, что история формирования поведения и деятельности лежит в основе закономерностей их реализации.

Идея развития, наряду с идеей системности, относится к основным идеям, лежащим в основе ТФС. Обе они были воплощены в концепции системогенеза, которая развита с привлечением огромного экспериментального материала, накопленного при исследовании взаимосвязи процессов по формированию нервной системы и поведения. В этих исследованиях было обнаружено, что в процессе раннего онтогенеза избирательно и ускоренно созревают именно те элементы организма, имеющие самую разную локализацию, которые необходимы для достижения результатов систем, обеспечивающих выживание организма на самом раннем этапе индивидуального развития [Анохин, 1975].

14.6.1. Органогенез и системогенез

В отличие от концепции органогенеза, постулирующей поэтапное развитие отдельных морфологических органов, которые выполняют соответствующие локальные «частные» функции, концепция системогенеза утверждает, что гетерохронии в закладках и темпах развития связаны с необходимостью формирования не сенсорных или моторных, активационных или мотивационных, а «общеорганизменных» целостных функциональных систем, которые, как мы уже говорили, требуют вовлечения множества разных элементов из самых разных органов и тканей. Образно говоря, если концепция органогенеза предполагает, что развитие — это поэтапное строительство дома (фундамент, стены, крыша и т. д.), то концепция системогенеза утверждает, что, в отличие от этого дома, живой «домик», хотя и усложняется,

295

модифицируется в процессе онтогенеза, но на каждом этапе он — целый и имеет все те части, которые позволяют использовать его в качестве «дома», все более и более обустроенного.

Системогенетический анализ процессов развития раскрыл системный характер морфогенетических процессов и привел к формулировке следующих принципов.

1. Принцип гетерохронной закладки компонентов функциональной системы. За счет внутрисистемной гетерохронии — неодновременной закладки и разной скорости формирования различных по сложности компонентов функциональной системы (более ранняя закладка и формирование более сложных компонентов) — эти компоненты «подгоняются» к одновременному началу функционирования в рамках данной системы.

2. Принцип фрагментации органа. В связи с наличием межсистемной гетерохронии — формирования отдельных функциональных систем на последовательных этапах онтогенеза — состав данного органа в каждый момент развития неоднороден по своей зрелости. Наиболее зрелыми оказываются те элементы, которые должны обеспечить реализацию систем, формирующихся на наиболее ранних этапах. Например, у птенца формируется не внутреннее ухо и слуховая кора вообще, но в них избирательно и ускоренно созревают те элементы, которые оказываются чувствительными к частоте «пищевых» сигналов матери, т. е. элементы, необходимые для обеспечения ранних форм пищедобывательного поведения [Хаютин, Дмитриева, 1991].

3. Принцип минимального обеспечения функциональных систем. Функциональная система становится «продуктивной» (обеспечивающей достижение результата и имеющей все необходимые составляющие операциональной архитектоники (см. параграф 2) до того, как все ее компоненты получат окончательное структурное оформление.

С позиций представлений о системном характере морфогенетических процессов, в особенности имея в виду принцип фрагментации (см. выше), можно рассмотреть орган, представляющий собой обособленный комплекс тканей, в качестве общей эволюционно фиксированной «части» множества систем, направленных на достижение разных результатов, или, говоря словами создателя теории системогенеза П. К. Анохина, «как арену, на которой разыгрывается постепенный и гетерохронный захват отдельных его структур в интересах отдельных функциональных систем» [1948, с. 97]. Характеристика данного множества в традиционных терминах описывается как «специфическая функция» органа. Заметим здесь, что существует определенное соответствие между этим утверждением и точкой зрения, высказанной В. Маунткастлом о том, что «крупные структуры являются частями многих распределенных систем» [Эделмен, Маунткастл, 1981, с. 57].

Отвечая на вопрос о том, почему специализированные клетки, принадлежащие разным функциональным системам, в процессе эволюции оформились как локальное морфологическое образование — орган, можно предположить действие факторов, обусловливающих обособление клеточных элементов с различающимися наборами экспрессированных генов.

296

С одной стороны, к подобным факторам можно отнести наличие особых метаболических «потребностей», динамика которых требует срочных обменов специфическими метаболическими субстратами между близко расположенными клетками определенных специализаций (см., например, в [Weinberg, 1997]). Подобный обмен между непосредственно контактирующими клетками был назван «метаболической кооперацией» [Subak-Sharpe et al., 1969]. С другой стороны, компартментализация, по-видимому, оказывается способом пространственного разобщения несовместимых генов [Козлов, 1983; Швырков, 1990].

14.6.2. Научение как реактивация процессов созревания

В настоящее время становится общепризнанным, что многие закономерности модификации функциональных и морфологических свойств нейронов, а также регуляции экспрессии генов, лежащие в основе научения у взрослых, сходны с теми, которые определяют процессы созревания, характеризующие ранние этапы онтогенеза. Это дает авторам основание рассматривать научение как «реювенилизацию» или «реактивацию процессов созревания», имеющих место в раннем онтогенезе (см. гл. 20, имея в виду, что в ней в соответствии с традициями биологической литературы период онтогенеза, обозначаемый здесь как «созревание», называется «развитием»). В рамках ТФС, наряду с признанием специфических характеристик ранних этапов индивидуального развития по сравнению с поздними [Александров, 1989; Шулейкина, Хаютин, 1989], уже довольно давно психофизиологами [Швырков, 1978], физиологами [Судаков, 1979] и психологами [Шадриков, 1982] было обосновано представление о том, что системогенез имеет место не только в раннем онтогенезе, но и у взрослых, так как формирование нового поведенческого акта есть формирование новой системы.

Позднее был сделан вывод о том, что принципиальным для понимания различий роли отдельных нейронов в обеспечении поведения является учет истории формирования поведения [Александров, Александров, 1980], т. е. истории последовательных системогенезов, и разработана системно-селекционная концепция научения [Shvyrkov, 1986]. Она представляет собой составную часть системно-эволюционной теории, которая сформулирована В. Б. Швырковым [1995] и является важнейшим компонентом методологической базы системной психофизиологии. Основное содержание системно-эволюционной теории будет изложено в настоящем и в следующем параграфах.

14.6.3. Научение — селекция или инструкция?

Системно-селекционной концепции созвучны современные идеи о «функциональной специализации», пришедшие на смену идеям «функциональной локализации», и о селективном (отбор из множества клеток мозга нейронов с определенными

297

свойствами), а не инструктивном (изменение свойств, «инструктирование» клеток соответствующими сигналами) принципе, лежащем в основе формирования нейронных объединений на ранних и поздних стадиях онтогенеза [Edelman, 1987]. Дж. Эдельмен приводит аргументы против инструктивного принципа, заключающиеся в том, что этот принцип требует точной копии каждого сигнала. Копия может формироваться новыми структурами, включающими старые компоненты, или совершенно новыми структурами. В первом случае необходим механизм высшего порядка (гомункулюс) для различения старых и новых элементов; во втором случае система будет быстро истощена. Именно поэтому альтернативным вариантом является селекция. Принцип селекции по Эдельмену может быть описан следующими положениями. В мозгу формируются группы нейронов, каждая из которых по-своему активируется при определенных изменениях внешней среды. Специфика группы обусловлена как генетическими, так и эпигенетическими модификациями, происшедшими независимо от упомянутых изменений. Когда происходит определенное изменение среды, оно приводит к отбору из числа имеющихся такой группы, которая, в терминах Дж. Эдельмена, может обеспечить надлежащую реакцию. Изменение среды и группа могут считаться соответствующими друг другу в том случае, если клетки последней отвечают на данное изменение более или менее специфично. Селекция имеет место уже при созревании мозга в раннем онтогенезе, в процессе которого множество (50 % и более) нейронов гибнет. Отобранные же клетки составляют первичный ассортимент. Вторичный ассортимент, полагает Дж. Эдельмен, формируется в результате селекции, происходящей в процессе поведенческого взаимодействия со средой. Как справедливо считает Э. С. Рид [Reed, 1993], принятие положения о селекции как основе развития на всех его этапах устраняет дихотомию между созреванием и научением.

Дж. Эдельмен проводит аналогию между селекцией нейронов, селекцией в эволюции и клональной селекцией в иммунологии. Гарантия успеха во всех случаях — предсуществующее многообразие нейронов, индивидов или лимфоцитов. Так, в иммунологии раньше считалось, что антиген «инструктирует», изменяет лимфоцит. Однако затем стало ясно, что антиген «отбирает» лимфоцит, обладающий соответствующими свойствами, и соединяется с ним. Отобранные лимфоциты начинают делиться, образуя популяцию однородных клеток (клон). В результате продукция необходимых в данном случае антител увеличивается в 105-106 раз.

В рамках системно-селекционной концепции научения формирование новой системы рассматривается как фиксация этапа индивидуального развития — формирование нового элемента индивидуального опыта в процессе научения. Известно, что как молекулярно-биологическое, так и морфологическое «обеспечение» достижения одного и того же результата нового поведенческого акта сразу после завершения обучения и через несколько часов или дней после этого существенно различаются [Роуз, 1995; Анохин, 1996]. Возможно, в процессе фиксации элемента опыта действует принцип минимального обеспечения систем (см. ранее). Сравнительный анализ нейронного обеспечения реализации данного элемента на ранней

298

стадии его существования, когда упомянутая ранее модификация морфологических свойств нейронов еще не произошла, и на поздних стадиях является актуальной задачей.

14.6.4. Системная специализация и системоспецифичность нейронов

Специализация нейронов относительно вновь формируемых систем — системная специализация — постоянна, т. е. нейрон системоспецифичен. В настоящее время обнаружены нейроны, специализированные относительно самых разнообразных элементов опыта: актов использования определенных слов у людей [Heit et al., 1988], актов «социального контакта» с определенными особями в стаде у обезьян [Perrett et al., 1996], актов инструментального поведения у кроликов [Александров, 1989; Швырков, 1989, 1995J, актов ухода за новорожденными ягнятами у овец [Kendrick et al., 1992] и др.

В основе формирования новых функциональных систем при научении лежит селекция нейронов из резерва (ранее «молчавших», импульсно неактивных клеток; подробнее см. в гл. 15), которая зависит от их индивидуальных свойств, т. е. от особенностей их метаболических «потребностей». Представления о резерве «молчащих» клеток и о генетической детерминации активности нейронов развивались также Л. В. Крушинским [1986]. В. В. Шерстневым [1972] в экспериментах с использованием метода микроионофореза было показано, что искусственное изменение «микросреды» «молчащих» нейронов ведет к появлению у них импульсации (моделируется вовлечение из резерва). Разные «молчащие» нейроны чувствительны к разным медиаторам, что, возможно, связано с различием их «потребностей». Видимо, именно нарастание разнообразия метаболических «потребностей» нейронов обусловливает филогенетическое усложнение поведения: белковый и пептидный состав нейронов усложняется в филогенезе (см. в [Шерстнев и др., 1987]).

Поскольку считается, что нервная система состоит из нейронов, обладающих своеобразной «индивидуальностью» (см. в [Анохин, 1975; Кэндел, 1980; Александров и др., 1997]), постольку представляется логичным предположение, что число нейронов в известной мере отражает их разнообразие и предопределяет поведенческие возможности индивида. Можно полагать поэтому, что не только межвидовые, но и индивидуальные различия связаны, в частности, с различием в числе нейронов, имеющихся у сравниваемых видов или индивидов, соответственно. Аргументы в пользу наличия подобной связи получены недавно в экспериментах, показывающих наличие высоко значимой связи между числом нейронов в «заинтересованных» структурах мозга и способностью птиц к выучиванию специфиче-

299

ского поведения — воспроизведению видовой песни: чем больше нейронов у данной птицы в этих структурах, тем более точно она воспроизводит услышанные от других птиц фрагменты видовой песни [Ward ct al., 1998J. Показано также, что генетически детерминированные вариации в количестве нейронов гиппокампа коррелируют с обучаемостью пассивному избеганию у мышей: чем больше нейронов, тем лучше сохраняется навык (см. в [Корочкнн, Михайлов, 2000]).

Положение о селекции и системоспецифичности не означает абсолютной предопределенности: как в раннем онтогенезе селекция не означает полной готовности, предопределенности моделей результатов даже видоспецифических актов — они формируются в зависимости от особенностей индивидуального развития (см. в [Александров, 1989; Хаютин, Дмитриева, 1991 ]), так и у взрослого наличие групп нейронов со специфическими свойствами, которые могут быть отобраны при научении, по-видимому, означает возможность сформировать не определенный акт, а определенный класс актов. Выяснение границ и характеристик подобных классов — перспективная задача.

В процессе формирования индивидуального опыта вновь сформированные системы не сменяют предсуществующие, но «наслаиваются» на них. Что значит «не сменяют, но наслаиваются»? Ответ на этот вопрос будет дан в следующем параграфе.

14.7. СТРУКТУРА И ДИНАМИКА СУБЪЕКТИВНОГО МИРА ЧЕЛОВЕКА И ЖИВОТНЫХ

14.7.1. Историческая детерминация уровневой организации систем

Представления о закономерностях развития многими авторами разрабатываются в связи с идеями уровневой организации (см. в [Анохин, 1975,1980; Роговин, 1977;

Александров, 1989, 1995, 1997]). Процесс развития рассматривается как переход не от части к целому, но от одного уровня интегрированности к другому; причем формирование новых уровней в процессе развития не отменяет предыдущих [Бернштейн, 1966] и первые не вступают со вторыми в отношения доминирования (управления) — подчинения (исполнения) [Bunge, 1969].

В ТФС разработана концепция изоморфности иерархических уровней [Анохин, 1975]. Изоморфность уровней заключается в том, что все они представлены функциональными системами, а не какими-либо специальными процессами и механизмами, например периферического кодирования и центральной интеграции, классического обусловливания и инструментального обучения, регуляции простых

300

рефлекторных и сложных произвольных движений и т. п. Независимо от уровня, системообразующим фактором для всех этих систем является результат. Фактором же, определяющим структурную организацию уровней, их упорядоченность, является история развития [Александров, 1989]. Данное утверждение согласуется с представлением о преобразовании последовательности стадий психического развития в уровни психической организации. Это представление является стержнем концепции Я. А. Пономарева [1976] о превращении этапов развития явления в структурные уровни его организации. Ж. Пиаже также подчеркивал соответствие стадий развития уровням организации поведения, полагая при этом, что формирование нового поведения означает «ассимиляцию новых элементов в уже построенные структуры» [Пиаже, 1986, с. 240].

Наряду с изложенными идеями, высказываются также и мнения о том, что «истинное развитие» представляет собой не «наслоение», а смену одних образований другими (см. в [Роговин, 1977]). Однако эти мнения опровергаются данными многочисленных экспериментов. Так, обнаружено, что в основе образования нового элемента опыта лежит не «переспециализация» ранее специализированных нейронов, а, как уже говорилось, установление постоянной специализации относительно вновь формируемой системы части нейронов резерва. Данные о неонейрогенезе у взрослых млекопитающих, в том числе и у людей [Eriksson et al., 1998], а также недавно полученные результаты, показывающие, что число выживших нейронов, вновь появившихся в процессе нейрогенеза у взрослых животных, увеличивается при содержании последних в обогащенной среде [Kempermann et al., 1998] и что среди корковых структур вновь появившиеся клетки обнаруживаются в «ассоциативных», но не в «первичных проекционных» областях [Gould et al., 1999], позволяют предположить, что наряду с рекрутированием клеток «резерва» и неонейрогенез может вносить вклад в процессы системогенеза.

Таким образом, новая система оказывается «добавкой» к ранее сформированным, «наслаиваясь» на них. В связи с этим появление клеток новой специализации приводит к увеличению общего количества активных в поведении клеток (см. гл. 15). Положения о наличии в мозге животных, принадлежащих к разным видам, большого количества разнообразных «молчащих» нейронов, об увеличении количества активных клеток при обучении, а также о том, что вновь сформированные специализации нейронов остаются постоянными (в эксперименте — в течение всего периода хронической регистрации: недели и даже месяцы) и при научении происходит скорее вовлечение новых нейронов, чем переобучение старых, в последнее время находят подтверждение в работах ряда лабораторий [Thompson, Best, 1990; Wilson et al., 1993; Chang et al., 1994; Bradley et al., 1996; Swadlow et al., 1997; Jog et al., 1999].

Как же используются элементы опыта разного «возраста» в достижении результатов поведения?

301

14.7.2. Поведение как одновременная реализация систем разного «возраста»

Обнаружено, что осуществление поведения обеспечивается не только посредством реализации новых систем (рис. 14.3, НС), сформированных при обучении актам, которые составляют это поведение, но и посредством одновременной реализации множества более старых систем (рис. 14.3, СС), сформированных на предыдущих этапах индивидуального развития [Швырков, 1989,1995; Александров, 1989, Александров и др., 1997]. Последние могут вовлекаться в обеспечение многих поведений, т. е. относиться к элементам индивидуального опыта, которые являются общими для разных актов (см. рис. 14.3).

Например, при захвате пищи, предъявленной после нажатия животным на педаль и находящейся в одной из двух имеющихся в экспериментальной камере кормушек, одновременно активны нейроны, принадлежащие к наиболее «древним» системам: они активируются при любом открывании рта (при захвате пищи, жевании, в оборонительном поведении и т. д.); нейроны, принадлежащие к системам, которые сформированы позже предыдущих, но до обучения животного

Рис. 14.3. Системная структура поведения:

1,2 — разные поведенческие акты; СС — «старые» системы; НС— «новые» системы. Стрелка обозначает ход индивидуального развития (см. параграф 7)

302

инструментальному поведению в экспериментальной камере: они активируются только при открывании рта для захвата пищи, поданной в любой кормушке, на полу камеры, экспериментатором с руки и т. д.; наконец, нейроны, принадлежащие к наиболее новым системам, которые сформированы при обучении инструментальному поведению: они активируются только при определенном захвате пищи — из одной, но не из другой кормушки. Заметим, что если один и тот же нейрон вовлекается в разные акты, то характеристики его активации в этих актах различаются, так как в них он должен согласовывать свою активность с активностью разных наборов клеток [Александров, 1989].

Таким образом, системы, реализация которых обеспечивает достижение результата поведенческого акта, формируются на последовательных стадиях индивидуального развития, поэтому системная структура поведения отражает историю его формирования. Иначе говоря, реализация поведения есть, так сказать, реализация истории формирования поведения, т. е. множества систем, каждая из которых фиксирует этап становления данного поведения.

14.7.3. О возможной роли выдвижения и селекции гипотез в формировании индивидуального опыта

Описание соотношения организма со средой в новой ситуации как процесса, включающего выдвижение и селекцию гипотез, было в яркой форме представлено К. Поппером [Popper, Eccles, 1977]. Представление о том, что в основе научения лежит выдвижение и проверка гипотез, используется при разработке новых моделей в когнитивной психологии [Grossberg, 1999].

Д. Деннетт [Dennett, 1995], рассматривая гипотетическое «скиннеровское» существо, осуществляющее отбор одного удачного акта из ряда путем реализации последовательных проб «вслепую», отмечает, что каждая из таких проб может привести к гибели существа. Автор справедливо считает более эффективным способом формирования нового опыта соотношения организма со средой предварительную, «внутреннюю» селекцию актов.

Именно способность совершения проб и ошибок «в уме», без реализации их во внешнем поведении, рассматривалась Л. В. Крушинским [1986] в качестве показателя уровня развития поведения в филогенезе. В области практической деятельности человека (спортивной, музыкальной и т. д.) реальность этой стадии формирования опыта уже давно была осознана. Анализ процесса освоения нового музыкального произведения или обучения новому акробатическому элементу приводит, соответственно, к следующим заключениям: «...каждый пассаж должен быть вполне готов психически, прежде чем он будет испробован на рояле» [Гофман, 1911]; «...чем лучше... занимающийся представит изучаемое движение, тем быстрее будет происходить процесс обучения» [Игнашенко, 1951].

303

«Внутренняя» селекция делает возможной ситуацию, в которой, по словам К. Поппера, вместо нас гибнут наши гипотезы. Существо, которое производит внутреннюю селекцию (использующую не точные копии, а лишь субъективные модели среды), Деннетт называет «попперовским». Причем отмечает, что производить предварительную селекцию умеют не только люди. С позиций представления об опережающем отражении действительности как отличительном свойстве жизни, предполагающем построение моделей будущих событий (см. выше), логично полагать, что это «умение» есть у всех индивидов, совершающих целенаправленные поведенческие акты.

Можно думать, что выдвижение акта-гипотезы и его тестирование во внутреннем плане, т. е. проверка гипотезы на соответствие структуре опыта индивида (пробная организация совместной активности повой совокупности нейронов), занимают определенный временной интервал. Величина интервала, видимо, зависит от многих обстоятельств. Основываясь на многочисленных данных, показывающих значительное сходство организации мозговой активности при воображении и реальном осуществлении действия (см. обзор [Jeannerod, 1999]), можно полагать, что составы активированных нейронов при тестировании гипотезы во внутреннем и затем во внешнем планах существенно, хотя, конечно, не целиком, перекрываются.

В результате тестирования фиксируется новая интеграция, т. е. происходит изменение структуры индивидуального опыта. В литературе имеются данные, которые свидетельствуют в пользу возможности подобной фиксации. В экспериментах с регистрацией активности нейронов у обезьян, решающих пространственную проблему, показано, что характеристики активности нейронов существенно изменяются на этапе «консолидации» (реализация успешных актов в соответствии с найденным решением) по сравнению с этапом поиска решения [Procyk et al., 2000]. Авторы специально подчеркивают, что подобные изменения характеристик активности нейронов имеют место и в тех ситуациях, когда животное нашло правильное решение, но еще не проверило его реализацией внешнего поведения, завершающегося пищевым подкреплением.

Таким образом, можно считать, что фиксация новой интеграции не обязательно требует достижения результата внешнего поведения. Но это, однако, не означает, что нарушается одно из основных положений ТФС: о результате как системо-образующем факторе. В качестве системообразующеого фактора в этом случае выступает результат тестирования гипотезы во внутреннем плане.

Нет оснований думать, что консолидация памяти, лежащая в основе описанной фиксации интеграции, происходит одномоментно. Тогда возникает вопрос, отличаются ли стадии консолидации памяти в этом случае и если отличаются, то как, от подробно описанных в литературе на психологическом, поведенческом, нейрофизиологическом и молекулярно-биологическом уровне стадий консолидации памяти, сопровождающих реализацию внешнего поведения (см. в [Роуз,

304

1995; Анохин, 1996; и мн. др.], см. также гл. 20). Получение ответа на этот вопрос важно для разработки проблем научения и памяти на всех упомянутых уровнях.

В части случаев вновь сформированная интеграция как таковая не предполагает реализацию специального поведения для своего тестирования во внешнем плане; многие «внутренние действия» не «подлежат последующей экстериоризации» [Дубровский, 1971, с. 171]. Подобные зафиксированные интеграции входят, по-видимому, в состав той части опыта, характеристики которой сопоставимы с характеристиками «семантической памяти». В других случаях прошедший внутреннее тестирование акт-гипотеза формируется для того, чтобы совершить то или иное конкретное внешнее поведение (внешнее тестирование). Здесь после внутреннего тестирования могут иметь место минимум два исхода: такое поведение будет реализовано или нет. В первом случае, как и в ситуации с внутренним тестированием, временной интервал между последним и внешним тестированием может варьировать, причем очень сильно: от миллисекунд до лет. В течение этого интервала в памяти хранится «латентная» система.

Будет ли вновь сформированный акт реализован во внешнем плане или нет, в результате тестирования фиксируется новая интеграция, т. е., как было сказано выше, происходит изменение структуры индивидуального опыта. Это изменение не может не сказаться на характеристиках реализации ранее сформированного поведения. Результаты экспериментов с участием испытуемых, выбирающих стратегию поведения в сложной среде, позволяют считать, что модификация поведения может происходить не только в интервале между проверкой гипотезы во внутреннем и внешнем планах, но и между проверкой гипотезы во внешнем плане и осознанием результатов этой проверки. Показано, что испытуемые после ряда тестирующих проб начинают адекватную модификацию своего поведения, соответствующую закономерностям организации среды, еще не будучи способными дать отчет об этих закономерностях [Bechara et al., 1997].

Можно предположить, что характер процессов консолидации памяти должен зависеть от величины временного интервала между внутренним и внешним тестированием и что, если консолидация после внутреннего тестирования уже завершилась, ее тестирование во внешнем плане связано с модификациями, сопоставимыми с теми изменениями, которые имеют место при реконсолидации вследствие реактивации памяти [Przybyslawski, Sara, 1997]. По-видимому, результирующая структура опыта, состояние его нейронного и молекулярно-биологического обеспечения будут разными в зависимости от того, произошло ли внешнее тестирование и если да, то с какой задержкой после внутреннего.

14.7.4. Пренатальная история формирования поведения

Ранее предполагалось, что во всем множестве функциональных систем, сформированных на протяжении индивидуального развития, могут быть выделены базовые и дифференцированные системы, а

305

также субсистемы [Александров, 1989]. Формирование функциональной системы означает появление нового целостного поведенческого акта, направленного на достижение полезного для индивида результата. «Врожденная» же субсистема, хотя и не является готовым «кирпичиком» и формируется в зависимости от конкретных условий развития, всегда оказывается лишь составной частью какого-либо акта. Иначе говоря, ни на каком этапе онтогенеза результаты субсистем не являются результатами целостных, самостоятельных актов, соотносящих среду и организм как целое. Они были таковыми лишь в эволюционном прошлом [Швырков, 1995]. В настоящее время представляется, что это предположение не является достаточно последовательным. Во всяком случае, если речь идет о «субсистемах движений».

Можно полагать, что уже на стадии пренатального онтогенеза появляются первые функциональные системы, реализация которых характеризуется разнообразными «генерализованными» и «локальными» движениями и которые выступают в качестве самостоятельных актов, соотносящих плод и его среду как целое. В литературе были приведены данные, позволяющие выдвинуть представление о том, что данные функциональные системы становятся элементами индивидуального опыта, особенности которого зависят от конкретных условий развития и что этот ранний пренатальный опыт используется индивидом позже: в организации поведения на стадии постнатального онтогенеза, причем характеристики поведения оказываются связанными с особенностями ранних этапов развития [Gottlieb, 1973; Pedersen, Blass, 1981]. Изменения функционирования материнского организма, наступающие вслед за актами, реализуемыми плодом, обеспечивают в каждый данный момент специфическое приспособление условий среды к динамике текущих потребностей плода. Поэтому движения плода рассматриваются как имеющие приспособительное значение и способствующие полноценному внутриутробному развитию [Аршавский, 1960; Гармашева, Константинова, 1978; Butterworth, Harris 1994]. Одни движения (ротационные) предотвращают «прилипание» плода к стенке матки. Другие — обеспечивают захват и заглатывание околоплодных вод или ведут к увеличению поступления питательных веществ и кислорода за счет интенсификации пупочно-плацентарного кровотока. В связи с движениями плода наблюдаются изменения в активности ряда мозговых структур матери, а также повышение тонуса мышц матки, отражающееся на кровотоке в ней и выступающее в качестве фактора, обеспечивающего отмеченную интенсификацию кровотока [Бурсиан, 1983; Гармашева, 1967]. В том случае, если концентрация питательных веществ в среде, с которой контактирует плод, повышается (потребление пищи или введение матери раствора глюкозы), частота движений плода падает, а при голодании матери, наоборот, — возрастает [Гармашева, Константинова, 1978]. В экспериментах О. В. Богданова и сотрудников [Богданов, 1978; Богданов и др., 1986] было показано, что куриный эмбрион может минимизировать биологически отрицательные воздействия внешней среды (электрическая стимуляция) посредством модификации своей двигательной ак-

306

тивности: повышая амплитуду движений в одной экспериментальной ситуации и понижая — в другой.

Таким образом, двигательная активность может быть рассмотрена как «форма... поведения (в частности, пищевого. — Ю. А.) плода», который «через посредство скелетной мускулатуры активно добывает себе пищу». Даже дыхательные движения плода являются не «тренировкой» будущего дыхания, но приспособлением к текущим условиям внутриутробного существования, обеспечивающим выделение, питание и дыхание плода [Аршавский, 1960, с. 292, 163].

Из сказанного следует, что оценка результатов первых пренатальных систем включает в качестве важнейшего компонента характеристики изменений внешней для плода среды и представляет собой оценку результатов, достигнутых при реализации самостоятельных актов, соотносящих среду и организм как целое. На стадии постнатального развития анализируемые «системы движений» действительно не являются уже подобными самостоятельными актами, а лишь «обслуживают» достижение более дифференцированных результатов целостных поведенческих актов, включаясь во множества систем, их реализующих.

Что касается увеличения дифференцированности поведения от пре- к постнатальному периоду, в качестве показателя этого увеличения можно привести, например, увеличение числа вариантов поведения захвата пищевых веществ. Увеличение связано с изменением потребностей, обусловленным созреванием, и усложнением среды, в которой поведение формируется: усложнением, связанным как с родами и переходом к внеутробному существованию, так и нарастанием степени «дробления» среды индивидом и появлением возможности учесть все больше ее параметров (см. в [Александров, 1989; Хаютин, Дмитриева, 1991]). Таким образом, пищедобывательное поведение развивается от движений плода, ведущих к увеличению пупочно-плацентарного кровотока и заглатыванию околоплодной жидкости, к сосанию, представляющему собой сложное целенаправленное поведение [Бласс, 1982], зависящему от множества факторов (в том числе от конкурентной активности сибсов [Шулейкина, 1971]). Далее — к манипулированию непищевыми объектами, которое является особым этапом формирования пищедобывательного поведения (см. в [Александров, 1989]), и ко все возрастающему разнообразию актов, направленных на захват разных видов твердой пищи.

И в раннем пренатальном онтогенезе, и у взрослого достижению результатов, описываемых на уровне целостного организма как изменение соотношения организма и среды, на уровне отдельных клеток соответствует удовлетворение разнообразнейших метаболических «потребностей» этих клеток. Поэтому реализация поведенческого акта на любом этапе индивидуального развития может быть охарактеризована как в аспекте изменения соотношения целостного организма и внешней среды, так и в аспекте внутренних изменений, обеспечивающих потребности метаболизма отдельных клеток. Следует, однако, думать, что имеется специфика этих «потребностей» в раннем онтогенезе, связанная с постоянной необходимостью обеспечения сравнительно более массивного, чем у взрослого, морфогенеза. При этом представляется непоследовательным с системной точки зрения разделять формирующийся организм на отдельные «части»:

307

элементы, «работающие», обеспечивающие достижение результатов и поэтому взаимосодействующие, и элементы, которые не принимают в «общей работе» участия, т. к. «заняты своим делом» — созреванием. Справедливым представляется утверждение О. В. Богданова и др. [1986, с. 15] о необходимости «отбросить... рассуждения о дофункциональном периоде развития нервной клетки» при анализе ее «структурного созревания».

Следовательно, и на ранних этапах онтогенеза весь мозг и весь организм, клетки более зрелые и менее зрелые должны быть рассмотрены как целое, как совокупность элементов, взаимосодействующих в достижении результата и удовлетворяющих в ходе этого взаимосодействия метаболические «потребности» друг друга. В связи с этим неудивительно, что наличие движений оказывается необходимым условием нормального созревания нервной системы, искусственное же ограничение движений приводит к нарушению процессов дифференциации нейронов, нарушению синаптогенеза и т. д. [Богданов и др., 1986].

Можно предположить, что даже те движения плода, которые приводят к результатам весьма сходным (но неидентичным) в первом аспекте (например, интенсифицируют пупочно-плацентарный кровоток, увеличивая поступление питательных веществ и кислорода), оказываются существенно разными во втором аспекте, приводя к удовлетворению «потребностей» и спецификации формирующихся связей [Humburger, 1970] у разных групп созревающих центральных и периферических клеток. Можно предположить также, что динамика «потребностей» этих групп «подстраивается» к динамике потребностей плода как целого так, чтобы поступление питательных веществ достигалось в один момент (когда необходимо удовлетворение «морфогенетических потребностей» одной группы клеток) с помощью одного движения и, следовательно, при активации специфического набора клеток, а в другой — другого. Следствием подобного «подстраивания», видимо, является следующий феномен, наблюдаемый на всех стадиях развития плода: движения разных частей тела сменяют друг друга в «непредсказуемой» последовательности и сочетаниях, выглядя как «неинтегрированные» [Narayanan etal., 1971, с. 105].

В то же время, если не отбрасывать и возможность того, что при реализации разных движений плодом могут достигаться в чем-то разные изменения в соотношении с внешней для плода средой, можно предположить, что именно сложность динамики согласования морфогенетических и «средовых» потребностей, обусловливает «непредсказуемость» смены движений.

О. Спронс и Дж. Эделмен [Sprons, Edelman, 1993] приводят веские аргументы в пользу концепции, согласно которой развитие «первичного моторного репертуара» в раннем онтогенезе осуществляется путем генерации пробных «движений» как целостных актов, направленных на достижение определенной цели. Достижение полезного приспособительного результата при реализации пробного акта является критерием его отбора [р. 698]. Следовательно, видимая «неинтегрированность» может быть связана и с присутствием в поведенческом репертуаре значительного числа пробных актов.

308

Итак, совершение плодом движений никоим образом не должно рассматриваться как функционирование частей будущей целостной конструкции, не имеющее в данный момент приспособительного значения. С момента образования зиготы и в процессе ее последующего деления мы имеем дело с новой целостностью, с уникальным, отличным от организма матери геномом и, следовательно, со специфическими «потребностями», которые требуют удовлетворения. Плод живет, а не только готовится к жизни. Он представляет собой целостный «домик», а не фундамент будущего дома (см. разд. 6.1). Элементы индивидуального опыта нового организма формируются уже на стадии пренатального онтогенеза. Их реализация, характеризуясь теми или иными движениями, соотносит плод и его среду как целое, обеспечивая достижение адаптивных поведенческих результатов (см. разд. 1.4, «онтогенетическая» эклектика) и, одновременно, способствуя процессам созревания.

14.7.5. Индивидуальное развитие как последовательность системогенезов

В основе процесса специализации нейрона при научении находится экспрессия «ранних» и затем «поздних» генов (см. гл. 20), ведущая к изменению структуры нейрона и его метаболических «потребностей». Если принять, что при формировании новой специализации нейронов в процессе научения (системогенеза) новому поведению используется очередной, новый вариант реализации данного индивидуального генома, то с позиций высказанных соображений индивидуальное развитие может быть представлено как последовательность системогенезов и «актуализация» генома, связанная с системогенезами.

Если сопоставить становление системной специализации нейрона в процессе научения с формированием вторичного ассортимента по Эделмену, то формирование первичного ассортимента может быть рассмотрено как образование «преспециализации» нейронов в процессе раннего онтогенеза. По-видимому, преспециализация нейронов, предназначенных для древних систем видоспецифических актов, сравнительно жестко детерминирует, относительно какого конкретного акта они будут специализированы при научении. Поэтому оказывается, что, например, клетки, активность которых в раннем онтогенезе связывается с обеспечением сосания, локализуются в одном, определенном участке коры у всех животных данного вида, а клетки, связанные с позже возникающим жеванием, — в соседнем отделе [Iriki et al„ 1988].

Значительно менее ясно, на каком «языке» «написана» преспециализация нейронов, предназначенных для формирования индивидуально-специфического поведения у взрослого индивида. Предположим, если один экспериментатор учит животное нажимать на педаль для получения пищи, он обнаруживает нейроны, спе-

309

циализированные относительно системы этого акта. Другие, после обучения животного потягиванию зубами кольца или замыканию контакта на стенке экспериментальной клетки нажатием на кнопку носом, находят нейроны, специализированные относительно систем этих актов. Нельзя думать, что все они и другие акты, которые может придумать экспериментатор, «поименованы» преспециализацией. Скорее, говоря об индивидуально-специфических актах, следует полагать, что отдельные группы преспециализаций предназначаются для последовательных стадий индивидуального развития на протяжении всей жизни. И язык индивидуально-специфических преспециализаций есть язык стадий, отвлеченный от их конкретного индивидуально-специфического содержания.

В психологической литературе имеются попытки периодизации развития структуры личности, в том числе личности взрослого человека. Так, Э. Эриксон выделяет универсальные для человечества периоды (с 20 лет до смерти): ранней, средней и поздней зрелости, полагая, что эти периоды представляют собой эпигенетическое развертывание наследуемого генетически «плана личности» [Хьелл, Зиглер, 1997]. Эти периоды включают, конечно, множество стадий, подчеркивая их некоторую общую характеристику. Выделить и описать все эти стадии пока невозможно. Но представляется логичным думать, что эти стадии могут быть описаны через число пройденных индивидуально-специфических системогенезов, общее число сформированных систем и характер отношений (оппонентность, синергия и т. п.), сложившихся между системами и их группами и характеризующих структуру индивидуального опыта на данной стадии.

По-видимому, имеется определенная, но не однозначная корреляция номера стадии и возраста индивида (у разных индивидов скорости развертывания стадий, темпы индивидуального развития могут различаться [Емельянов, 1966]), степени удаленности формируемого поведения от консумматорного акта и т. д. «Вписать» данную систему в структуру, содержащую на данном этапе индивидуального развития п взаимосвязанных систем, и в структуру, содержащую на более позднем этапе 100n систем, — разные задачи. Скорее всего, для этого нужны нейроны с разными свойствами (разными преспециализациями), с разными морфологическими связями. Эти различия свойств и связей могут быть одним из ключевых факторов, обусловливающих различия мозгового обеспечения «одного и того же» поведения, формируемого на ранних и поздних стадиях индивидуального развития, что выявляется как у животных при регистрации активности нейронов [Tanila et al., 1997], так и у людей в экспериментах с картированием мозга. Так, при изучении с помощью ПЭТ (см. гл. 2) активности отдельных структур мозга, вовлекающихся в обеспечение решения вновь освоенной экспериментальной задачи зрительной дискриминации, обнаруживается, что у молодых и пожилых испытуемых при решении данной задачи с одинаковой эффективностью согласованно активируются разные наборы структур [Della-Maggiorel et al., 2000].

Изучение и сравнение (в том числе и межвидовое) языков видоспецифических и индивидуально-специфических преспециализаций представляется чрезвычайно перспективной задачей.

310

14.7.6. Структура субъективного мира и субъект поведения

Специализация нейронов относительно элементов индивидуального опыта означает, что в их активности отражается не внешний мир как таковой, а соотношение с ним индивида. Именно поэтому изучение системных специализаций нейронов — адекватный метод для описания субъективного мира.

В рамках такого описания субъективный мир выступает как структура, которая представлена накопленными в эволюции и в процессе индивидуального развития системами, закономерности отношений между которыми — межсистемные отношения — могут быть описаны качественно и количественно и которые можно, упрощая, свести к отношениям синергии и оппонентности, а субъект поведения — как весь набор функциональных систем, из которых состоит видовая и индивидуальная память. Состояние субъекта поведения при этом определяется через его системную структуру как совокупность систем разного фило- и онтогенетического возраста, одновременно активированных во время осуществления конкретного акта. Минимально необходимый набор систем разного возраста, актуализация которых обеспечивает достижение результата отдельного поведенческого акта, может быть рассмотрен как единица индивидуального опыта, а отдельная система — как элемент индивидуального опыта.

14.7.7. Динамика субъективного мира как смена состояний субъекта поведения

С этих позиции динамика субъективного мира может быть охарактеризована как смена состояний субъекта поведения в ходе развертывания поведенческого континуума (см. рис. 14.1). Упоминавшиеся ранее трансформационные (переходные) процессы теперь предстают как замена одного специфического для данного акта набора систем на другой набор, специфичный для следующего акта в континууме. Во время трансформационных процессов отмечается «перекрытие» активации нейронов, относящихся к предыдущему и последующему актам, а также активация «лишних» нейронов, не активирующихся в упомянутых актах ([Швырков, 1978, 1987; Гринченко, 1979; Максимова, Александров, 1987], см. также гл. 16).

«Перекрытие» может быть рассмотрено как «коактивация» нейронов, во время которой происходит согласование состояний одновременно активных клеток, принадлежащих к системам разных актов, которые связаны логикой межсистемных отношений. Вероятно, это согласовывание лежит в основе системных процессов, которые включают оценку индивидом достигнутого результата, зависимую от дан-

311

ной оценки организацию следующего акта и реорганизацию отношений между системами только что реализованного акта. В полном соответствии с таким пониманием находятся данные о том, что параметры активности нейронов во время переходных процессов, с одной стороны, отражают характеристики только что совершенного поведения, а с другой — предсказывают характеристики будущего [Dorris et al., 1999;

Prut, Fetz, 1999]. Наличие активации «лишних» нейронов показывает, что данные процессы происходят с вовлечением и, возможно, с модификацией и остальных элементов опыта, представителями которых являются «нелишние» в действительности нейроны.

14.7.8. Вариативность системной организации поведенческого акта в последовательных реализациях

Анализ активности системно специализированных нейронов показывает; как «мы никогда не имеем по-настоящему изолированные функциональные системы» [Анохин, 1975, с. 42], т. е. любой акт — одновременная реализация множества систем, так мы не имеем и изолированного извлечения из памяти (в «чистом виде») специфического набора систем, который соответствует данному акту. В связи с упоминавшимися ранее сложнейшими отношениями, которые существуют между элементами индивидуального опыта, и в зависимости от них, актуализация одного элемента «затрагивает» другие. Результат поведенческого акта достигается за счет актуализации множества связанных логикой межсистемных отношений элементов опыта, которые образовались при формировании разных актов. Процессам реализации одиночного акта поведения соответствует сложная и динамичная системная структура, представленная как системами, которые неизменно вовлекаются в его осуществление, так и системами, набор которых модифицируется от реализации к реализации данного акта, но которые неизменно вовлекаются в реализацию каких-либо других актов.

Модификация набора определяется невозможностью полного воспроизведения в повторных реализациях акта структуры межсистемных отношений. Даже простые акты являются «повторением без повторения» [Бернштейн, 1966]. Каждый последующий акт отличается от предыдущего хотя бы уже потому, что ему предшествует большее количество реализованных актов, а следовательно, он может характеризоваться иным уровнем мотивации, степени автоматизированности и т. п. Кроме того, параметры полученного результата не «математически точно соответствуют заданным», но «всегда имеют множественный разброс около... предсказанного акцептором действия эталона» [Анохин, 1978, с. 275]. Таким образом, трансформационные процессы, в которых задается конкретная структура межсистемных отношений, не могут быть точной копией предыдущих. Следует учесть и

312

необходимость срочных реорганизаций межсистемных отношений в связи с меняющимися условиями среды, в которых осуществляется поведение. Модификация набора актуализированных систем определяет изменчивость субъективного мира при повторных реализациях «одного и того же» действия. Изучение нейронной активности позволяет сделать закономерности актуализации отдельных элементов опыта, лежащие в основе этой изменчивости, предметом строгого количественного анализа ([Александров и др., 1999], см. также гл.15).

Если представить себе теперь поведенческий континуум как последовательность сменяющих друг друга поведенческих актов (см. разд. 2.8), то из сказанного выше следует, что в импульсации нейронов, специализированных относительно системы того или иного из этих актов, могут быть выделены разные по значению отрезки активности: во-первых, повышения частоты, приуроченные к реализации акта, относительно системы которого данный нейрон специализирован («специфические» активации). Во-вторых, обусловленные логикой межсистемных отношений повышения частоты в других («чужих») поведенческих актах («неспецифические» активации). Эти активации существенно различаются по частоте (частота первых достоверно выше), по вероятности возникновения («специфические» неизменно появляются при реализации данного акта, «неспецифические» — не обязательно во всех реализациях), по чувствительности к биологически активным веществам (первые угнетаются меньше, чем вторые при введении этанола) ([Горкин, Шевченко, 1995; Александров и др., 1997; Alexandrov et al., 1993], см. также гл. 15).

В настоящее время ясно, что из отдельной пресинаптической терминали могут высвобождаться разные активные вещества, причем, какое именно вещество высвобождается в данный момент, зависит от состояния пресинаптического нейрона, в том числе от частоты его активности [Whim et al., 1989; Verhage et al., 1991]. Учитывая только что сказанное о двух типах активности нейрона, логично предполагать, что связанные с данным нейроном клетки могут получать от него разные метаболиты на разных этапах развертывания поведения: во время «специфических» и «неспецифических» активации — и что отмеченное разнообразие обусловливается метаболическими «потребностями» нейрона, которые, в свою очередь, связаны с его системной специализацией. В таком случае можно рассмотреть структуру отношений, согласующих метаболические «потребности» нейронов разной специализации, в качестве молекулярно-генетического описания отношений, складывающихся между элементами индивидуального опыта.

Очевидно, что паттерн синаптических влияний на данный нейрон модифицируется при переходе от одного этапа континуума к другому, так как в основе этих переходов лежат изменения наборов активирующихся клеток. Здесь же мы подчеркиваем получение нейроном разных наборов метаболитов через один и тот же синапс. Это может быть связано с необходимостью получения разных метаболитов на последовательных стадиях метаболических процессов, связанных именно с данным синапсом.

Возможно, согласование развертывания метаболических процессов на макроинтервалах времени сопоставимо со сменой состава актуализированных систем и

313

активированных нейронов, специализированных относительно этих систем. Согласование же на микроинтервалах, в группах совместно работающих нейронов может лежать в основе ритмической активности мозга. Поскольку группы активированных нейронов разной специализации представляют актуализированные элементы опыта, постольку высказанное соображение согласуется с основанной на экспериментальном материале точкой зрения о связи синхронной высокочастотной активности мозга с функционированием «активной памяти» [Pulvermulleret al., 1999].

14.7.9. Реконсолидация при реактивации сформированного индивидуального опыта и при научении

Еще Ф. Бартлетт предлагал полностью отбросить взгляды, в соответствии с которыми «воспроизведение из памяти» рассматривается как «повторное возбуждение неизменных "следов"» [Bartlett, 1932, р. vi]. Позже было четко продемонстрировано, что поведенческие акты могут обнаруживать направленную динамику (совершенствоваться) в течение тысяч и даже миллионов реализаций [Gottlieb et al., 1988]. Мы уже упоминали о том, что в настоящее время обнаружены молекулярно-биологические закономерности реконсолидации памяти, лежащие в основе ее модификации после повторной актуализации. При формировании нового материала памяти необходим процесс синтеза белков, лежащий в основе процессов ее консолидации. Активация памяти, как и ее формирование, требует синтеза белка для реконсолидационных процессов. В связи с этим в последнее время предлагается связывать протеин-зависимые консолидационные процессы не с «новой», а шире — с «активной» памятью [Nader et al„ 2000].

Один из видов реконсолидационных процессов представляет для нас особый интерес в связи с тем системным представлением о формировании нового опыта, которое было изложено выше. Мы рассмотрели формировние нового опыта как специализацию новой группы нейронов относительно вновь формируемой системы и «добавление» последней к предсуществующему содержанию индивидуального опыта. Это добавление, требующее согласования нового элемента с ранее сформированными, приводит к модификации последних. Уже поведенческие данные, полученные в лаборатории И. П. Павлова [1952], позволили ему прийти к следующему заключению: «Мы выработали известное количество условных рефлексов. Прибавление новых... сейчас же отзывается на состоянии прежних» [с, 152]. В последнее время на основании данных, полученных в экспериментах с регистрацией нейрональной активности у животных, первоначально обученных инструментальному пищедобывательному поведению, а затем в той же экспериментальной клетке алкогольдобывательному поведению, был сделан следующий вывод. Ней-

314

роны, специализированные относительно систем первого поведения, претерпевают при формировании второго модификацию и начинают вовлекаться также и в обеспечение алкогольдобывательного поведения вместе с нейронами, вновь специализировавшимися относительно этого поведения. Эта реконсолидационная модификация, претерпеваемая предсуществующей, «старой» системой при появлении связанной с ней новой системы, была названа «аккомодационной» [Alexandrov et al., 2000a].

Таким образом, вместо представления о механизмах консолидации как о долговременном усилении синаптического проведения в дуге (дугах) рефлекса можно предложить системное описание процесса консолидации. Консолидация с этой точки зрения включает две группы неразрывно связанных процессов: 1) процессы системной специализации: морфологическая и функциональная модификация нейронов, связанная с их вовлечением в обеспечение вновь формируемой системы, и 2) процессы аккомодационной реконсоли-дации, обусловленные включением этой системы в структуру индивидуального опыта: морфологическая и функциональная модификация нейронов, принадлежащих к ранее сформированным системам.

Обнаруживаемые во множестве нейрофизиологических, морфологических, молекулярно-биологических и др. исследований модификации нейронов, сопутствующие научению, могут быть связаны как с первой, так и со второй группой процессов. Дифференцированный подход к этим модификациям явится существенным шагом вперед на пути к пониманию закономерностей формирования индивидуального опыта.

14.7.10. Человек и животное: системная перспектива

Ясно, что одной из главных целей изучения мозгового обеспечения формирования и реализации индивидуального опыта у животных является обнаружение таких закономерностей, которые могли бы быть использованы для разработки представлений о субъективном мире человека. Однако на традиционных путях достижения этой цели возникают существенные методологические препятствия; предполагается, что упомянутые закономерности могут существенно меняться от животного к человеку. В связи с этим высказывается следующая точка зрения: при изучении специфически человеческих функций, таких, например, как использование языка, данные, полученные в экспериментах с животными, не могут быть использованы [Tulving, Markowitsch, 1994]. Не отрицая специфики субъективного мира человека и понимая необходимость ее анализа [Швырков, 1985], можно вместе с тем считать приведенную ранее радикальную и довольно распространенную точку зрения следствием методологии парадигмы реактивности, в которой активирование

315

отдельных структур мозга связывается с выполнением специфических функций, таких, как сенсорный анализ, генерация моторных программ, построение когнитивных карт и т. д. При этом, естественно, оказывается, что в экспериментах с животными нельзя изучать те специфические функции, под которые у них не существует специальных структур и механизмов.

В системной психофизиологии эти препятствия устраняются. С позиций развитой в ней системно-эволюционной теории активность нейронов связывается не с какими-либо специфическими «психическими» или «телесными» функциями, а с обеспечением систем, в которые вовлекаются клетки самой разной анатомической локализации и которые, различаясь по уровню сложности и качеству достигаемого результата, подчиняются общим принципам организации функциональных систем [Анохин, 1975, 1978]. Именно поэтому системные закономерности, выявленные при изучении нейронной активности у животных, могут быть применены для разработки представлений о системных механизмах формирования и использования индивидуального опыта в разнообразной деятельности человека, например в описанной в следующем параграфе задаче категоризации слов родного и иностранного языка [см. и ср. с точкой зрения Tulving и Markowitsch], а также в операторских задачах, в совместной игровой деятельности у детей и взрослых, в ситуации ответа испытуемых на тестовые вопросы психодиагностических методов ([Безденежных, Пашина, 1987; Александров, 1997; Александров и др., 1997], см. также гл. 16).

Существование наряду с общесистемными закономерностями и специфики человеческого опыта можно особенно ярко продемонстрировать, сравнив у человека и животных только что рассмотренные трансформационные процессы, которые включают оценку результата [Alexandrov, 1996, 1999]. Заметим, что именно эти процессы приводил в пример П. К. Анохин [1978, с. 397], постулируя изоморфность системных механизмов (операциональной архитектоники систем) и различное их «заполнение» у человека и животного.

Конечно, оценка результатов поведения осуществляется как животными, так и человеком. Однако состав индивидуального опыта, вовлекаемого в этот процесс, у них различен. Животное использует лишь опыт своих собственных отношений со средой или, возможно, в особых случаях опыт особи, с которой оно непосредственно контактирует. Человек же использует опыт всего общества, опыт поколений. У человека индивидуальный опыт включает специфические элементы, являющиеся трансформированными единицами общественного опыта [Рубинштейн, 1989], знаниями, которые усвоены им в процессе индивидуального развития [Симонов, 1993]. Использование этих трансформированных единиц означает, что, оценивая результаты своего поведения, человек как бы смотрит на себя «глазами общества» и «отчитывается» ему. Специальный инструмент трансформации и отчета — это речь.

Очевидно, что адекватным психофизиологическим методом исследования субъективного мира человека, предоставляющим возможность прямого описания

316

таксономии и отношений между элементами опыта, был бы анализ динамики активности нейронов, специализированных относительно систем разного возраста [Швырков, 1995]. Однако по целому ряду этических и методических причин наиболее распространенным методом изучения активности мозга у человека продолжает оставаться анализ ЭЭГ, наряду с другими методами картирования мозга (см. гл. 2,16, 21). В. Б. Швырковым были теоретически и экспериментально обоснованы положения о соответствии компонентов ЭЭГ-потенциалов разрядам нейронов и динамике системных процессов на последовательных этапах реализации поведения, в том числе переходным процессам, и о неправомерности классификации потенциалов как сенсорных, моторных, когнитивных и т. д. [Швырков, 1978, 1987]. Кроме того, была также показана связь нейронов различной системной специализации с колебаниями ЭЭГ [Гаврилов, 1987]. В рамках упомянутых представлений знания о связи ЭЭГ и активности нейронов с динамикой системных процессов, полученные в экспериментах на животных, могут служить основой для использования регистрации суммарной электрической активности мозга в решении задач системной психофизиологии, относящихся к изучению закономерностей формирования и реализации индивидуального опыта у человека ([Швырков, 1978,1987; Александров и др., 1997], см. также параграф 8 настоящей главы и гл. 16).

14.7.11. Направления исследований в системной психофизиологии

Теоретический и методический аппарат качественного и количественного анализа системных процессов, лежащих в основе формирования и реализации индивидуального опыта в норме и его реорганизации в условиях патологии (см. параграф 8), позволяет объединить в рамках системной психофизиологии исследования самого разного уровня: от клеточных и субклеточных механизмов формирования новых системных специализаций и межсистемных отношений; отражения истории обучения и межвидовых различий в системной организации активности нейронов; характеристик нейронных механизмов модификации и использования предсуществующих элементов опыта в рамках вновь формируемых потребностей до системной организации высоко- и низкоэффективной операторской деятельности и динамики ее усовершенствования; закономерностей формирования и реализации индивидуального опыта в деятельности, предполагающей субъектно-субъектные отношения; особенностей структуры индивидуального опыта, опосредующей валидные формы отчетной деятельности испытуемых. К актуальным для дальнейшего развития системной психофизио-логии направлениям исследований, кроме уже упоминавшихся в этом и предыдущем разделах, также можно отнести исследования генетической детерминации системной специализации нейронов, системных закономерностей категориального обучения, социальных детерминант структуры индивидуального опыта и др.

317

14.8. ПРОЕКЦИЯ ИНДИВИДУАЛЬНОГО ОПЫТА НА СТРУКТУРЫ МОЗГА В НОРМЕ И ПАТОЛОГИИ

14.8.1. Зависимость проекции индивидуального опыта от особенностей индивидуального развития

Из всего сказанного ранее с очевидностью следует, что с позиций системной психофизиологии проблема «локализации психических функций» должна быть переформулирована как проблема проекции индивидуального опыта на структуры мозга [Швырков, 1995].

Яркие данные в пользу зависимости корковых проекций от особенностей ранних этапов индивидуального развития были получены Д. Н. Спинелли [Spinelli, 1978], который обнаружил, что обучение котят оборонительным движениям передней лапы приводит к увеличению, по сравнению с контролем, количества нейронов, имеющих рецептивные поля на этой лапе; область ее представительства в соматосенсорной коре существенно расширяется. Позднее было обнаружено, что обусловленное обучением формирование рецептивных полей нейронов с характеристиками, соответствующими свойствам распознаваемых объектов, имеет место и у взрослых [Tanaka, 1993]. В настоящее время не вызывает сомнений, что рецептивные поля и «корковые карты» могут модифицироваться в течение всей жизни [Wall, 1988], хотя объем этих модификаций в разном возрасте может быть различным. Так, показано, что представительство пальцев левой руки у музыкантов, играющих на струнных инструментах, расширено (по сравнению с контролем) тем сильнее, чем в более раннем возрасте началось обучение игре на музыкальных инструментах [Elbert et al., 1995].

Ранее мы уже отмечали, что с точки зрения ТФС при тестировании рецептивных полей нейронов выявляется их вовлечение в обеспечение систем тех или иных поведенческих актов (см. параграф 4). В связи с этим представленные ранее данные можно рассматривать как указание на то, что проекция индивидуального опыта на структуры мозга животных и человека изменяется в процессах системогенеза на всех стадиях индивидуального развития и зависит от особенностей последнего.

14.8.2. Паттерны системной специализации нейронов разных структур мозга

Для того чтобы получить данные, непосредственно характеризующие проекцию тех или иных элементов опыта на структуры мозга, необходимо сопоставить пат-

318

терны системной специализации нейронов этих структур. Под паттерном системной специализации нейронов данной области мозга понимается конкретный состав систем, по отношению к которым специализированы нейроны данной структуры, и количественное соотношение нейронов, принадлежащих к разным системам. Сопоставление паттернов специализации нейронов лимбической и моторной коры кролика на последовательных стадиях обучения инструментальному поведению (нажатия на педали для получения пищи в автоматически предъявляемой кормушке) показало, что паттерны изменяются, причем в разной степени в сравниваемых областях коры. Изменение происходит за счет появления после обучения (например, нажатие на педаль) новой группы активных нейронов, специфически связанных с этим актом. Подобных клеток в лимбической коре появляется достоверно больше, чем в моторной. Поэтому результирующие паттерны специализации нейронов этих структур кардинально различаются. Хотя нейроны одной специализации есть в разных структурах, но эти структуры различаются по соотношению специализаций: в лимбической коре, как и в гиппокампе (рис. 14.4, Г), значительно больше нейронов новых специализаций, чем в моторной коре.

Рис. 14.4. Паттерны системной специализации нейронов разных структур мозга.

Относительное количество активных нейронов, принадлежащих к новым системам, сформированным при обучении кроликов в экспериментальной клетке (светло-серый сектор); нейронов, принадлежащих к более «старым» системам, сформированным на предыдущих этапах индивидуального развития (темно-серый сектор), и нейронов с неустановленной специализацией, т. е. не дающих постоянных активаций в связи с тем или иным этапом исследуемого поведения (белый сектор) в лимбической, антеролатеральной моторной областях коры и в гиппокампе в контроле (I) и после острого введения алкоголя (II); этанол, 1 г/кг).

319

Эксперименты, в которых анализировалась системная специализация нейронов многих центральных и периферических структур мозга, показали, что в целом нейроны новых специализаций максимально представлены в коре мозга (хотя, как это было только что показано, отдельные ее области могут сильно различаться по этому параметру) и в меньшей степени или совсем отсутствуют в ряде филогенетически древних и периферических структур. Нейроны же более «старых» специализаций в значительном количестве представлены как в корковых, так и в других структурах. Можно полагать, что специфика проекции на структуры мозга зависит от специфически метаболических «потребностей» (см, параграф 3). Эти свойства определяют вовлечение нейронов данной структуры в формирование данной системы.

14.8.3. Изменение проекции индивидуального опыта от животного к человеку

В качестве основного критерия эволюционных преобразований мозга рассматривается развитие его коры. Как изменяется проекция опыта на корковые структуры в процессе исторического развития от животного к человеку? В филогенезе нарастают прямые связи между периферическими, спинномозговыми элементами и корой, что связывается с увеличением выраженности эффектов ее повреждения в эволюционном ряду. Это позволяет говорить о «прогрессивной кортикализации функций» [Лурия, 1973]. С позиций ТФС кортикализация была интерпретирована в терминах системной специализации нейронов [Александров, 1989] как увеличение пропорции нейронов, принадлежащих к более старым системам в первичных проекционных областях коры. Таким образом, паттерн специализации «одной и той же» области мозга, а следовательно, и ее роль в обеспечении поведения изменяется в филогенезе.

Параллельно с упомянутой модификацией первичных областей происходит бурное развитие вторичных и третичных («гностических», «специфически человеческих») областей коры мозга; при этом относительные размеры первичных областей уменьшаются. За счет этого развития увеличивается представленность в коре нейронов, принадлежащих к системам нового, наиболее сложного индивидуально специфичного поведения, которое у человека включает использование трансформированных единиц общественного опыта (см. параграф 7).

14.8.4. Изменение проекции индивидуального опыта в условиях патологии

Проекция опыта на структуры мозга может изменяться не только при нормальном ходе индивидуального развития. Повреждающие воздействия, такие, например, как перерезка нервов или ампутация

320

пальцев, заставляющие перестроить поведение, также приводят к модификации рецептивных полей и соответствующим изменениям «корковых карт» [Wall, 1988]. У бинокулярно депривированных после рождения животных и у слепых людей зрительное представительство уменьшается по сравнению с нормой, в то время как тактильное и слуховое — увеличивается [Rauschecker, 1995].

Сказанное ранее свидетельствует в пользу справедливости положения о том, что для полного понимания развития психики, ее внутренней структуры и нейрональных основ необходимо учитывать материал патологии [Лурия, 1973; Зейгарник, 1986]. В противном случае останутся вне проблемного поля те «законные вариации нормальных процессов» [Goldstein, 1933; Давыдовский, 1969], которые традиционно относятся к патологии и акцентирование внимания на специфике которых, в сравнении с «нормой», обусловлено потребностями практики. В действительности же эти процессы являются не хаосом, дезорганизацией, нарушением функций, «ненормальностью» или чем-то в этом роде, а выработанной в эволюции формой приспособления индивида, которая оказывается хотя и «новым порядком движений и вещей», но при этом принципиально тождественной нормальным формам [Давыдовский, 1969].

Первый систематический анализ амнезий, который позволил сформулировать представления об организации памяти, основанные на данных о ее повреждении, был, как отмечает Л. Р. Сквайр, проведен в прошлом веке французским философом и психологом Т. Рибо (Т. Ribot). Затем эта линия исследований была продолжена многими авторами. Клинический материал, демонстрирующий различие характера амнезий после поражения разных структур мозга, который был интерпретирован в терминах реализации этими структурами специфических функций, лег в основу современных представлений о множественности «систем памяти». Наиболее признанной их классификацией является предложенное Л. Р. Сквайром [Squire, 1994] деление на две большие группы «систем»: декларативная память (относящаяся к тому материалу, о котором субъект может сообщить, дать отчет) и недекларативная память (характеризующая неосознаваемый материал; см. гл. 6). Предполагается, что разные «системы памяти» могут лежать в основе разного поведения.

Трудно дать однозначную трактовку в терминах системной психофизиологии всей совокупности материала, накопленного в рамках этого направления, в связи с его разнородностью, а также в связи с тем, что при локальных поражениях мозга можно локализовать симптом, а не функцию, и, наконец, в связи с тем, что повреждение мозга означает не просто изъятие его части, а реорганизацию проекции опыта на интактные области. Например, после двухстороннего разрушения зрительной области коры паттерн специализации нейронов моторной коры изменяется: доля нейронов, специализированных относительно новых систем, увеличивается [Alexandrov et al., 1990].

Однако в самом общем виде этот материал можно оценить следующим образом. Как мы уже знаем, системные процессы, лежащие в основе поведенческого акта, имеют общемозговой характер. В обеспечение поведенческого акта вовлека-

321

ется множество систем разного «возраста». Симптомы, дающие основание говорить о повреждении той или иной «системы памяти», появляются при воздействии на данное множество. С этих позиций кажется адекватной точка зрения Д. Л. Шехтера и Э. Тулвинга [Schacter, Tulving, 1994], в соответствии с которой считается правилом вовлечение в обеспечение задачи разных «систем памяти»; они обладают общим свойством (направленностью на результат) и различаются по времени их появления в онто- и филогенезе. Тогда различие характера амнезий может быть связано с тем, какие именно представители данного множества поражены в наибольшей степени, а следовательно, какие именно нарушения формирования и реализации этой целостной организации выходят на первый план: использование трансформированных единиц общественного опыта в оценке результатов своего поведения («отчет обществу»), формирование новых системных специализаций, реорганизация отношений между элементами опыта (см. параграф 7 и [Alexandrov, 1999]) и т. д.

14.8.5. Психофизиологическое основание закона Рибо

Особое значение для рассмотрения изменений проекции опыта в патологии имеет «закон разложения» Т. Рибо [1898]. Рибо выделял «элементы» психики «с точки зрения последовательных фаз ее происхождения» и в соответствии с этим в качестве механизмов патологических состояний рассматривал изменения, при которых в первую очередь модифицируются уровни, возникшие последними. Анализ модификации активности нейронов, лежащей в основе вызванных острым введением алкоголя нарушений поведения животных, выявил уменьшение количества активных в поведении клеток. Паттерн специализации нейронов изменяется (в лим-бических структурах, но не в моторной коре) следующим образом: доля активных нейронов, принадлежащих к новым системам, уменьшается за счет избирательного подавления активности этих нейронов, в особенности клеток, лежащих в верхних (II-IV) слоях коры (см. рис. 14.4, ср. I и II) [Alexandrov etal., 1991,1993]. Интересно отметить, что эти слои являются филогенетически более молодыми, чем нижние, и их развитие в эволюции связывается с усложнением психической деятельности [Лурия, 1973].

Та же закономерность обнаруживается при исследовании человека. Анализ эффектов острого введения алкоголя на ЭЭГ-потенциалы, сопровождающие действия, в которых требовалось использовать знания, приобретенные на ранних и более поздних этапах индивидуального развития (при освоении родного и иностранного языков соответственно), показало достоверно более выраженное угнетающее влияние в задаче категоризации слов иностранного языка [Александров и др., 1997а]. Рассмотренные данные об избирательном влиянии алкоголя на нейроны, принадлежащие к более новым системам, позволяют считать, что в основе дифференцированного эффекта алкоголя на элементы индивидуального опыта разного возраста у человека лежит

322

более выраженное действие алкоголя на те нейроны, которые обеспечивают актуализацию опыта, усвоенного испытуемыми на более поздних стадиях индивидуального развития.

В случае острого влияния алкоголя мы имеем дело с обратимым изменением проекции индивидуального опыта. В результате же хронической алкоголизации, как и в ситуации с локальным поражением мозга, модификации оказываются стойкими. Основной мишенью повреждающего действия хронической алкоголизации являются именно нейроны новых систем, локализующиеся в тех слоях и областях мозга, которые наиболее чувствительны к острому введению алкоголя. Именно за счет этих клеток уменьшается плотность корковых нейронов (они гибнут) и изменяется паттерн специализации. Так, например, в лимбической коре количественное соотношение нейронов «новых» и «старых» систем становится обратным по сравнению со здоровыми животными: нейроны, принадлежащие «старым» системам, которых в норме значительно меньше, чем нейронов «новых» систем, становятся преобладающими [Alexandrov ct al., 2000].

Можно полагать, что повышенная чувствительность нейронов новых систем, являясь психофизиологическим основанием закона Рибо, определяет описываемую им феноменологию.

14.8.6. Значение материала патологии для изучения системной организации поведения

Таким образом, проекция индивидуального опыта на структуры мозга изменяется в филогенезе, определяется историей обучения в процессе индивидуального развития и модифицируется при патологических воздействиях. Как в нормальной, так и в патологической ситуациях текущее поведение определяется реализацией элементов опыта, сформированных на последовательных этапах развития. Изменение «порядка» в последнем случае выражается в модифицированных, по сравнению с нормой, характеристиках исторически детерминированной системной организации. Это изменение представляет для нас особый интерес. Конечно, патологическое воздействие на новые системы не означает их простое «вычитание», «негатив развития» [Зсйгарник, 1986], так же как локальное поражение мозговой структуры не означает простого «вычитания» ее из общемозговой организации (см. ранее). Но как исследование симптомов локального поражения структур в нейропсихологии оказывается эффективным путем разработки представлений о мозговых основах психической деятельности человека, так и возможность избирательного воздействия на системы определенных уровней предоставляет уникальный материал, позволяющий судить о роли этих уровней в системной организации поведения и об ее «законных вариациях».

323

14.9. ТРЕБОВАНИЯ К МЕТОДОЛОГИИ СИСТЕМНОГО АНАЛИЗА В ПСИХОЛОГИИ И СИСТЕМНАЯ ПСИХОФИЗИОЛОГИЯ

В заключение рассмотрим, насколько положения ТФС и развитой на ее основе системной психофизиологии отвечают требованиям, которые предъявляются к методологии системного анализа в психологии.

Утверждается, что системное исследование с необходимостью включает генетический анализ, определяет неразрывную связь структуры и эволюции, функционирования и развития [Завалишина, Барабанщиков, 1990]. Существование систем состоит в их развитии, без которого не может быть понята ни их целостность, формирующаяся и разрушающаяся в ходе развития, ни дифференцированность [Ломов, 1984]. В исследовании, направленном на воссоздание теоретической картины объекта, требуется рассмотреть структуру как продукт истории и как предпосылку дальнейшего развития [Блаубергидр., 1978].

Для системных разработок в психологии также считается необходимым рассматривать психику как систему иерархически организованных уровней [Брушлинский, 1990], а психические явления — как многоуровневые [Абульханова-Славская, 1990]. При этом уровневая организация определяется как продукт истории [Пономарев, 1976; Роговин, 1977; Пиаже, 1986]. Принцип иерархии относят к числу основных принципов системного подхода [Блауберг и др., 1978] и оценивают как необходимый компонент психологических исследований, игнорирование которого ведет к упрощенным трактовкам «строения» психики [Ломов, 1984]. Наличие множества разноуровневых систем определяет тот факт, что к числу важнейших задач системного анализа в психологии принадлежит установление зависимостей одной системы по отношению к другой [Абульханова-Славская, 1980], т. е. межсистемных отношений.

Первостепенное значение в раскрытии причинных связей в поведении придается выделению системообразующего фактора. Утверждается, что именно системообразующий фактор определяет особенности психического отражения предмета, характер деятельности, а также уровень и динамику ее регуляции [Ломов, 1984]. Наряду с этим специально подчеркивается неадекватность линейного детерминизма типа «стимул—реакция» при установлении упомянутых причинных связей [Ломов, 1990]. Трактовка человека как субъекта противостоит пониманию его как пассивного существа, реагирующего на стимулы [Брушлинский, 1994], и его системный анализ требует раскрытия механизмов целевой, а не «стимульной» детерминации деятельности, которая есть «не реакция и не совокупность реакций, а система» [Леонтьев, 1975,с. 82].

Подводя итог, к требованиям методологии системного анализа в психологии можно отнести: выделение системообразующего фактора и замену линейной схемы «стимул—реакция» на представление о целевой детерминации; учет развития в его единстве с функционированием; анализ исторически детерминированной уровневой организации систем; изучение межсистемных связей или отношений.

Сопоставление изложенных в настоящей главе положений ТФС и системной психофизиологии с этими требованиями обнаруживает их очевидное соответствие.

Глава 15. ПСИХОФИЗИОЛОГИЯ НАУЧЕНИЯ

15.1. ПСИХОЛОГИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ ТЕОРИИ НАУЧЕНИЯ

Совершенно очевидно, что закономерности научения изучались задолго до появления современной науки. Необходимость успешно передавать свой опыт следующим поколениям заставляла эмпирически совершенствовать процедуру обучения. Именно поэтому к моменту начала экспериментальных исследований этой проблемы в психологии, этологии и затем нейробиологии уже существовали определенные обыденные представления о том, как и чему следует учить. Эти представления оказали сильное влияние на исходные теоретические подходы к научению. Так, в экспериментальной психологии исследователи пытались выделить и описать процесс обучения в чистом виде, понимая его как внешнюю манипуляцию опытом и поведением индивида, в отличие от таких внутренне детерминированных процессов, как созревание и утомление [Эксперим. психол., 1963]. В соответствии с таким подходом исследовались процессы выработки различных форм условных рефлексов, в основе которых предполагались разные типы временных связей стимулов и реакций. Сами же реакции, т. е. акты поведения, предполагались чем-то заранее данным и неизменным. С этих позиций, представленных в психологии бихевиористами и необихевиористами, индивидуальный опыт состоял

326

из врожденных реакций и разнообразных ассоциаций этих реакций со стимулами внешней среды [Hull, 1943].

В рамках гештальтпсихологии предполагалось формирование в обучении когнитивных полей, понимавшихся как некие динамические структуры [Эксперим. психол., 1963]. Дальнейшее развитие эти представления получили в когнитивной психологии, рассматривавшей научение как «сформирование ментальных моделей окружающего мира, объектов их взаимоотношений, возможных операций с ними и их последствий» [Александров, Максимова, 1997,с. 72].

В биологии в связи с представлением о более простых формах психики животных по сравнению с человеком исследование научения проводилось, как правило, с последовательно бихевиористских позиций. Так, в этологии при исследовании научения рассматривались проблемы распознавания стимулов, а также организации эффекторной активности и внутреннего контроля [Gould, 1986]. Особое внимание уделялось такой специфической форме научения, как импринтинг, в которой в наиболее яркой форме выявились такие характеристики процесса научения, как сензитивный период и видовая селективность.

Признавая необходимость научения в формировании таких форм естественного поведения, как добывание пищи, оборонительное поведение, ориентация в пространстве, социальное поведение и репродуктивное поведение, в лабораторных условиях этологи использовали в основном модели сравнительно простых форм обучения: привыкания и сенситизации, классического обусловливания и обучения методом проб и ошибок [Хайнд, 1975; Goiild, 1986]. Для более сложных форм научения (например, формирования ориентации в лабиринте) был предложен термин «когнитивное обучение через пробы и ошибки» [Gould, 1986].

Поведенческие исследования выработки разнообразных форм ассоциаций и дифференцировок привели к признанию существования биологических ограничений на формирование ассоциаций, что выражалось в невозможности выработать определенные рефлексы у одних видов при сравнительно легком формировании подобных рефлексов у других, а также в разной сложности ассоциирования стимулов разных модальностей с конкретной реакцией. Эти данные были восприняты некоторыми учеными как свидетельствующие о невозможности создания общей теории обучения. В качестве выхода из данной ситуации был предложен экологический подход к обучению, акцентирующий внимание на научении как реорганизации индивидуального опыта и поставивший следующие, новые для биологии обучения, проблемы: каковы необходимые и достаточные условия для формирования конкретного поведения, как разные элементы опыта взаимодействуют при формировании нового поведения и как взаимодействует развитие одного поведения с развитием другого [Johnston, 1981].

327

В ряде исследований научения у животных была продемонстрирована возможность формирования поведения, которое невозможно считать врожденным. Так, Л. В. Крушинский показал возможность формирования экстраполяции движения объекта у собак [Крушинский, 1977], а К. Прайор обучила дельфинов «творчеству» [Прайор, 1981]. В ее экспериментах дельфины научились совершать разные экзотические движения тела при условии подкрепления только новых, ранее не встречавшихся движений.

Исследования закономерностей последовательного формирования поведенческих актов выявили явление переноса навыка, выражающееся во влиянии предшествующего опыта на формирование нового. В зависимости от условий, это влияние может быть как позитивным, так и негативным, т. е. наличие прошлого опыта может способствовать или препятствовать приобретению нового [Эксперим. психол., 1963]. Возможность эффективного использования предшествующего опыта при решении новых задач особенно ярко проявляется в научении принципам решения задач или, как его назвал Г. Харлоу, — научении обучению [Harlow, 1949]. Резкое увеличение скорости решения в ряду однотипных задач было обнаружено Г. Харлоу не только у человека, но и у животных.

Таким образом, для современных теоретических представлений о научении характерно его рассмотрение прежде всего как процесса приобретения нового опыта поведения и соответствующих ему внутренних ментальных репрезентаций.

15.2. ПОДХОД К НАУЧЕНИЮ КАК ПРОЦЕССУ

Повышенное внимание к анализу научения как процесса происходит из обыденной задачи научить, передать опыт. Эта процессуальная сторона научения подчеркивается в его определениях как в биологии [Хайнд, 1975], так и в психологии [Александров, Максимова, 1997]. Она же является основой нейробиологического понимания пластичности нейрональной активности в качестве механизма научения [Котляр,1989].

В экспериментальной психологии и биологии был разработан ряд модельных ситуаций, воспроизводящих основные типы ситуаций реального научения. Эти экспериментальные модели научения перечислены и подробно рассмотрены в руководствах по экспериментальной психологии [Эксперим. психол., 1963; Эксперим. психол., 1973 и др.] и обзорах по биологии обучения [Хайнд, 1975; Gould, 1986 и др.]. Среди них можно выделить ряд наиболее общих типов моделей: классическое обусловливание, оперантное обусловливание, выработка дифференцировок, обучение в лабиринтах, разрешение проблемной ситуации, а также специфически человеческие формы вербального научения, научения путем инструктирования и научения по примеру.

328

Исследование процессуальной стороны научения в психологии наиболее ярко проявилось в построении кривых обучения решению разных типов задач. Как правило, это зависимости эффективности решения задачи (оцениваемой через объем воспроизводимого по памяти материала либо через количество правильных ответов или, наоборот, количество ошибок) от количества повторений экспериментальной ситуации. Подобный анализ позволил выявить фазы, во время которых протекает научение, и описать динамику научения с помощью математических уравнений [Эксперим. психол., 1963]. В ряде случаев на кривых обучения наблюдались участки плато, т. е. периоды, когда улучшения поведения по формальным показателям не происходило. Наличие подобных участков позволило высказать предположения об изменении стратегий научения в ходе этого процесса.

Для всех тех форм научения, которые исследовались с помощью построения кривых обучения, характерно плавное улучшение выполнения задачи. В то же время в некоторых моделях обучения, в основе которых лежит создание проблемной ситуации (например, научение в проблемной клетке [Эксперим. психол., 1973]), было обнаружено явление резкого, скачкообразного изменения хода кривой научения, соответствовавшего нахождению решения задачи с последующим успешным повторением найденного решения. Это явление получило название инсайта, или озарения.

Инсайт наблюдается в более сложных формах научения по сравнению с условными рефлексами и дифференцировками. Решение задач, требующих подобных форм научения, происходит путем проб и ошибок. Предполагается, что инсайт возникает тогда, когда организм способен прогнозировать результат пробы [Эксперим. психол., 1963], в противном случае научение протекает плавно.

Исследование научения как процесса, таким образом, позволило выявить два принципиально разных типа научения: плавное научение и скачкообразное научение (инсайт и импринтинг). Эта разница может быть связана с разной реорганизацией опыта в этих ситуациях, однако ответить на вопрос, какой именно, можно лишь выяснив, какие именно элементы опыта участвуют и формируются при данных типах научения.

15.3. ПРЕДСТАВЛЕНИЕ О НЕЙРОФИЗИОЛОГИЧЕСКИХ МЕХАНИЗМАХ НАУЧЕНИЯ

С появлением методов регистрации активности мозга и особенно активности нервных клеток проблема научения стала интенсивно исследоваться в нейробиологии. В силу того, что эти экспериментальные исследования проводились на животных, и из-за трудностей регистрации нейрональной активности в свободном поведении, основное внимание нейрофизиологов было сосредоточено на исследовании

329

самых простых форм обучения, таких как привыкание, выработка рефлексов и дифференцировок. Находясь под сильным теоретическим влиянием бихевиоризма, нейрофизиологи ограничивались изучением форм нейрональной пластичности как основы формирования связей при подобных формах научения.

В рамках данного направления много сил было потрачено на поиск места локализации следа памяти (или энграммы), который, как предполагалось, фиксирует образовавшуюся при научении временную связь. Однако анализ динамики активности отдельных нейронов в ряду сочетаний стимуляции и подкрепления показал, что изменения импульсации нейронов происходят практически одновременно во многих отделах мозга, причем изменения в специфических анализаторных и моторных областях могут наблюдаться позже, чем в ассоциативных, таких, например, как гиппокамп [Рабинович, 1975; Thompson, 1976]. Таким образом, было показано, что в научении задействованы многие структуры мозга, а не только специфические сенсорные, моторные и связывающие их ассоциативные структуры, как следовало из классических представлений о замыкании временных связей. Это вовлечение в процесс обучения многих структур привело к формированию представления об обучающихся нервных сетях (см., напр., [Eccles, 1977]).

В связи со спецификой нервной ткани, выражающейся в наличии у нервных клеток очень длинных отростков, способных проводить электрические импульсы, и с представлением о потоках информации внутри мозга, ключевым механизмом пластичности нейронов, по мнению авторов, является изменение эффективности синаптической передачи, т. е. изменения этих информационных потоков. Именно поэтому на субклеточном уровне большинство исследований механизмов научения заключалось в изучении закономерностей функционирования синапсов. Этот подход привел к обнаружению долговременной посттетанической потенциации. Такая форма изменения функционирования клеточных контактов рассматривается авторами как соответствующая сформулированным Д. О. Хеббом [Hebb, 1949] принципам синаптической пластичности, способной обеспечить длительное сохранение результатов научения.

В силу особенностей уже упоминавшейся бихевиористской позиции нейрофизиологи исследовали научение как процесс дифференцировки и запоминания значимых стимулов среды. Для теоретического описания этого процесса были предложены разнообразные инструктивные теории, описывавшие фиксацию нервной системой навязываемых средой закономерностей.

Чисто инструктивные представления о научении, для которых характерно признание полной зависимости научения от закономерностей внешней среды, встречаются довольно редко. В основном на подобных позициях стоят исследователи, пытающиеся смоделировать работу нейронных сетей [Spinelly, 1970]. Их модели в соответствии с разными сочетаниями стимулов («условных» и «безусловных») демонстрируют определенную динамику состояний, которая и понимается как механизм обучения в нейронной сети. Однако, как было отмечено еще на заре исследований научения, в зависимости от мотивации, степени готовности и прошлого опыта научение может происходить по-разному [Эксперим. психол., 1963].

330

Большой популярностью среди нейрофизиологов пользуются инструктивно-селекционные теории. В соответствии с одной из таких теорий, предложенной Экклсом [Popper, Eccles, 1977], обучение происходит в нейрональной сети за счет изменения эффективности отдельных синаптических контактов, выбор которых производится за счет инструктирующего возбуждения других синапсов. Эта теория учитывает влияние мотивации и состояния готовности, описывая их как модулирующее возбуждение определенных входов нейрона. Однако инструктивным теориям присущ ряд недостатков, не позволяющих использовать их для описания сложных форм научения (см. гл. 14).

15.4. СПЕЦИФИКА ПСИХОФИЗИОЛОГИЧЕСКОГО РАССМОТРЕНИЯ НАУЧЕНИЯ

Психофизиология, в отличие от нейрофизиологии, принимает в расчет субъективное содержание объективных процессов и, более того, изучает, как субъективное соотносится с процессами жизнедеятельности. В соответствии с решением психофизиологической проблемы в рамках системной психофизиологии (см. гл. 14), психическое связано с протеканием системных процессов организации активности мозга в поведении [Швырков, 1978]. С этих позиций отнюдь не все исследования научения в нейрофизиологии можно назвать психофизиологическими, а лишь те, которые проводятся на бодрствующем животном и исследуют изменения нейрональной активности в связи с изменением поведения. В соответствии с этим подходом, собственно психофизиологическими теориями научения можно считать лишь те теории, которые рассматривают формы и динамику организации мозговой активности в процессе научения. Как правило, такие теории оперируют понятиями нейронных сетей или ансамблей, понимая последние как набор совместно активирующихся клеток [Dudai et al., 1987]. Как отмечается ведущими учеными в этой области, «понимание функционирования таких ансамблей может потребовать дополнительных теоретических и экспериментальных приемов по сравнению с теми, которые требуются для изучения более простых типов нервной организации» [Dudai et al., 1987, р. 399].

Таким образом, научение с позиций психофизиологии может быть определено как формирование пространственно-временной организации активности мозга, обеспечивающей выполнение приобретаемого в процессе обучения нового поведения и соответствующей новому состоянию субъекта поведения. При таком определении становится очевидным отличие психофизиологического подхода к научению от подходов, характерных для психологии и биологии.

Психофизиологическая теория научения должна описывать взаимодействие организма и среды в процессе научения и отражение этого взаимодействия и его результатов в изменениях организации мозговой активности. В соответствии с различными представлениями о движущих силах научения, все

331

психофизиологические теории могут быть разделены на три типа: инструктивные, инструктивно-селективные и селективные.

В отличие от упомянутых ранее инструктивных теорий, предполагающих изменение функций нейрона за счет изменения состояния синаптических контактов, селективные теории научения исходят из существования заложенного в процессе созревания разнообразия нейронных интеграции и выбора необходимой интеграции в результате проб во время обучения. Появление этих теорий, получивших распространение сравнительно недавно [Changeux et al., 1984; Edelman, 1989], связано как с обнаружением врожден».: (X предрасположенностей к овладению определенным опытом, так и со стремлением подойти к научению с общебиологических позиций (как к эволюционному процессу). Подобный подход проявляется в широком использовании знаний об организации работы иммунной системы в качестве аналогии для рассмотрения процессов формирования нейронных систем, которые обеспечивают реализацию приобретаемого в обучении поведения [Edelman, 1989] (см. также гл. 14).

В силу ряда обстоятельств (таких, как доминирование рефлекторных представлений о работе мозга, технические сложности длительной регистрации нейроналыюй активности у свободно подвижных животных и др.), основной экспериментальный материал для построения психофизиологической теории научения был получен в экспериментах, в которых научение не было непосредственным предметом изучения. Так, на основе исследования способности животных к экстраполяции Л. В. Крушицский предположил наличие резерва нейронов, обеспечивающих фиксацию нового опыта [Крушннский, 1977]. В экспериментах, исследовавших нейрональные основы зрительного восприятия, было обнаружено существование нейронов, специфически активировавшихся при предъявлении конкретных лиц или определенных черт лица. Дополнительный анализ, проведенный авторами, позволил утверждать, что эти клетки отвечают представлению о гностических нейронах [Perrett et al., 1982]. Этот термин был гипотетически введен Ю. Конорски в его теории инструментального обучения для обозначения клеток, отвечающих «отдельным восприятиям» [Конорски, 1970] и фиксирующих элементы опыта. Нейроны, специфически активировавшиеся при предъявлении конкретных слов, были обнаружены в экспериментах на человеке [Heit et al., 1988].

В других экспериментах, направленных на изучение нейронных механизмов поведения, были обнаружены нейроны, специфически активировавшиеся при осуществлении отдельных поведенческих актов [Ranck, 1975] или нахождении животного в определенном месте экспериментальной клетки [O'Keefe, 1979]. Последние были названы нейронами «места», и на основе регистрации активности таких клеток у крыс при обследовании новой территории было показано, что они рекруи-

332

тируются из нейронов, «молчавших» до помещения животного в новую ситуацию [Wilson, McNaughton, 1993]. Утверждение о специализации «молчащих» нейронов в процессе формирования инструментального пищедобывательного поведения кроликов было также высказано на основе сравнения наборов поведенческих специализаций нейронов до и после формирования новых поведенческих актов [Горкин, 1987]. В этой работе, на основе сравнения среднего количества активных нейронов при одном прохождении микроэлектрода через всю толщу лимбической коры кролика во время выполнения пищедобывательного поведения до и после доучивания, было показано увеличение количества активных нейронов после обучения. Эти результаты подтвердили высказанное Л. В. Крушинским и позднее В. Б. Швырковым [Shvyrkov, 1986] предположение о наличии резерва клеток, обеспечивающего усвоение нового опыта, и явились свидетельством в пользу селективных теорий научения.

15.5. СИСТЕМНАЯ ПСИХОФИЗИОЛОГИЯ НАУЧЕНИЯ. ПРОБЛЕМА ЭЛЕМЕНТОВ ИНДИВИДУАЛЬНОГО ОПЫТА

В силу того, что, как уже отмечалось ранее, психическое связано с системными процессами организации активности целого мозга [Швырков, 1978], появление в репертуаре индивида нового поведенческого акта и соответствующего ему психического состояния связано с реорганизацией всей мозговой активности. В то же время многие теории, объясняющие реорганизацию мозговой активности в процессе научения, оперируют с локальными нейронными ансамблями, ограниченными одной или несколькими структурами головного мозга [Eccles, 1977], и по этому параметру являются скорее физиологическими, чем психофизиологическими.

На наш взгляд, наилучшим образом соответствует критериям психофизиологической теории научения подход с позиции на основе теории функциональных систем, предложенной П. К. Анохиным [Анохин, 1968], которая развита в работах В. Б. Швыркова и его коллег. В соответствии с теорией функциональных систем (подробнее см. гл. 14), любой поведенческий акт реализуется системой кооперативно действующих элементов организма разной морфологической принадлежности, организуемой моделью будущего соотношения организма и среды (результата поведенческого акта). Появление такой функциональной системы в опыте индивида и соответствующего поведенческого акта в его поведенческом репертуаре являются следствием научения и происходят в результате процессов системогенеза, имеющих место как на ранних этапах онтогенеза, так и у взрослого (см. гл. 14).

Подход с позиции теории функциональных систем позволяет по-новому поставить и решить проблему единицы индивидуального опыта (понимая под ней некоторое хранящееся в памяти и воспроизводимое целостное состояние субъекта), которая приобретается в результате единичного акта научения. Дело в том, что эта проблема привлекала внимание исследователей только на заре исследований, когда методы экспериментирования ограничивались наблюдением и поведенческими экс-

333

периментами. Позже все силы были направлены на описание процесса научения, а проблема элементов, или единиц, субъективного опыта была отдана на откуп интуитивным представлениям конкретного ученого. В тех же исследованиях, которые были посвящены строению памяти и не могли обойти данную проблему, в качестве элемента обычно выступали единичные стимулы среды и конкретные движения [Rolls, 1987], а для человека — еще и семантические единицы [Эксперим. психол., 1963]. Из таких элементов строилась гипотетическая матрица связей (ассоциаций), которая и должна была объяснить извлечение из памяти и использование конкретного опыта в определенной ситуации. На наш взгляд, слабым местом этих элементов с позиции психофизиологии является их умозрительное выделение внешним наблюдателем и несоответствие целостным пространственно-временным организациям активности мозга, которые только и могут быть соотнесены с состояниями субъекта.

В то же время функциональная система поведенческого акта, реализующаяся одновременно с множеством систем, которые сформированы на предыдущих этапах онто- и филогенеза, является конкретной формой системных процессов организации активности мозга, и поэтому может быть сопоставлена с состоянием субъекта как единицей субъективного опыта. Одновременно она является внутренним эквивалентом поведенческого акта, который выступает в качестве единицы реального поведения. В связи с этим вполне оправданным кажется предположение о том, что функциональная система поведенческого акта является элементом субъективного опыта [Швырков, 1995].

В качестве одного из центральных положений теории функциональных систем является представление о существовании множества уровней функциональных систем. Даже биохимическую организацию сокращения отдельного мышечного волокна П. К. Анохин рассматривал как функциональную систему. По-видимому, такая система не является элементом субъективного опыта. Это противоречие было разрешено В. Б. Швырковым с системно-эволюционных позиций через рассмотрение филогенетической истории организма. Те функциональные системы, которые выступают в качестве подчиненных по отношению к являющейся элементом субъективного опыта функциональной системе поведенческого акта, были названы им прасистемами [Швырков, 1995], что обозначает их соответствие целостным системам поведенческих актов, но у филогенетических предков рассматриваемого индивида. Так, будучи автоматизированным у человека, акт дыхания выступает в качестве целостного поведенческого акта у моллюска.

15.6. ФИКСАЦИЯ ЭТАПОВ ОБУЧЕНИЯ В ВИДЕ ЭЛЕМЕНТОВ ОПЫТА

Обозначив принципиальный подход к выделению элементов субъективного опыта, теория функциональных систем легла в основу экспериментов по изучению субъективного дробления поведения и исследования нейрофизиологических про-

334

явлений приобретения нового опыта. Необходимость такого рода исследований была связана с присущей любому исследователю произвольностью выделения отдельных актов поведения при внешнем наблюдении. В этой ситуации в силу непрерывности поведенческого континуума определение моментов смены поведенческих актов и, соответственно, достижения их результатов полностью зависит от представлений экспериментатора об организации поведения. Для устранения этого субъективизма было необходимо исследовать организацию активности мозга в поведении и выделить специфические параметры этой активности, соответствующие этапам смены и реализации функциональных систем.

В связи с имевшимися в литературе данными о специфической связи активности отдельных нейронов с движениями, целью действия, местом и другими характеристиками поведения, в лаборатории В. Б. Швыркова была разработана экспериментальная модель, позволявшая дифференцировать связь нейрональной активности с каждым из этих аспектов поведения. Это была модель пищедобывательного поведения у кроликов, которым для получения пищи из двух кормушек, расположенных в углах передней стенки квадратной клетки, требовалось нажимать на педали, которые были расположены в углах задней стенки той же клетки. Регистрация активности корковых нейронов кроликов в сериях пищедобывательных актов вдоль каждой из боковых сторон клетки позволила выявить специфические активации нейронов, сопровождавшие реализацию отдельных актов данного поведения. Такие активации наблюдались во всех случаях реализации соответствующего поведенческого акта. На основании этих результатов был сделан вывод о специализации нейронов относительно определенных поведенческих актов, который лег в основу концепции системоснецифичности нейронов [Швырков, 1995], утверждающей принадлежность любого нейрона только к одной функциональной системе (см. гл.14).

Наряду со специализациями нейронов относительно отдельных систем поведенческих актов, таких как «подход к педали», «захват пищи», «нажатие педали», также были обнаружены и другие специализации. Во-первых, это специализации нейронов относительно конкретных движений животного, и, во-вторых, специализации относительно объединений актов, например подход и нажатие педали. Если первые специализации можно было отнести к реализации прасистем, то вторые вступали в противоречие с принципом системо-специфичности и, на первый взгляд, свидетельствовали о наличии в субъективном опыте животного элементов, объединяющих несколько систем поведенческих актов.

Это противоречие было разрешено в серии экспериментов с тщательным контролем процедуры обучения. В этих экспериментах проводилось контролируемое поэтапное формирование пищедобывательного цикла [Горкин, 1987]. Каждый из пяти этапов обучения (обучение захвату пищи в конкретной кормушке; повороту головы в сторону педали; подходу к педали; нахождению в углу педали и, наконец, ее нажатию) проводился в отдельный день и состоял из 100-200 подкрепляемых подачей пищи реализации соответствующего этапа. Последующая регистрация активности корковых нейронов в дефинитивном поведении позволила выявить клетки, специализировавшиеся на отдельных этапах обучения.

335

Для всех этапов были обнаружены группы специализированных нейронов, специализаций же, не соответствовавших этапам обучения, за исключением нейронов пра-систем, выявлено не было. При этом специализации относительно этапов, служивших в качестве промежуточных поведенческих актов и отсутствовавших в дефинитивном поведении, выражались в виде активации, перекрывающих два последовательных поведенческих акта. Например, специализация относительно этапа нахождения в углу педали проявлялась в активации, начинавшейся в конце акта подхода к педали и продолжавшейся во время ее нажатия. Эти наблюдения позволили сформулировать вывод о специализации нейронов относительно этапов обучения.

Этот вывод, по мнению автора, исключительно важен для объективного изучения структуры субъективного опыта, так как дает ключ к выявлению элементов опыта, выделяемых его обладателем. В то же время полный набор поведенческих специализаций нейронов соответствует субъективному репертуару поведений. Таким образом, можно заключить, что с точки зрения системной психофизиологии элементом индивидуального опыта является функциональная система поведенческого акта, сформированная на конкретном этапе научения, т. е. в опыте индивида зафиксирована история его приобретения.

Как уже отмечалось, элементы одной функциональной системы поведенческого акта расположены в разных структурах мозга, и достижение результата происходит за счет их согласованной, кооперативной активности. Однако количество элементов, принадлежащих одной функциональной системе, в разных структурах и представленность разных систем в виде соответствующих специализаций в конкретной структуре мозга оставались предметом изучения. В связи с этим необходимо рассмотреть участие нейронов разных структур мозга в формировании новых функциональных систем.

В экспериментах на уже упоминавшейся модели пищедобывателыюго поведения кроликов было проведено сравнение наборов специализаций в различных областях коры в дефинитивном поведении, а также сопоставлены изменения этого набора в моторной и лимбической областях коры в результате доучивания животного. Проведенное исследование показало, что хотя нейроны одной специализации могут быть обнаружены в разных областях, их количественная представленность сильно варьирует. Максимальное количество нейронов, специализированных относительно актов сформированного обучением в экспериментальной клетке поведения, было обнаружено в лимбической коре (около 40 % зарегистрированных нейронов), в то время как в других корковых областях они были либо единичными, либо не достигали и 10 % [Шевченко и др., 1986].

Сравнение наборов специализаций до и после доучивания также показало существенно большие изменения в лимбической коре по сравнению с моторной [Горкин, 1987]. В лимбической коре после доучивания появились новые специализации, соответствовавшие актам добавленного поведения. Специально проведенная серия экспериментов с подсчетом количества активных нейронов в лимбической

336

коре до и после доучивания показала абсолютное увеличение их количества в результате доучивания. Эти данные были восприняты как свидетельство специализации в обучении «молчащих», т. е. не дающих спайковых разрядов, нейронов. При этом количество клеток, специализированных относительно наблюдавшихся до доучивания актов, не изменилось. Наоборот, в моторной коре появились лишь единичные новые специализации, зато количество активных клеток прасистем достоверно изменилось.

Полученные результаты соответствуют представлению о перестройке опыта в результате включения в его состав новых элементов. На нейрофизиологическом уровне анализа результатом научения является формирование «добавки» к набору специализированных нейронов и изменение использования прасистем при реализации прежде существовавших функциональных систем.

15.7. ВЛИЯНИЕ ИСТОРИИ НАУЧЕНИЯ НА СТРУКТУРУ ОПЫТА И ОРГАНИЗАЦИЮ МОЗГОВОЙ АКТИВНОСТИ

Субъективный континуум, как и континуум поведения, представляет собой линейную последовательность сменяющих друг друга состояний, которые соответствуют актам поведения. Эти смены одних наборов функциональных систем на другие связаны с достижением результатов одних актов и возможностью реализации следующих актов поведения. В силу того, что субъект выступает в качестве активного компонента соотношений организма со средой (см. гл. 14), переход к реализации следующей в последовательности функциональной системы происходит за счет ее извлечения из памяти под воздействием внутренних факторов. Факторы, определяющие разные состояния систем и смену реализуемых систем в континууме поведения, были названы межсистемными отношениями.

В соответствии с включенностью конкретного акта в жестко фиксированную последовательность, такую как врожденные стереотипные формы поведения или аппетентная стадия пищедобывательного цикла, эти отношения могут иметь жестко детерминированный характер. В то же время (как в случае поисковой активности) эти отношения не детерминированы и выбор происходит среди слабо связанных в памяти функциональных систем. Но и жесткая детерминация отношений двух последовательных актов внутри цикла не является однозначной — всегда имеется возможность альтернативы, т. е. перехода к каким-либо другим актам поведения. Подобная возможность реализуется, например, при насыщении и переходе от пищедобывательного поведения к комфортному (отдыху) либо при переходе к ориентировочному поведению в связи с изменениями в среде.

Можно утверждать, что смена актов происходит в результате выбора из ряда альтернатив с разной вероятностью в поведении. Наблюдение с этих позиций за формированием умения играть в многоклеточные

337

«крестики-нолики» позволило создать модель структуры памяти и межсистемных отношений, хорошо описывающую выбор хода в конкретной игре [Александров и др., 1997].

Исследование нейрональной активности в поведении показало, что, наряду с ярко выраженной специфической активацией специализированных нейронов в специфическом поведенческом акте, в их активности имеется дополнительная структура. Эта структурированность неспецифической активности (т. е. активности при осуществлении других актов поведения) проявляется в наличии слабых активациий тормозных пауз, сопровождающих реализацию других актов поведения. Связь таких изменений с конкретным актом имеет, как правило, вероятностный, но достаточно устойчивый (по статистическим критериям) характер.

Исходя из принципа системоспецифичности нейрона и его специализации относительно элемента индивидуального опыта, было выдвинуто положение о разных состояниях, или степенях актуализации элемента опыта в реальном континууме поведения. Нейрофизиологическим выражением степени актуализации специфической функциональной системы при подобном подходе является текущая частота активности специализированного нейрона, варьирующая от нулевых значений при исключении системы из состояния субъекта поведения до максимума при реализации соответствующего акта поведения.

Таким образом, на основе анализа нейрональной активности был сделан вывод об актуализации множества функциональных систем при осуществлении конкретного акта поведения. Обнаружение определенной структуры актуализации конкретной функциональной системы в поведении позволило использовать регистрацию активности нейронов известной специализации для изучения отношений конкретного элемента опыта с другими элементами.

В качестве метода выявления межсистемных отношений используется построение паттернов активности специализированных нейронов во всех актах анализируемого поведения и распределения вероятности активации нейрона в конкретном акте поведения. За активацию принимается не менее чем 1,5-кратное превышение «фоновой» частоты активности. Эти формы представления нейрональной активности иллюстрируются на рис. 15.1 в сравнении с распространенным методом представления активности в виде растров. Особенно яркие результаты дало использование данного метода для решения проблемы отражения истории научения в организации межсистемных отношений.

В силу фиксации этапов научения в виде элементов субъективного опыта история научения индивида является содержанием его опыта. Однако кроме состава элементов опыта, история его формирования может (наряду с логикой поведения) определять отношения систем.

Было проведено специальное исследование активности нейронов лимбической коры кроликов в пищедобывательном поведении, сформированном с применением разных стратегий обучения. На рис. 15.2 схематически представлены использовавшиеся разные стратегии обучения внешне одному и тому же циклическому пищедобывательному поведению. Разница между стратегиями состояла в последовательности формирования отдельных блоков поведения — поведения у кормушки и поведения у педали — на двух сторонах экспериментальной клетки. Формирова-

338

ние отдельных поведенческих актов производилось так же, как было изложено ранее. На рисунке последовательности этапов научения показаны цепочками стрелок.

Для выявления сформированных межсистемных отношений была зарегистрирована активность нейронов лимбической коры в дефинитивном поведении обученных таким образом животных. Из всей совокупности зарегистрированных нейронов для анализа были отобраны клетки, специализированные относительно сформированных обучением в экспериментальной клетке поведенческих актов. Критерием специализации служило

наличие активации нейрона в соответствующем акте во всех случаях его реализации. Как было показано А. Г. Горкиным и

Рис. 15.1. Разные способы представления активности нейрона:

Л — растры активности нейрона лимбической коры; Б — гистограмма; В — усредненная отметка нажатия педали (слева—левой, справа—правой), относительно начала которой совмещены растры и построены гистограммы. Внизу: графическое представление активности того же нейрона. На левом графике — картина распределения средних частот (паттерн) активности нейрона в актах циклического поведения. По оси абсцисс — номера актов, по оси ординат — нормированная средняя частота активности. На правом графике — вероятности наличия активации в тех же 10 актах. По оси абсцисс — номера актов, по оси ординат — вероятность активации нейрона в соответствующем акте

339

Д. Г. Шевченко [1990], этот формальный критерий позволяет достаточно надежно выделять специфическую связь активности нейрона с конкретным актом поведения. Для анализа неспецифической активности были построены паттерны активности каждого из исследовавшихся нейронов во всех актах пищедобывательного поведения. Паттерн активности представляет собой распределение средних частот импульсации нейрона в выделенных актах поведения. В поведении на одной стороне клетки было выделено пять актов: поворот головы к педали, перенос лап к педали, нажатие педали, перенос лап к кормушке и захват пищи в кормушке. Всего на двух сторонах клетки было выделено 10 актов. Усредненные паттерны активности нейронов, специализированных относительно подхода к педали, представлены на рис. 15.2 под схемами соответствующих стратегий обучения. Так как кролик подходил к двум педалям, и паттернов — два для каждой из стратегий. Один из них показывает распределение активности нейронов, специализированных относительно подхода к первой по порядку обучения педали, а другой — относительно второй. Легко заметить, что паттерны у кроликов, обученных по стратегии «Б», различаются для первой и второй педали, в то время как для животных, обученных по стратегии «А», — не различаются. Сходные данные были получены для другой группы специализаций — нейронов, связанных с подходом к кормушке [Горкин, Шевченко,1995].

Данные, полученные в этой работе, показали, что для систем, не связанных логикой последовательного поведения в одну группировку, их взаимные отношения зависят от истории формирования поведения. Эта зависимость проявляется в виде повышенной степени актуализации второй из двух последовательно формировавшихся систем при реализации первой. В этом исследовании были также выявлены отношения систем, основанные на факторах сходства движений и целей соответствующих поведенческих актов.

В связи с тем, что актуализация функциональных систем оказалась чувствительной к действию множества факторов, оказывается возможным рассмотреть с позиций системной психофизиологии огромный объем экспериментальных данных, полученных в нейрофизиологии обучения (см., напр., [Рабинович, 1975; Котляр, 1989]). В основном эти данные касаются пластичности нейрональных ответов на стимулы при выработке условных рефлексов. Сразу стоит обратить внимание на то, что достоверные изменения частоты постстимульной импульсации нейронов в ряду сочетаний, как правило, не превышают 1,5-кратный уровень «фоновой» активности. Это означает, что в случае повышения в обучении возбудительного ответа регистрируется активация, которая в соответствии с упомянутыми ранее критериями не может считаться специфической. Этот факт, вместе с плавной динамикой ответа и наличием тормозных реакций у многих нейронов, свидетельствует, на наш взгляд, о том, что основная феноменология пластичности попадает в разряд изменения межсистемных отношений уже имевшихся до обучения элементов индивидуального опыта. Это вполне соответствует теоретическим положениям бихевиористов о том, что при выработке классических рефлексов и дифференцировок новой реакции, т. е. в терминах данной главы, нового акта поведения не формируется.

Рис. 15.2. Усредненные паттерны активности нейронов, специализированных относительно подхода и нажатия педали в зависимости от времени формирования и стратегии обучения:

А, Б схемы применявшихся стратегий обучения (в нижних углах — кормушки, в верхних — педали); В—З; усредненные паттерны нейрональной активности. По оси абсцисс — номера поведенческих актов; по оси ординат — нормализованная по максимальной частота активности; В, Г— усредненные паттерны активности нейронов, специализированных относительно оперирования с первой по порядку обучения педалью; Д, Е усредненные паттерны активности нейронов, специализированных относительно оперирования со второй по порядку обучения педалью; Ж, 3 — паттерны (средняя ± стандартная ошибка) неспецифической активности нейронов, представленных на частях Д и Е, но нормализованной по максимуму неспецифической активности. Под схемой конкретной стратегии расположены паттерны активности нейронов, которые зарегистрированы у кроликов, обученных по этой стратегии.


341

Изложенные ранее теоретические положения и экспериментальные данные позволяют в общих чертах описать основные моменты процесса научения с точки зрения системной психофизиологии.

В дефинитивном поведении циклически повторяющиеся взаимодействия организма со средой в виде адаптивных последовательностей поведенческих актов формируют отношения элементов опыта. За счет воздействия среды эти последовательности могут быть прерваны. В соответствии с имеющимся опытом вместо запланированного акта в таком случае реализуется ориентировочное поведение, сменяющееся следующим приспособительным актом. При многократном повторении такого воздействия происходит привыкание, т. е. сокращение перерыва в последовательности вплоть до его полного исчезновения. В случае, когда «информационное» воздействие среды сопряжено с «подкрепляющим» в виде разрушающего воздействия либо появляющейся возможности удовлетворения «мотивированного» состояния, после ориентировочного совершается поведенческий акт, не входивший ранее в эту последовательность. При многократном повторении фиксируется новая последовательность смены поведенческих актов и обеспечивающие ее осуществление отношения элементов опыта.

Собственно научение, заключающееся в формировании нового элемента индивидуального опыта, начинается с возникновения проблемной ситуации, когда организм не может достигнуть желаемого результата за счет использования имеющихся в опыте функциональных систем. На нейрональном уровне этому соответствует длительное рассогласование метаболических потребностей клеток и синаптического притока (см. гл. 14). Это приводит к одновременной актуализации множества функциональных систем. Такая актуализация приводит в поисковом поведении к новым последовательностям поведенческих актов и изменениям набора прасистем, т. е. пробным соотношениям организма со средой. За счет имеющегося опыта поведения индивида в проблемных ситуациях этот набор не случаен, а подчинен опыту генерации успешных проб, накопленному индивидом. В случае неудачи состояние повышенной актуализации множества систем сохраняется и происходит генерация следующей пробы. В случае же успеха полученный результат снижает общий уровень актуализации систем, видимо, за счет частичного удовлетворения метаболических потребностей нейронов. После ряда успешных проб происходит исключение лишних конкурирующих альтернатив и окончательно складывается новая функциональная система поведенческого акта. Она имеет вид определенной организации актуализированных ранее сформированных систем и «добавки» группы специализированных нейронов, представляющих вновь сформированный элемент опыта в памяти организма. Эта «добавка» обеспечивает консолидацию кооперативного ансамбля, необходимого для достижения данного результата. Одновременно в силу включения нового акта в последовательность имевшихся поведенческих актов формируются отношения нового элемента опыта с уже имевшимися в памяти организма.

Глава 16. СВЯЗАННЫЕ С СОБЫТИЯМИ ПОТЕНЦИАЛЫ МОЗГА (ССП)

В ПСИХОФИЗИОЛОГИЧЕСКОМ ИССЛЕДОВАНИИ

16.1. ОПРЕДЕЛЕНИЕ, ОСНОВНЫЕ ПРОБЛЕМЫ И КРАТКАЯ ИСТОРИЯ МЕТОДА ССП

16.1.1. Связанные с событиями потенциалы мозга

ССП представляют собой широкий класс электрофизиологических феноменов, которые специальными методами выделяются из «фоновой», или «сырой», электроэнцефалограммы (ЭЭГ). Термин ССП — калька введенного Г. Воэном термина Event-Related Potentials of the Brain, ERPs [Vaughan, 1969]. В характеристиках ССП проявляется связь активности мозга с событиями во внешней среде (например, с предъявлением стимулов), во внешне наблюдаемом поведении испытуемого (например, с двигательной активностью) и с психологическими характеристиками активности испытуемого (например, с ожиданием или с принятием решения) [Rockstrohetal., 1982]. «Промежуточное» положение ССП (по выражению Т. Пиктона и Д. Стасса [Picton, Stuss, 1980]), с одной стороны, отражающих активность мозга, а с другой — характеристики поведения и психологическую феноменологию, обладает очевидной

343

привлекательностью для психофизиологов, поскольку может обеспечить экспериментальные основания для решения фундаментальных проблем психофизиологии (см. для обзора [Psychophysiol. Brain Res., 1990; Rohrbaugh et al., 1990; Event-Related, 1991]).

16.1.2. Краткая история метода ССП

Связь электрической активности мозга с событиями в окружающей среде и поведении впервые была продемонстрирована и описана англичанином Р. Кэтоном в 1875-1887 гг. и независимо от него русским ученым В. Я. Данилевским в 1875 г. [Brazier, 1984]. Эксперименты Кэтона были проведены на кроликах и обезьянах. Он помещал один регистрирующий электрод на обнаженную кору, а другой — на поверхность вертикального среза мозга и, используя в качестве стимула свет лампы или звук колокольчика, наблюдал изменения потенциала по колебаниям стрелки гальванометра. В этих опытах была открыта связь изменений коркового потенциала со стимуляцией разной модальности (свет, звук), с двигательной активностью животного, с уровнем бодрствования, а также отмечены региональные особенности активности коры и изменения электрической активности при фармакологических воздействиях. В 1890-1891 гг. А. Беком были исследованы потенциалы на свет в окципитальной коре и на звук — в височной. В 1898 г. В. Е. Ларионовым было проведено сопоставление вызванной электрической активности в разных областях коры. Таким образом, к началу XX в. был описан основной круг феноменов связи электрических потенциалов мозга с событиями и очерчены основные проблемы, которые до сих пор остаются актуальными (см. параграфы 3 и 4).

16.2. МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ РЕГИСТРАЦИИ И ОБРАБОТКИ ССП

16.2.1. Общая характеристика сигнала

ССП выделяют при помощи специальных методов из ЭЭГ. Частотный диапазон ССП включает полосу от 0 Гц до 3 кГц и ограничен, с одной стороны, сверхмедленной электрической активностью мозга [Илюхина, 1977], а с другой — спайковой активностью нейронов. Кроме ритмических колебаний на низкочастотном («ноль-частотном») краю этого диапазона выделяют такие электрические феномены, как постоянный

344

потенциал (DC-potential) и сдвиги постоянного потенциала (DC-shifts,DC-fluctuations). Суммарная активность в полосе частот, превышающих 300 Гц, остается мало изученной [Думенко, 1979].

16.2.2. Стандартные способы получения воспроизводимой конфигурации ССП

Методические требования к регистрации ЭЭГ (установка электродов, выбор системы отведения, полосы пропускания усилителей, способы устранения артефактов) описаны в главе 2. Заметим, что для регистрации ССП разных типов применяют разные частотные полосы (например, для ранних компонентов ВП и УНВ, см. параграф 3). Поскольку анализ ССП включает рассмотрение их конфигурации, амплитудно-временных характеристик и топографии, применение монополярного отведения предоставляет возможность оценить отклонения этих параметров от некоторого единого стандарта. Это обстоятельство делает очевидными преимущества монополярной системы отведения для исследования ССП.

16.2.3. Считывание сигнала

Для компьютерной обработки сигнала «сырая» ЭЭГ переводится в цифровую форму. Частота считывания мгновенных значений сигнала при этой процедуре («квантование», sampling) определяется согласно теореме Шеннона—Котельникова. Для того чтобы описать сигнал частоты F, частота считывания должна быть не меньше 2F, т. е. для того, чтобы описать, например, частоту колебаний 100 Гц, необходимо применить частоту считывания сигнала не менее 200 Гц.

16.2.4. Усреднение

В основе выделения ССП из сигнала ЭЭГ лежат следующие допущения:

а) в ситуации многократного повторения события регистрируемый сигнал ЭЭГ (SUMi(t)) является суммой двух компонентов:

— спонтанной ЭЭГ Si(t);

потенциала, связанного с событием Pi(t);

б) компонент Si(t) распределен случайно для ряда последовательных повторений события;

в) компонент Рi(t) постоянен для всех повторений события, т. е. сигнал при i-м повторении события в момент t представляет сумму: SUM = Si(t) + Рi(t).

345

При суммировании N сигналов, зарегистрированных при последовательных повторениях события, компонент Рi(t) будет устойчив, a Si(t), как ошибка среднего значения, изменяется пропорционально величине 1/N. Это означает, что, например, при исходном соотношении сигнала и шума 1:1, при суммировании 25 реализаций ЭЭГ в полученном ССП отношение сигнал/шум будет 1:5, а при 100 реализациях — 1:10. Для разных типов потенциалов применяют разное количество накоплений: например, для УНВ и р300 достаточно 30-50 реализации, а для потенциалов ствола мозга требуется от 4000 до 7000 реализации (Hughes, 1985).

В качестве мгновенных значений накопленного ССП могут быть использованы не средние, а медианы [Rockstroh et al., 1982]. Медиана, в отличие от среднего, обладает свойством робастности, т. е. в значительно меньшей степени чувствительна к отклонениям выборки от нормального распределения. Хотя различия между средним и медианой уменьшаются по мере увеличения количества суммируемых реализации и «медианные» кривые менее гладкие, чем усредненные, тем не менее, предпочтительно использование медианы, если артефакты (такие, как моргания) не могут быть устранены. При малом количестве реализации следует предпочесть медиану.

16.2.5. Фильтрация

Случайная, «шумовая» составляющая единичной реализации ССП («сырой» ЭЭГ) может быть устранена посредством сглаживания.

Алгебраические фильтры

Суть данной процедуры состоит в скольжении «окном», которое представляет собой набор из п коэффициентов (где п — нечетное произвольное число, например, для п = 5 окно «0,5; 1,0; 2,0; 1,0; 0,5») по последовательности мгновенных значений сигнала, так что каждое значение в последовательности умножается на поставленный в соответствие ему коэффициент фильтра. Затем исходное значение сигнала, соответствующее «центральному» коэффициенту окна-фильтра, заменяется частным от деления суммы вычисленных произведений на сумму коэффициентов фильтра. После этого фильтр смещается на одно значение сигнала, и процедура повторяется, так что все исходные значения сигнала кроме (п - 1)/2 мгновенных значений, примыкающих к границам эпохи анализа (эти значения должны быть исключены из дальнейшего анализа), заменяются на новые вычисленные значения. Очевидно, что свойства фильтра определяются

346

количеством коэффициентов и их соотношением. Например, окно «1,1,1,1,1,1,1» сглаживает сигнал сильнее, чем «I, 5, 10, 15,10, 5, I», a «1,1, 1, 1, 1, 1, 1,1,1» — еще сильнее.

Гармоническая фильтрация

Гармоническая фильтрация основана на обработке спектров исходного сигнала, рассчитанных, например, при помощи быстрого преобразования Фурье (Fast Fourier Transformation FFT). Спектр Фурье представляет собой сигнал в виде набора sot и cos функций, которые при суммировании образуют исходный сигнал, т. е. спектр Фурье содержит всю информацию об исходном сигнале. Действительно, алгоритм обратного преобразования Фурье (FFT-1) позволяет восстановить сигнал из спектра без потерь. Спектр Фурье представлен двумя доменами — частотным и фазовым. Первый содержит информацию о частотном составе сигнала, а второй — о фазовых сдвигах для разных частотных составляющих. Возможно произвольно изменять величины в том и другом доменах, например «вычеркивая» частоты, что после восстановления сигнала (при помощи FFT-1) проявится как изменение частотных характеристик сигнала: или исключение 50 Гц, или сглаживание сигнала, или устранение постоянной величины, или снятие медленных составляющих и т. д. Следует учитывать, что «хвосты» эпохи анализа, представленной спектром, будут искажены после восстановления сигнала из обработанного спектра, как и при алгебраической фильтрации.

16.2.6. Описание ССП

В результате накопления отрезков ЭЭГ, связанных с определенными событиями, их усреднения, цифровой фильтрации или других процедур, получают ССП — кривую, которую описывают как последовательность значений амплитуд или как последовательность колебаний (волн).

В морфологии ССП выделяют волны, колебания, отклонения и сдвиги (wave, oscillation, deflection, shift) непосредственно наблюдаемые изменения потенциала и компоненты — составляющие ССП, которые не обязательно совпадают с определенной волной/колебанием, могут взаимно перекрываться во времени и определять форму нескольких последовательных волн (ср. с понятием «синтетический компонент» [Naatanen et al., 1993; Rockstroh et al., 1982, p.107-108]). Для выделения компонентов потенциал описывают как последовательность значений амплитуд и применяют специальные процедуры, например реконструируют компоненты как разность мгновенных значений амплитуд волн ССП, зарегистрированных в ситуациях, когда предполагаемый компонент входит и не входит в состав ССП. Так выделяют, например, негативность, связанную с рассогласованием (mismatch negativity MMN) [Naatanen et al., 1993], негативность, связанную с обработкой сигнала (processing negativity) [Ritter et al., 1984], продолжающуюся негативность (sustained negativity) [Naatanen, Michie, 1979] и компоненты позднего позитивного комплекса (ранние фрагменты CNV, Р300 и Slow Wave) [Sutton, Ruchkin, 1984].

Для идентификации волны или компонента используют: 1) амплитудно-временные характеристики: полярность (позитивное или негативное отклонение, обозначаются Р и N соответственно), длительность, латентный период начала отклонения или его пика по отношению к моменту появления события (полярность и латентный период колебания обозначают, например, Р100, N200) или его порядковый номер (например, Р1, N1, Р2.., Р3 и т. д.), амплитуду от «нулевой линии» (baseline) или «от пика до пика» (peak-to-peak amplitude); 2)распределение амплитуд по скальпу (topography); 3) связь с событием, с его характеристиками; 4) связь с задачей (task dependence).

Волны ССП, идентифицированные как принадлежащие к одному и тому же классу, могут существенно различаться по амплитуде и временным характеристикам, например, колебание Р300 может развиваться с латентным периодом от 250 до 1500 мс. Именно поэтому при сопоставлении формы волн применяют как сравнение мгновенных значений амплитуд волн, так и статистики пиковых значений амплитуд и латентных периодов.

16.2.7. Особенности метода ССП

В последние десятилетия разработаны методы регистрации активности мозга, обладающие значительными исследовательскими возможностями (см. также гл. 2). Однако и при разработке новых методов исследований активности мозга, и при верификации результатов, получаемых при помощи этих методов, электрическая активность мозга широко используется как референтный способ анализа. «Привилегированное» положение метода ССП объясняется простотой регистрации, не требующей хирургического вмешательства (неинвазивностью), возможностью наблюдать активность многих областей мозга в динамике, в течение длительных интервалов времени, при выполнении сложных задач, у здоровых испытуемых любого возраста, у пациентов и у животных. Ограничения и преимущества ССП как исследовательского инструмента можно видеть при его сопоставлении с другими методами (включая и методы, основанные на регистрации ЭЭГ). Особенности метода ССП важно учитывать при его совместном использовании с другими современными методами исследования активности мозга [Gevins et al., 1995]. Сопоставимость результатов, получаемых различными методами, включая ССП, обеспечивается тем, что все они являются дополнительными описаниями метаболизма мозговой ткани (см. [Event-Related, 1991]).

348

16.3. ФЕНОМЕНОЛОГИЯ И ТИПОЛОГИЯ ССП

Одним из наиболее значительных результатов, которые получены при изучении и использовании ССП, является описание различных потенциалов, связанных по времени с определенными событиями и имеющих специфические амплитудно-временные характеристики, конфигурацию и топографию.

16.3.1. Зрительные вызванные потенциалы

Зрительные вызванные потенциалы (ЗВП, visual evoked potentials VEP) [Шагас, 1975; Рутман, 1979; Максимова, 1982; Rockstroh et al., 1982] регистрируются в ситуации предъявления зрительной стимуляции — вспышек или каких-либо структурированных изображений (геометрических или предметных). В последовательности колебаний ЗВП, зарегистрированных со скальпа, выделяют волны (см. параграф 2.6) Р40, N70, Р100-300, а также комплекс волн N240-420 (рис. 16.1 А). Волны с ЛП до 80 мс более выражены во фронтальных отведениях, что связывают с вкладом в ЗВП потенциала электроретинограммы (см. гл. 2). Начиная с 70 мс волны максимально представлены в постцентральных отведениях 5 Т6 О1 О2 ОZ).

16.3.2. Слуховые вызванные потенциалы

Слуховые вызванные потенциалы (СВП, auditofy evoked potentials — АЕР) [Шагас, 1975; Рутман, 1979; Rockstroh et al., 1982; Hughes, 1985] регистрируются в ситуации предъявления слуховой стимуляции (тонов различной частоты, интенсивности и длительности). Комплекс из восьми волн, развивающийся в интервале до 15 мс после стимула, амплитудой 0,1-0,5 мВ, максимально выраженный в вертексе Z), называют слуховым потенциалом ствола мозга (brain stem auditory evoked potentials BAEP). Предполагают, что эти волны отражают вызванную активность в структурах слухового анализатора — от слухового нерва до медиального коленчатого тела. Среднелатентные (N0 Р0 Na, Рa, Nh) и длиннолатентные колебания Р50-801), N80-120 (N1), P160-200 (P2), N200-250 (N2) имеют максимальную амплитуду в центральных и фронтальных отведениях, хотя наиболее позднее из них — Р300 (P3), преимущественно выражено в постцентральных отведениях (рис. 16.2, Л).

349

Рис. 16.1. ЭВП, усредненные от момента предъявления вспышки света высокой интенсивности (0.26 Дж), N = 30

Испытуемые должны были как можно быстрее нажимать на кнопку при предъявлении вспышки света. А — Сz Оz (отведения ЭЭГ); 1 — распределение ЛП начала активации mm. thenar, Б — соотношение компонентов ЭВП с накопленной ЭМГ-активностыо (2). Момент предъявления вспышки отмечен вертикальной линией

16.3.3. Соматосенсорные вызванные потенциалы

Соматосенсорные вызванные потенциалы (ССВП; somatosensory evoked potentials, SEP) [Шагас, 1975; Рутман, 1979; Rockstroh et al., 1982] регистрируются в ситуации механической или электрической черезкожной стимуляции периферических нервов. Колебания устойчивой конфигурации регистрируются со скальпа, начиная с P15. Колебания N20, Р20, Р25 и Р45 максимально выражены в контралатеральном нанесенному раздражению полушарии (поля 1 и 3). Развитие колебания N55 связывают преимущественно с активностью в постцентральной извилине. Колебания с ЛП более 50 мс представлены слева и справа, комплекс колебаний сложной конфигурации с ЛП более 100 мс (включая Р300) проявляется преимущественно в центральных и париетоокципитальных отведениях [ Rockstroh etal„ 1982].

Рис. 16.2. Потенциалы, усредненные от предъявляемых сигналов

ССП зарегистрированы в ситуации обнаружения светового порогового сигнала. Серию вспышек нарастающей интенсивности (от 10-5 до 10-2 нт) предъявляли после предупреждающего сигнала. Испытуемый должен был нажимать кнопку после первой из обнаруженных вспышек. Регистрировали семь отведений ЭЭГ, ЭОГ, ЭМГ и механограмму нажатия кнопки.

На каждом фрагменте рисунка представлены: усредненый потенциал (для одного испытуемого), основные компоненты обозначены арабскими цифрами (справа); распределение средних значений амплитуд соответствующих компонентов потенциала по разным отведениям (для группы испытуемых) (слева). А — СВП, усредненный от звукового тона (60 дБ, указан стрелкой), отведение Р3 N = 30. Под потенциалом отмечен интервал наиболее вероятного появления (95 % событий) микронажатий и саккадических движений глаз; Б — ЭВП, усредненный от момента обнаруженной вспышки света (черный треугольник), отведение О2, N = 116. Под потенциалом отмечен интервал наиболее вероятного начала нажатия на кнопку (95 % событий); В — ЗВП, усредненный от необнаруженных вспышек света (белый треугольник), отведение О1 N= 101. Внизу отмечен интервал наиболее вероятного появления (95 % событий) микронажатий и саккадических движений глаз

351

16.3.4. Потенциалы, связанные с выполнением движений

Потенциалы, связанные с выполнением движений (ПСВД, movement-related potentials MRP, movement-related brain potentials MRBP; в русскоязычной литературе используют неточный термин «моторные вызванные потенциалы — МВП»). К этой группе феноменов, впервые описанных Н. Н. Kornhuber и L. Deecke (см. [Rockstroh et al., 1982; Deecke et al., 1984; Иванова, 1991]), относят потенциалы, которые выделяются усреднением от начала быстрых произвольных движений, определяемых по ЭМГ или механограмме (рис. 16.3, А). На интервале около 1 с до начала движения развивается медленное негативное отклонение — потенциал готовности (Bereitschaftpotential, BP, readiness potential), в первые 500 мс представленный билатерально-симметрично в прецентральных и париетальных отведениях, а в следующие 500 мс лучше выраженный в центральных отведениях, контралатеральных движущейся части тела. Потенциал готовности завершается приблизительно за 150 мс до начала движения коротким позитивным колебанием (премоторная, или преддвигательная, позитивность — ПМП, promotion positivity — РМР). Распределение амплитуд ПМП по скальпу характеризуется высокой межиндивидуальной вариативностью. Последующая негативность (моторный потенциал, МП, motor potential — МР) совпадает во времени с началом движения и максимально выражена в центральных или прецентральных областях, контралатеральных движущейся части тела. После МП развивается позитивная волна, называемая потенциалом реафферентации (reafferent potential, response after potential, RAP). Характерная для баллистических движений конфигурация ССП может изменяться так, что при выполнении плавных, длительных и медленных движений регистрируются ССП с небольшой амплитудой колебаний (рис. 16.3, Б).

16.3.5. Условная негативная волна

Условная негативная волна (УНВ, contingent negative variation CNV, или волна ожидания, expectancy wave E-wave). В ситуации предъявления двух стимулов, первый из которых служит предупреждающим, а второй — императивным (т. е. сигналом к началу заданного инструкцией действия), в интервале между ними наблюдается медленное негативное отклонение потенциала. Впервые этот феномен был описан в экспериментах на кроликах В. С. Русиновым в 1962 г., а в 1964 г. зарегистрирован у человека Греем Уолтером (см. [Кануников, 1980]). Негативная волна начинается приблизительно через 400 мс после предупреждающего сигнала и завершается высокоамплитудной позитивностью после императивного сигнала. При коротком интервале между предупреждающим и императивным стимулами УНВ представляет собой унитарное медленное колебание, в котором при увеличении интервала между стимулами выделяют два компонента: О-компонент, про-

352

являющий связь с ориентировочным компонентом активности, более выраженный во фронтальных отведениях, и Е-компонент, связанный с готовностью к действию и выраженный преимущественно в центральных и постцентральных областях (рис. 16.4, Л).

Рис. 16.3. Потенциалы, связанные по времени с двигательной активностью:

А — ПСВД, усредненные от начала ЭМГ-активаиий (черный кружок) при нажатии на кнопку после обнаруженной вспышки света, отведение О1, N = 101, внизу отмечен размах распределения окончаний движения; Б — ПСВД, усредненные от начала микронажатий: первых после звукового тона (белый кружок), отведение Р3, N=15 (вверху); на этапе наблюдения (перечеркнутый кружок), отведение F3 N=33 (внизу); В — лямбда-потенциалы, усредненные от начала саккадических движений глаз: от первых после звукового тона (белый кружок), отведение F4 N= 17 (вверху); на этапе наблюдения (перечеркнутый кружок), отведение О2, N= 14 (внизу). Под каждым потенциалом на Б и В показаны распределения окончаний движений. Остальные обозначения см. на рис. 16.2

353

Рис. 16.4. Потенциалы, связанные с задачей обнаружения:

А — фрагменты УНВ, усредненные от предупреждающего сигнала (стрелка) и императивного сигнала (черный треугольник), отведение F3 N = 22; Б потенциалы, связанные с обнаружением сигнала (черный треугольник — обнаруженная, белый треугольник — необнаруженная вспышка света), отведение О1, N= 45. Остальные обозначения см. на рис. 16.2

16.3.6. Колебание Р300

Колебание Р300 3; позднее позитивное колебание, late positive wave). Впервые этот феномен был описан в 1965 г. С. Саттоном (см. [Sutton, Ruchkin, 1984]) как позитивная волна, амплитуда которой зависит не от физических характеристик стимула, а от степени неопределенности, разрешаемой при его предъявлении. Для исследования Р300 наиболее часто используют ситуацию предъявления двух сигналов в случайном порядке, варьируя их вероятности (oddball paradigm). В случае привлечения внимания к более редким стимулам или при каких-либо операциях с ними, например при их счете или обнаружении, развивается волна Р300 (см. рис. 16.4, Б,

354

фрагмент 4). Колебание Р300 имеет сложную структуру. В нем выделяют компоненты Р3a и Р3b. Вопреки точному наименованию, к этому классу феноменов относят позитивные колебания с ЛП от 250 до 600 мс, и даже до 1500 мс. Волна Р300 максимально выражена в центропариетальных отведениях [Pritchard, 1981; Rockstroh et al„ 1982; Sutton, Ruchkin, 1984; Aleksandrov, Maksimova, 1985].

16.3.7. Принципы упорядочения феноменологии ССП

Перечень известных типов ССП постоянно пополняется, и нет оснований считать его близким к завершению [Donchin, Isreal, 1980]. Приведем в качестве примеров наиболее известные феномены: N200, связанный с некоторыми аспектами процесса распознавания; N400 — с семантическим рассогласованием; Na — с распознаванием паттерна; nd с определением канала, по которому поступает обрабатываемый сигнал; MMN — негативность, связанная с рассогласованием; негативный потенциал направленного внимания, связанный с предвосхищением изменения направления движения сигнала при выполнении задачи слежения; финальный потенциал (низкоамплитудная позитивость и последующая медленная негативность, связанные с окончанием произвольного движения); лямбда-потенциал (lambda-potential) — комплекс колебаний, связанный с саккадическими движениями глаз (см. рис. 16.3, В); ССП, связанные с обнаружением сигнала (см. рис. 16.4, Б); ССП, связанные с целенаправленными движениями и др. [Cooper et al., 1977; Yagi, 1979; Deecke et al., 1984; Ritter et al., 1984; Максимова, Александров, 1987; Иванова, 19916; Naatanen et al., 1993].

Предполагается, что чем больше будет известно различных типов потенциалов, тем более подробно можно будет описывать активность мозга в поведении [Sutton, Ruchkin, 1984]. При этом одной из самых важных задач становится упорядочение феноменологии потенциалов, т. е. построение классификации, определяющей как соотношение между уже известными типами ССП, так и место для новых феноменов.

В настоящее время общепринятой классификации ССП не существует. Можно выделить несколько принципов упорядочения феноменологии СПП, использующихся исследователями.

По мнению Б. Рокстроха [Rockstroh et al., 1982], наиболее общим и исходным является разделение ССП на экзогенные и эндогенные. К экзогенным относятся колебания ССП с ЛП менее 100 мс, модально-специфичным распределением амплитуд по скальпу, высокой интра- и интериндивидуальной стабильностью характеристик и зависимостью параметров от физических характеристик стимула (ср. ЭВП, зарегистрированные при различной интенсивности вспышек света, на рис. 16.1 и на рис. 16.2 Б и В). Для эндогенных ССП характерны: ЛП более 100 мс, широкое модально-неспецифичное распределение амплитуд по поверхности головы, независимость характеристик ССП от физических свойств события, их вызвавшего, связь параметров ССП с задачей, которую выполняет испытуемый, а также с его психологическим состоянием.

Из этого же принципа исходили Р. Наатанен и П. Т. Мичи [Naatanen, Michie, 1979], которые построили классификацию эндогенных негативностей: потенциала

355

готовности, О- и Е-компонентов УНВ, негативности связанной с речью, продолжительного негативного сдвига (sustained-negative shift), негативности, связанной с рассогласованием (mismatch negativity, MMN), и многих других феноменов. Классификация построена на нескольких категориях признаков — на характеристиках ситуаций, в которых феномены выявляются, а также на психических функциях, вовлекающихся в решение задачи. Некоторые феномены не вошли в классификацию (негативность, связанная с речью), а некоторые (О-компонент УНВ) — оказались принадлежащими к двум ее классам одновременно.

Принцип деления потенциалов на экзогенные и эндогенные, а также связанное с ним деление на поздние и ранние, специфические и неспецифические является весьма условным и не согласуется с результатами нескольких направлений исследований. Экспериментально показана зависимость параметров ранних компонентов ВП от характеристик поведения [Швырков, 1978; Максимова, 1982; Desmedt, 1984]. Установлена зависимость от уровня бодрствования и состояния внимания для волн слухового потенциала ствола мозга с ЛП менее 10 мс [Hughes, 1985]. В то же время известна зависимость характеристик поздних компонентов ВП от физических характеристик стимуляции (например, амплитуды, топографии и ЛП Р300 от модальности и интенсивности стимула) [Рутман, 1979; Pritchard, 1981].

Широко распространенная классификация Г. Воэна [Vaughan, 1969] перечисляет: сенсорные вызванные потенциалы (ЗВП, СВП, ССВП), которые по времени связаны с предъявлением стимулов; потенциалы, связанные с подготовкой и выполнением движений (ПСВД); потенциалы с продолжительными латентными периодами, которые связаны со «сложными психологическими явлениями» (УНВ, р300 и др.), а также сдвиги постоянного потенциала.

Итак, в современных исследованиях сосуществуют несколько несовпадающих друг с другом, неполных и внутренне противоречивых классификаций ССП. Это приводит к тому, что остаются неопределенными отношения между уже известными ССП. Принятые способы упорядочения феноменологии ССП по существу представляют собой не классификации, а лишь перечисления, каталоги феноменов [Donchin, Isreal, 1980; Rockstroh et al., 1982].

Очевидно, что система классификации ССП, количество классов и соотношения между ними зависят от общего представления о том, какие процессы, лежащие в основе поведения, отражаются в ССП.

16.4. ПРОБЛЕМА ФУНКЦИОНАЛЬНОГО ЗНАЧЕНИЯ ССП

 

В рамках коррелятивной психофизиологии (см. [Швырков, 1995] и гл. 14) предполагается, что колебания (компоненты) ССП отражают специфические функции структур мозга, которые реализуют соответствующие психические функции, т. е. имеют определенное функциональное значение. Чтобы найти функциональное значение ССП, неоходимо установить взаимооднозначное соответствие между ССП, гипоте-

356

тическим источником — структурой мозга и реализацией определенной психической функции (процесса, поведенческого феномена).

При определении функционального значения ССП предполагается, что использование строгих процедур эксперимента и точных инструкций испытуемым предопределяет активацию определенных структур мозга и вовлечение соответствующих психических функций. При этом по топографии амплитуд колебания ССП может быть выявлена структура мозга — локальный источник этого колебания, по ЛП колебания — время, необходимое для проведения и развития нервного процесса, по полярности — наличие процесса возбуждения или торможения, интенсивность которого может проявляться в амплитуде колебания [Шагас, 1975; Рутман, 1979; Rockstroh et al., 1982].

16.4.1. Психологические корреляты

Поиски психологических коррелятов ССП показали, что: 1) один и тот же ССП связан со многими психологическими процессами (функциями) и 2) одни и те же психические функции оказываются связанными с разными ССП. Например, амплитуда, ЛП и топография Р300 связаны с принятием решения, ожиданием, ориентировочной реакцией, значимостью стимула, степенью субъективной уверенности, процессом сравнения, рассогласованием, осознаванием и неосознаваемыми процессами, а также характеристиками эпизодической памяти. В то же время процесс внимания оказывает влияние на характеристики ранних и поздних компонентов ВП, рзд), УНВ и потенциала готовности [Шагас, 1975; Рутман, 1979; Pritchard, 1981; Rockstroh et al., 1982; Psychophysiol. Brain Research, 1990; Rohrbaugh et al., 1990; Event-Related, 1991]. Следует заметить,что многозначность связей ССП с психологическими и поведенческими переменными вопреки исходным предположениям о функциональном значении ССП оказалась узаконенной в исследовательской практике как основной многократно подтвержденный факт. Правила публикаций исследований ССП требуют детальнейшего описания ситуации эксперимента и состояния испытуемого, включая его принадлежность к какой-либо социальной группе, степень заинтересованности, атмосферное давление и температуру воздуха и т. п. [Donchin et al., 1977].

16.4.2. Мозговые источники

Поиски мозговых источников ССП показали следующее: 1) любое колебание ССП, регистрируемое с поверхности головы, представляет собой отражение активности

357

множества корковых и подкорковых структур; 2) разным типам ССП соответствуют перекрывающиеся наборы активных областей мозга [Squires et al., 1983; Wood et al., 1984; Илюхина, 1977; Иванова, 1991].

Продемонстрирована тесная, но непостоянная связь между корковыми и подкорковыми эквивалентами поверхностных ССП, например показана несинхронность, инверсия полярности и непостоянство локализации подкорковых эквивалентов УНВ в повторных пробах [Илюхина, 1977].

Попытки уточнить локализацию источников ССП, применяя регистрацию активности отдельных нейронов, продемонстрировали, что любому колебанию ССП, сопровождающему поведение, соответствуют активации нейронов в большом количестве разных структур мозга [Швырков, 1978, 1995] (см. гл. 14). Не удалось выявить и точного соответствия между полярностью волн ССП и количеством активирующихся нейронов [Думенко, 1979; Максимова, Александров, 1987].

Основной результат поиска функционального значения состоит в том, что каждое колебание или компонент ССП: 1) является электрическим проявлением одновременной активности множества мозговых структур и 2) может быть поставлен в соответствие множеству психологических феноменов, функций и процессов. Этот факт находится в очевидном противоречии с исходной гипотезой о взаимооднозначном соответствии активности определенной структуры мозга и определенного психологического (поведенческого) явления. Поскольку проблема функционального значения ССП не решена, принцип классификации феноменологии ССП в коррелятивной психофизиологии остается неопределенным (см. параграф 3).

Можно предположить, что многозначность связей ССП с активностью мозга и с психологическими переменными представляет собой не непосредственное следствие несовершенства методов исследования активности мозга или нечеткости психологической терминологии [Donchin, Isreal, 1980], а является важным, надежно подтвержденным экспериментальным фактом. Этот факт не получил непротиворечивого объяснения в рамках морфофункциональных представлений об организации поведения, поскольку искомое взамиооднозначное соответствие структур и функций составляет один из исходных постулатов этого подхода.

16.5. ССП КАК ОТРАЖЕНИЕ ДИНАМИКИ ИНДИВИДУАЛЬНОГО ОПЫТА

ССП представляют собой суммарный электрический потенциал различных компонентов ткани мозга, вклад в который вносят нейроны (сома, дендриты и аксо-

358

ны), глиальные клетки, мембраны клеточных органелл (например, митохондрий), элементы гематоэнцефалического барьера, кровеносные сосуды, динамика электролитов межклеточных жидкостей и т. д. [Rockstroh et al., 1982]. Процессы, отражающие в ССП, в том числе и динамика активности нейронов, согласованы в рамках поведения, рассматриваемого в системной психофизиологии как взаимоотношение целостного организма со средой [Швырков, 1978,1995] (см. гл. 14). Следовательно, феноменология ССП детерминирована динамикой компонентов структуры индивидуального опыта субъекта, которая лежит в основе поведения. Под компонентами структуры индивидуального опыта понимаются единицы опыта (см. гл. 14), а также их объединения и взаимоотношения между ними.

Компоненты структуры опыта представлены группами нейронов различных структур мозга, специализированными относительно систем поведенческих актов. Активность этих нейронов обеспечивается согласованным метаболизмом тканей мозга. Именно поэтому ССП отражают динамику активации групп нейронов, соответствующих компонентам опыта. Специфика актов поведения, которые осуществляются для достижения результатов, удовлетворяющих потребности субъекта, определяется составом актуализированных компонентов опыта, поэтому в параметрах ССП, сопровождающих поведенческие акты, отражаются разнообразные психологические характеристики реализующегося поведения. Эта гипотеза о соотношении ССП и процессов, лежащих в основе поведения, объясняет экспериментально показанную связь ССП с одновременной активностью многих областей мозга, а также с различными проявлениями и психологическими описаниями поведения. Заметим, что приведенные положения соответствуют фундаментальному принципу неразделимости целостного поведения на изолированные «сенсорные», «моторные», «эмоциональные», «мотивационные» и другие составляющие [Швырков, 1978, 1995]. Например, отказ от регистрации двигательной активности при изучении ЗВП лишь сужает возможности исследования, но не отменяет неустранимую двигательную активность субъекта.

Взаимодействие субъекта с окружающей средой осуществляется как последовательность поведенческих актов. Хотя специфика поведенческого акта определяется конкретным набором актуализированных компонентов опыта и их взаимоотношениями, последовательность изменений состава компонентов опыта на протяжении каждого акта обладает общими чертами для разных поведенческих актов, независимо от их содержания [Максимова, Александров, 1987; Александров и др., 1997].

16.5.1. Потенциал универсальной конфигурации

Сопоставление ССП, сопровождающих поведение испытуемых в различных экспериментальных ситуациях, показывает, что реализации и смене поведенческого акта соответствует потенциал универсальной конфигурации (см. рис. 16.4, А). Основными составляющими этого потенциала являются позитивно-

359

негативный комплекс, наблюдающийся в начале реализации акта, следующая за ним медленная позитивность, за которой развивается негативная волна, сопровождающая реализацию акта, а затем — негативно-позитивный комплекс, соответствующий переходу к следующему акту. Начальные фрагменты универсального потенциала более ярко выражены во фронтальных и центральных, а завершающие — в париетоокципитальных отведениях.

Потенциал универсальной конфигурации устойчиво воспроизводится в ситуации обнаружения зрительных, слуховых и тактильных сигналов, в стратегической игре с партнером, при обнаружении движущихся объектов, исполнении партии на музыкальных инструментах, в различных ситуациях, используемых для исследования УНВ, ПСВД и сложных навыков, в ситуации вероятностного прогнозирования, у человека и у животных различных видов [Александров, 1985; Aleksandrov, Maksimova, 1985; Максимова, Александров, 1987; Александров и др., 1997].

Негативная волна потенциала универсальной конфигурации, сопровождающая реализацию поведенческого акта, разделена на фрагменты низкоамплитудными позитивностями, которые соответствуют во времени движениям (например, пальца и/или глаз; см. рис. 16.3, Б и В). Для различных экспериментальных парадигм, например при регистрации ЗВП в ситуации простого времени реакции (см. рис. 16.1, Б), СВП и ЗВП в ситуации обнаружения (см. рис. 16.2, А, Б, В) характерно совпадение во времени позитивных колебаний потенциала и начала движений испытуемых [Максимова, 1982; Максимова, Александров, 1987]. Это продемонстрировано также в экспериментах на животных [Александров, 1985].

Сопоставление основных составляющих потенциала универсальной конфигурации с динамикой актуализации компонентов структуры опыта, установленной при исследовании активности корковых нейронов, которые специализированы относительно систем определенных поведенческих актов, показало (рис. 16.5), что конфигурация ССП отражает необходимые этапы преобразования наборов компонентов опыта в процессе реализации поведения: позитивизация — уменьшение специфичности набора (см. рис. 16.5, фрагменты 2 и З), а негативизация — увеличение специфичности набора компонентов опыта по отношению к достигаемому результату поведения (см. рис. 16.5, фрагмент 4). Амплитуда колебаний отражает объем изменений наборов компонентов опыта, крутизна фронтов и длительность колебаний — скорость этих изменений, а особенности их топографии — соотношения количеств нейронов, представляющих различные компоненты структуры опыта, в разных структурах мозга [Aleksandrov, Maksimova, 1985; Максимова, Александров, 1987; Александров и др., 1997]. С этой точки зрения связь позитивных колебаний с двигательной активностью отражает изменение состава набора актуализированных элементов опыта, которое лежит в основе перехода от одного этапа поведения к другому.

360

16.5.2. Основания классификации ССП

Различные типы ССП представляют собой не специфические феномены [Швырков, 1978], а фрагменты или варианты анализа потенциала универсальной конфигурации в соответствии с различными аспектами описания поведения и событиями во взаимоотношениях субъекта с внешней средой. В соответствии с тем или иным аспектом анализа один и тот же фрагмент потенциала универсальной конфигурации, зарегистрированный в ситуации обнаружения сигнала, может быть отнесен к разным типам ССП. Например, фрагмент ССП, совпадающий по времени с завершением акта ожидания предъявления вспышки света; может быть

описан как ЗВП по отношению к вспышке света, как «негативно-позитивный комплекс, связанный с обнаружением сигнала» — по отношению к обнаруживаемому сигналу; как «комплекс Е-волна — высокоамплитудная позитивность» — по отношению к императивному значению того же сигнала (если методика предусматривает регистрацию двигательной активности, то этот комплекс может быть интерпретирован как ПСВД; ср. рис. 16.2, Б; рис. 16.3, А; рис. 16.4, А и Б) [Максимова, 1982; Максимова, Александров, 1987]. В коррелятивной психофизиологии для регистрации каждого типа потенциалов стремятся к применению «рафинированных» экспериментальных ситуаций, позволяющих, как предполагается, «изолировать» отдельные аспекты поведения и психические процессы. Приведенные данные показывают, что в ситуации, в которой не предусмотрено такого расчленения поведения, можно выделить основные типы ССП, не нарушая самых строгих критериев идентификации.

Поскольку в ССП отражается динамика актуализации индивидуального опыта, основанием для построения классификации ССП могут быть характеристики этой динамики: количество, степень актуализации и взаимоотношения компонентов структуры опыта, характерные виды и этапы трансформации их составов, а также особенности их распределения по различным областям мозга [Максимова, Александров, 1987; Александров и др., 1997].

Важно отметить, что предлагаемый подход к классификации ССП не только учитывает основные феномены, выявленные при исследованиях ССП, но, вводя их в контекст исследования поведения, позволяет дать им собственно психофизиологическую трактовку.

16.6. ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ МЕТОДА ССП

Эффективность использования ССП как метода психофизиологического исследования определяется решением основной проблемы: каково соотношение параметров ССП, активности мозга, феноменов поведения и психологических явлений.

Решение этой проблемы необходимо: 1) для построения классификации, непротиворечиво включающей известные ССП и предусматривающей места для новых ССП, т. е. классификации, которая может заменить существующие каталоги феноменов ССП, и 2) для того, чтобы по характеристикам ССП судить о скрытых для непосредственного наблюдения процессах, которые лежат в основе поведения.

Фрагменты 1,2 и 3 совмещены по моментам предъявления вспышек света (обнаруженная вспышка — черный треугольник, необнаруженная — белый треугольник). На фрагменте 4 (черный кружок — момент начала движения после обнаруженной вспышки света) подчеркнуты интервалы распределении предъявленных вспышек света.

362

Вывод, который можно сделать на основании многочисленных исследований, посвященных различным аспектам этой проблемы, состоит в многозначности связей ССП с активностью мозговых структур и феноменами поведения. Этот вывод находится в противоречии с предполагаемым в коррелятивной психофизиологии взаимооднозначным соответствием между ССП, активностью мозга и психологическими характеристиками поведения. Полагают, что разрешить это противоречие можно, уточняя психологическую терминологию, фокусируя экспериментальные процедуры на конкретных психологических процессах и разрабатывая точные методы определения

источников биоэлектрических феноменов.

Рис. 16.5. Соотношение компонентов потенциала универсальной конфигурации с характеристиками активации совокупностей нейронов, специализированных относительно последовательных этапов поведения при обнаружении сигнала у кролика:

1 — схема потенциала, ЛП и амплитуды колебаний (средние данные по 10 животным); 2— распределение начала и завершения активации корковых нейронов;

3 — распределение вероятности одновременной активации нейронов, специализированных относительно последовательных этапов поведения, которое совпадает по времени с развитием высокоамплитудной позитивной волны;

4 — распределение количества нейронов, связанных с актом ожидания предъявления сигнала при разных исходах обнаружения: либо при правильных обнаружениях, либо при ложных тревогах (количество нейронов, специфически связанных с конкретным исходом обнаружения, увеличивается на протяжении развития медленной негативной волны).

С позиций системной психофизиологии многозначность связей ССП с активностью мозговых структур и феноменами поведения представляет собой важнейший экспериментальный факт. Гипотеза о том, что характеристики ССП отражают динамику индивидуального опыта, предполагает существование связи любых феноменов ССП с одновременной активностью многих областей мозга и различными психологическими описаниями текущего поведения. В таком случае проблема соответствия параметров ССП, активности мозга, феноменов поведения и психологических явлений будет решена, если:

1) будут разработаны методики, позволяющие одновременно оценивать различные характеристики целостного поведения субъекта, и, исходя из объективного описания внешне наблюдаемого поведения, реконструировать структуру и динамику индивидуального опыта субъекта;

2) будет установлено соответствие между формальным количественным описанием структуры и динамики индивидуального опыта и психологическими описаниями текущего поведения;

3) будет установлено соотношение между активностью совокупностей нейронов с различной системной специализацией и основными параметрами динамики индивидуального опыта, учитывая принадлежность нейронов к тем или иным структурам мозга и их морфологическую специфику.

Именно с решением этих вопросов связаны перспективы использования метода ССП для психофизиологического изучения поведения в строго регламентированных парадигмах, традиционных для экспериментальной и клинической практики, а также не регламентированной экспериментатором произвольной предметной деятельности человека.

Глава 17. ДИФФЕРЕНЦИАЛЬНАЯ ПСИХОФИЗИОЛОГИЯ

17.1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ

Проблема индивидуально-психологических различий между людьми всегда рассматривалась в отечественной психологии как одна из фундаментальных. Наибольший вклад в разработку этой проблемы внесли Б. М. Теплов и В. Д. Небылицын, а также их коллеги и ученики. Подавляющее большинство работ отечественных исследователей проблемы индивидуально-психологических различий было выполнено в рамках единой методологии, интегрирующей представления об основных уровнях организации индивидуальности. Теоретическая и методологическая целостность этих работ особенно отчетливо выступала на фоне необозримого количества исследований по этой проблематике, проведенных в мировой психологии. Именно поэтому в данной главе рассматриваются главным образом работы отечественных дифференциальных психофизиологов, оказавших наибольшее влияние на развитие теоретических и методологических оснований психологии индивидуальных различий.

В качестве теоретической основы исследований в дифференциальной психофизиологии выступала концепция свойств нервной системы, разработанная И. П. Павловым. Данная концепция была подвергнута анализу рядом авторов как в нашей стране, так и за рубежом [Biological bases of individ. differ., 1972; Русалов, 1979; Mangan, 1982; Strelau, 1983]. Рассмотрим некоторые наи-

364

более существенные аспекты этой концепции, которые важны для понимания развития исследований в области индивидуально-психологических различий.

Главным аспектом концепции свойств нервной системы в том виде, в каком она была представлена И. П. Павловым, является то, что они не могут рассматриваться как эндогенная часть павловской теории высшей нервной деятельности (ВНД). Индивидуальные особенности организации поведения могли быть объяснены в рамках теории ВНД И. П. Павлова путем анализа индивидуальной истории функциональных межрефлекторных взаимоотношений. Однако вместо этого было введено и использовано понятие элементарных характеристик нервной ткани (клеток), экзогенных по отношению к сущности организации поведения. Это очень четко было определено И. П. Павловым для силы нервной системы — базового свойства в его классификации. И.П. Павлов предположил, что сила нервной системы непосредственно связана с индивидуальным уровнем содержания гипотетического «возбудимого вещества». Так, понятие свойства нервной системы было интерпретировано в терминах нейрофизиологической (нейрохимической) характеристики, относительно независимой от высших механизмов функционирования нервной системы (по Павлову — механизмов условных рефлексов).

Данная особенность концепции свойств нервной системы сделала возможным использование ее объяснительной силы при рассмотрении проблемы индивидуально-психологических различий (несмотря на изменения в представлениях об организации поведения). Главное назначение концепции свойств нервной системы состояло в том, что она должна была объяснить интериндивидуальные вариации в динамике поведения, но не его механизмы.

Другая немаловажная особенность концепции свойств нервной системы состояла в их чисто дименсиональной природе. Свойства нервной системы могли быть соотнесены с любым измеримым (непрерывным или дискретным) индивидуальным параметром, а не только с некоторыми типами поведения (например, с павловскими типами). Концепция свойств нервной системы сыграла решающую роль в развитии исследований индивидуально-психологических особенностей поведения, несмотря на существенные различия в теоретических и методологических основах для его анализа, разработанных разными авторами.

Упрощая до некоторой степени особенности различных теоретических схем, можно выделить, по крайней мере, три основных класса подходов к исследованию индивидуально-психологических различий. Первый класс исходит из моделей мозга (нервной системы). Подход Б. М. Теплова и В. Д. Небылицына принадлежит (главным образом) к этому первому классу. Второй класс исходит из моделей

365

поведения. Исследования П. В. Симонова, а также выполненные в последние годы работы В. М. Русалова могут быть отнесены к этому классу. Наконец, третий класс относится к моделям человека. К данному классу принадлежат исследования В. С. Мерлина. Безусловно, необходимо принимать во внимание то, что эти три класса подходов к исследованию индивидуально-психологических различий тесно взаимодействуют. Однако является обоснованной дифференциация этих трех классов подходов для лучшего понимания сущности исследований, проводимых различными группами ученых и школами в отечественной психологии индивидуальных различий.

Наиболее развитая отечественная школа дифференциальной психофизиологии была основана Б. М. Тепловым и В. Д. Небылицыным. Сам термин «дифференциальная психофизиология» был впервые использован Небылицыным в 1963 г. для обозначения мультидисциплинарной области психологии, которая образовалась на пересечении физиологии высшей нервной деятельности (и нейрофизиологии) и дифференциальной психологии (психологии индивидуальных различий). Эта дисциплина была сфокусирована на изучении механизмов детерминации индивидуально-психологических различий (в том числе различий в темпераменте и способностях) особенностями нейродинамической организации индивидуальности. До настоящего времени представители этой школы, а также их последователи и ученики составляют наиболее влиятельную в России группу психологов, которые имеют дело с проблемой природы индивидуальных психологических различий.

Ключевой концепцией, которая использовалась почти всеми членами этой группы, являлось и является понятие свойства нервной системы. Данное понятие определяется в терминах базисных (нейрофизиологических) аспектов функционирования мозга. Это стало особенно очевидным, когда В. Д. Небылицын начал использовать электроэнцефалограмму (ЭЭГ) для диагностики свойств нервной системы. Основные усилия исследователей были направлены на анализ различных аспектов природы свойств нервной системы, а также их психологических проявлений.

Другое важное понятие, которое было использовано членами данной группы (как и другими дифференциальными психологами), касается релевантного психологического проявления свойств нервной системы. Согласно Б. М. Теплову, свойства нервной системы проявляют себя, прежде всего и преимущественно, в динамическом (или формально-динамическом) аспекте поведения (скорость, темп, напряженность, вариабельность и т. д.) и в меньшей степени обнаруживаются в содержательных аспектах деятельности (побуждения, мотивы, цели, знания и т. д.). Различие между этими аспектами поведения и деятельности впервые было определено С. Л. Рубинштейном [1946]. Согласно С. Л. Рубинштейну, темперамент — это динамическая характеристика психической деятельности личности. Теплов был полностью согласен с Рубинштейном в вопросе о динамической природе темперамента и предпосылок способностей (общих и специальных) — двух основных компонентов структуры индивидуально-психологических различий.

366

Он сформулировал предположение о том, что темперамент и задатки способностей определяются свойствами нервной системы. Б. М. Теплов предложил трехфакторную структуру темперамента, которая состоит из следующих компонентов: 1) эмоциональная возбудимость; 2) выражение эмоций; 3) общая быстрота движений [Умрихин, 1987]. При этом Б. М. Теплов отмечал, что достаточные основания для синтеза имеющегося знания относительно психодинамических и нейродинамических характеристик темперамента еще не определены. Он предупреждал о возможности ошибочного отождествления психологических характеристик и свойств нервной системы в определении темперамента.

Важный шаг в развитии исследований индивидуально-психологических различий сделал ученик Теплова — В. Д. Небылицын. Он внес значительный вклад в разработку концепции свойств нервной системы. Небылицын предложил понятие общих свойств нервной системы, которые являются детерминантами индивидуальных особенностей поведения в наиболее общих его проявлениях и чертах. Согласно гипотезе Небылицына, в качестве общих свойств нервной системы следует рассматривать физиологические параметры комплексов мозговых структур, которые имеют значение для целостной психической деятельности индивида и детерминируют проявления общеличностных характеристик индивидуальности. В качестве одной из основных он рассматривал темперамент, который (наряду с общими способностями) выступал для него одним из важнейших референтов при выделении показателей общих свойств нервной системы. Исходя из представлений Б. М. Теплова, Небылицын предложил новое, более структурированное определение темперамента. Он подчеркнул, что темперамент является важнейшим компонентом организации индивидуальности, который характеризует динамику индивидуального поведения. Небылицын различал два главных ортогональных параметра в структуре темперамента: общую активность и эмоциональность.

Общая активность, выступающая в качестве одного из внутренних условий деятельности, обусловливает «...внутреннюю потребность, тенденцию индивида к эффективному освоению внешней действительности, к самовыражению относительно внешнего мира» [Небылицын, 1976, с. 251]. Небылицын выделил три уровня (или аспекта) в этом индивидуальном измерении — моторный, интеллектуальный и социальный, — различия между которыми определяются спецификой поведенческой реализации данной тенденции. Общая активность, согласно Небылицыну, объединяет такие индивидуальные качества, которые соответствуют понятию формально-динамических особенностей личности, образующих континуум от

367

«...инертности и пассивного созерцательства... до высших степеней энергии» [Небылицын, 1976, с. 178].

Под эмоциональностью Небылицын понимал целый комплекс качеств, «...описывающих динамику возникновения, протекания и прекращения различных эмоциональных состояний» [Небылицын, 1976, с. 251]. Небылицын отмечал, что, по сравнению с другими компонентами темперамента, эмоциональность представляет собой более сложную и неоднородную структуру. Он выделял три аспекта эмоциональности: впечатлительность (эмоциональную чувствителвность), импульсивность и эмоциональную лабильность. Впечатлительность (эмоциональная чувствительность) выражает эмоциональную восприимчивость индивида, его чувствительность к эмоциогенным стимулам (или ситуациям). Импульсивность отражает, насколько легко трансформируются эмоции в побуждение (мотив) к действиям без их предварительного обдумывания. Эмоциональная лабильность характеризует скорость перехода от одного эмоционального; состояния к другому.

Обсуждая проблему физиологических основ структуры темперамента, Небылицын предположил, что индивидуальные характеристики активности как черты темперамента связаны с особенностями лобно-ретикулярного комплекса мозговых структур, тогда как параметры эмоциональности детерминируются лобно-лимбической системой мозга [Небылицын, 1976]. Принимая во внимание функциональную специфичность систем мозга, Небылицын предложил структурно-системный подход к анализу физиологических факторов человеческого поведения. Он объединил этот подход с предположением, согласно которому свойства нервной системы имеют многоуровневую организацию. Небылицын выделил два главных уровня: уровень нервных элементов (нейронов) и уровень структурных комплексов мозга.

Согласно Небылицыну, роль и проявление одного и того же свойства нервной системы на разных уровнях могут быть совершенно различными. При этом, как он отмечал, наиболее общие формально-динамические характеристики индивидуального поведения (включая свойства темперамента) связаны преимущественно с более высоким уровнем комплексов мозга. Небылицын полагал, что решающую роль в детерминации особенностей темперамента играют комплексы, ведущей составной частью которых является лобная кора. В то же время, имея в виду идеи Анохина, Небылицын отмечал, что эти комплексы не могут существовать и функционировать изолированно друг от друга и от других систем мозга [Небылицын, 1976]. Экспериментальные данные, которые были получены В. Д. Небылицыным и его коллегами (Н. И. Александровой, Т. Ф. Базылевич, Э. А. Голубевой, А. И. Крупновым, В. Д. Мозговым, В. М. Русаловым и М. В. Бодуновым) с использованием ЭЭГ-показателей, продемонстрировали не только различия между разными областями мозга, но также их сходство [Проблемы диф. психофизиол., 1974; Небылицын, 1976].

Важно отметить, что коллегами Б. М. Теплова и В. Д. Небылицына, наряду с темпераментом, были изучены также и другие целостные характеристики индивидуальности. Разрабатывая проблему опосредующего звена между физиологическими параметрами и характеристиками индивидуальности, Н. С. Лейтес предло-

368

жил структуру общих способностей, которая включает два компонента: активность и саморегуляцию [Проблемы диф. психофизиол., 1972]. Активность рассматривалась как общая часть в двух динамических структурах — темпераменте и способностях — и представляла собой наиболее общий параметр индивидуальности.

17.2. ОБЩИЕ СВОЙСТВА НЕРВНОЙ СИСТЕМЫ И ЦЕЛОСТНЫЕ ФОРМАЛЬНО-ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИНДИВИДУАЛЬНОСТИ

Для экспериментальной проверки развиваемых представлений о свойствах нервной системы и их психологических проявлениях В. Д. Небылицын провел исследование физиологических основ интеллектуальной и психомоторной активности (в сотрудничестве с А. И. Крупновым и В. Д. Мозговым). Параметры интеллектуальной и психомоторной активности оценивались при помощи простых экспериментальных показателей, которые характеризовали: 1) индивидуальный темп действий; 2) склонность индивида к разнообразию действий и 3) потребность индивида в напряженной деятельности. В этом исследовании было обнаружено, что все параметры активности (как интеллектуальной, так и психомоторной) коррелировали преимущественно с ЭЭГ-индикаторами активации в передних областях головного мозга. Таким образом, гипотеза о роли передних областей мозга в детерминации индивидуальных различий в активности была подкреплена эмпирическими данными.

Один из ближайших коллег В. Д. Небылицына, дифференциальный психофизиолог В. М. Русалов, начал свои исследования с анализа структуры телесной конституции и ее взаимоотношений с общей чувствительностью, которая оценивалась по показателям слуховых, зрительных и тактильных абсолютных порогов. Общая чувствительность рассматривалась Русаловым как формально-динамический (психодинамический) параметр индивидуальности, не относящийся к темпераменту. Он обнаружил значимые корреляции между различными показателями абсолютных порогов и выявил довольно слабые связи между чувствительностью и индикаторами соматотипа [Русалов, 1979].

В начале 1970-х гг. Русалов обратился к проблеме общих свойств нервной системы — одной из самых сложных проблем в дифференциальной психофизиологии. Как и другие представители школы Б. М. Теплова — В. Д. Небылицына, он пытался решить эту проблему путем выделения таких электрофизиологических параметров, которые коррелируют в разных областях мозга при различных видах стимуляции. Применив индексы вариабельности вызванных потенциалов (ВП), Русалов предложил индикатор стохастичности нейронных сетей в качестве общего свойства нервной системы [Русалов, 1979]. Он предположил, что данное свойство мо-369

жет быть рассмотрено в качестве основы пластичности индивидуального поведения. Экспериментальные результаты показали наличие положительной корреляции между вариабельностью ВП и пластичностью поведения при прогнозировании событий в случайной среде [Русалов, 1979].

Основываясь на идеях В. Д. Небылицына и П. К. Анохина (см. гл. 14), В. М. Русалов предложил концепцию трехуровневой структуры свойств нервной системы. В дополнение к уровням, предложенным Небылицыным (уровень нейронов и уровень комплексов структур мозга), Русалов ввел третий уровень — свойств целого мозга, отражающих функциональные параметры интеграции нервных процессов в целом мозге [Русалов, 1979]. Он отмечал, что третий уровень является наиболее важным для анализа физиологических основ индивидуальных различий в формально-динамических параметрах поведения (включая особенности темперамента и общих способностей).

Проанализировав структуру корреляций между спектральными параметрами ЭЭГ с использованием метода главных компонент, В. М. Русалов и М. В. Бодунов [1980] выделили четыре общемозговых ЭЭГ-фактора: Ф-1 — энергия медленных ритмов (дельта и тета); Ф-2 — частота медленных ритмов (дельта и тета); Ф-3 — энергия и частота быстрых ритмов (бета-2) и Ф-4 — пространственно-временная синхронизация и когерентность биоэлектрической активности мозга. Эти общемозговые ЭЭГ-факторы характеризовали, с одной стороны, особенности межцентральных отношений в коре головного мозга, а с другой — различные аспекты активации нервной системы в целом. Согласно предположению В. М. Русалова, данные общемозговые факторы рассматривались как параметры свойств нервной системы третьего уровня, играющего ведущую роль в детерминации целостных характеристик индивидуальности (включая особенности темперамента и общих способностей).

Активность как характеристика темперамента выступала в качестве основного объекта исследований М. В. Бодунова [1977а, 19776]. Эти исследования были основаны на предположении В. Д. Небылицына, согласно которому поиск физиологических детерминант интегральных характеристик индивидуальности (в том числе активности) представляет собой наиболее эффективный путь к решению проблемы интегративных параметров мозга, функционирующего как целое.

В предшествующих работах, посвященных активности, А. И. Крупновым и В. Д. Мозговым (см. [Небылицын, 1976]) были проанализированы разные уровни активности (интеллектуальной и психомоторной) изолированно друг от друга. Более того, активность рассматривалась упрощенно как синдром ряда индексов и оценивалась суммарно по совокупности характеристик скорости, разнообразию и напряженности совершаемых действий. М. В. Бодунов [1977а] высказал предположение об относительной независимости основных динамических аспектов данного параметра, обусловленной его многомерной природой. Индивидуально устойчивые особенности трех главных аспектов активности — индивидуальный темп, склонность к напряженной деятельности и тенденция к разнообразию действий — количественно оценивались при помощи специальных эксперименталь-

370

ных процедур в психомоторной и интеллектуальной сферах. Результаты анализа взаимосвязей между индексами активности при помощи метода главных кампонент (Varimax-вращение) показали относительную независимость основных аспектов активности. Были выявлены следующие факторы динамической стороны интеллектуальной активности: скоростной, лежащий в основе индивидуального темпа умственной деятельности; эргический (от греческого работа), характеризующий склонность к напряженной деятельности, и вариационный, проявляющийся в тенденции к разнообразию и новизне. В психомоторной активности было выделено два фактора — скоростной и эргический. В целом результаты показали, что выявленные факторы активности являются устойчивыми, линейно независимыми измерениями активности как характеристики темперамента [Бодунов, 1977а]. Показатели выделенных факторов активности были сопоставлены с общемозговыми ЭЭГ-параметрами, отражающими различные аспекты активации нервной системы, а также особенности пространственно-временной синхронизации ЭЭГ-процессов в разных областях мозга. Было обнаружено, что индикаторы скоростного аспекта интеллектуальной активности (как и некоторые сложные психомоторные показатели, например скорость письма) положительно коррелируют с фактором пространственно-временной синхронизации ЭЭГ-процессов в разных областях мозга (Ф-4). Эргический аспект интеллектуальной и психомоторной активности отрицательно коррелировал с энергией медленных ритмов ЭЭГ (Ф-1). Скоростной аспект психомоторной активности был негативно связан с частотой медленных ритмов ЭЭГ (Ф-3). Наконец, вариационный аспект активности (пластичность поведения) обнаружил положительную корреляцию с частотой медленных ритмов ЭЭГ [Бодунов, 19776].

Результаты позволили сделать вывод о том, что общие факторы ЭЭГ отражают существенные параметры интегративной деятельности мозга, которые оказывают влияние на особенности проявления активности как важнейшей характеристики индивидуальности. На основе допущения, согласно которому межличностная изменчивость целостных свойств индивидуальности (включая активность как компонент темперамента и общих способностей) преимущественно определяется фундаментальными характеристиками функционирования головного мозга, выделенные ЭЭГ-факторы были рассмотрены как индикаторы гипотетических общих свойств нервной системы в целом.

Проблема взаимоотношений между формально-динамическими аспектами активности как свойства темперамента и индивидуального уровня активации как одного из общих свойств нервной системы была проанализирована в исследованиях Н. С. Лейтеса, Э. А. Голубевой и Б. Р. Кадырова. Свойство активации нервной системы оценивалось при помощи двух показателей: частоты альфа-ритма и энергии вторых гармоник

371

в реакции навязывания ритма на частоте 6 Гц при световой стимуляции. Для измерения динамических характеристик умственной активности были использованы специальные экспериментальные процедуры. Была выявлена тесная взаимосвязь между параметрами умственной активности, с одной стороны, и показателями активации нервной системы, с другой. Для всех параметров активности более высокие значения были обнаружены в группе испытуемых с высокими оценками индикаторов активации нервной системы. В то же время было обнаружено, что низко активированная группа испытуемых характеризовалась более высоким уровнем интеллектуальной активности, чем группа испытуемых с промежуточными значениями уровня активации. Было высказано предположение о том, что низкая активированность нервной системы может приводить к компенсаторному повышению уровня активности как характеристики индивидуальности [Кадыров, 1976; Психофизиол. исслед. интеллект, саморегул, и активности. 1980].

Исследование активности получило дальнейшее развитие в работах А. И. Крупнова и его коллег [Психология и психофизиология, 1985,1986]. Крупнов был первым среди отечественных дифференциальных психофизиологов, кто включил в анализ коммуникативный аспект активности (наряду с интеллектуальным и психомоторным аспектами). Используя специально разработанную программу наблюдения за социальным поведением испытуемого, Крупнов смог оценить проявления коммуникативной активности по следующим показателям: потребность в социальных контактах, коммуникативная инициатива, устойчивость социальных контактов и количества партнеров в социальном поведении. Было обнаружено, что все индексы (кроме устойчивости социальных контактов) коррелировали друг с другом. Крупнов высказал предположение, согласно которому устойчивость общения (стабильность социальных контактов) более тесно связана с содержательным аспектом активности, чем с ее динамическим аспектом.

Факторный анализ корреляций между интеллектуальными, психомоторными и коммуникативными индикаторами активности не выявил факторов, объединяющих показатели разных сфер — т. е. три сферы проявления активности формировали самостоятельные группы признаков. Крупнов пришел к выводу о том, что три аспекта проявления активности (психомоторный, интеллектуальный и коммуникативный) являются относительно независимыми друг от друга. Их совместное действие обеспечивает оптимальный уровень взаимодействия индивида с окружающей его средой.

Кроме того, А. И. Крупнов внес также вклад в разработку проблемы отношений между параметрами активности и эмоциональности. В отечественной психологической литературе имелись две гипотезы относительно их взаимосвязей. Первая была предложена В. Д. Небылицыным. Он полагал, что активность и эмоциональность — это независимые параметры в структуре темперамента. Вторая была сформулирована А. Е. Ольшанниковой, которая считала, что эти параметры темперамента взаимодействуют друг с другом. А. И. Крупнов использовал методы оценки особенностей эмоциональности, которые были разработаны А. Е. Ольшанниковой и ее коллегами [Ольшанникова, Рабинович, 1974]. Эти методы позволяли оценивать проявление трех основных эмоций: гнева, радости и страха. Наибольшее количество значимых корреляций было обнаружено, с одной стороны, между

372

параметрами активности в разных сферах, а с другой — между параметрами интенсивности эмоции радости. При этом выраженность данной эмоции отрицательно коррелировала с параметрами психомоторной активности и положительно — с некоторыми индикаторами коммуникативной активности. Динамические характеристики интеллектуальной активности коррелировали с интенсивностью эмоции радости положительно в случае индикаторов интенсивности интеллектуальных операций и отрицательно — в случае вариативности интеллектуальных действий. Преобладание эмоции страха коррелировало отрицательно с индикаторами коммуникативной активности и положительно — с вариабельностью психомоторных и интеллектуальных операций. Схожие результаты были получены в случае эмоции гнева. В целом результаты продемонстрировали существование тесных и довольно сложных взаимоотношений между формальными характеристиками паттерна основных эмоций и проявлениями активности как свойства темперамента [Психология и психофизиология, 1985].

17.3. ИНТЕГРАЛЬНАЯ ИНДИВИДУАЛЬНОСТЬ И ЕЕ СТРУКТУРА

Подход, который разрабатывался В. С. Мерлиным, составил основу развития оригинальной школы по изучению природы темперамента. Исходные положения, на которых базировался данный подход, были весьма близки к теоретическим позициям группы Теплова—Небылицына: обе школы в качестве центральной рассматривали проблему влияния свойств нервной системы (и ее типов) на индивидуально-психологические различия между людьми. Однако психологические проблемы описания и диагностики темперамента со временем начали преобладать в работах Мерлина и его коллег. Нужно отметить, что группа Мерлина не находилась в оппозиции к школе Теплова—Небылицына. Напротив, эти две школы взаимно дополняли друг друга. При этом следует признать, что линия исследований, проводимых в школе Теплова—Небылицына, может рассматриваться как более фундаментальная, поскольку она ориентирована на исследование свойств нервной системы, выступающих в качестве важнейших детерминант формально-динамических особенностей поведения человека (включая его темперамент).

Подобно Б. М. Теплову и В. Д. Небылицыну, В. С. Мерлин рассматривал темперамент как структуру, относящуюся к формально-динамическому аспекту индивидуального поведения, относительно независимому от его содержательного аспекта. Однако в отличие от представителей школы Теплова—Небылицына, Мерлин сосредоточил внимание не на отдельных измерениях темперамента, а на целых комплексах его свойств. Сравнивая свою концепцию с идиографическим подходом к исследованию личности Мерлин [1977, 1986] определял эту концепцию как «интегральную теорию индивидуальности», подчеркивая таким образом,

373

что понятие индивидуальности интегрирует в себе всю совокупность свойств человека.

Основываясь на принципах системного анализа, Мерлин различал следующие уровни в структуре индивидуальности: 1) биохимический; 2) соматический; 3) нейродинамический (свойства нервной системы); 4) психодинамический (темперамент); 5) свойства личности; 6) социальные роли. Структура этих уровней и взаимоотношения между ними составили главный предмет исследований Мерлина и его коллег. Это представляет собой главное основание, которое позволило нам отнести подход Мерлина к классу концепций индивидуальности, базирующихся на модели человека. В случае теории индивидуальности Мерлина, такая модель включает систему разных характеристик, связанных друг с другом различными типами отношений. Мерлин полагал, что свойства и характеристики разных уровней связаны друг с другом посредством много-многозначных отношений, т. е. свойство одного уровня может быть связано со многими свойствами другого уровня, и наоборот.

В структуре темперамента Мерлин различал следующие ортогональные измерения: 1) экстраверсию; 2) психодинамическую тревожность; 3) реактивность; 4) импульсивность; 5) активность; 6) эмоциональную устойчивость; 7) эмоциональную возбудимость и 8) ригидность. Мерлин и его коллеги разработали серию экспериментальных процедур для оценивания этих характеристик темперамента [Мерлин, 1986].

Взаимоотношения между перечисленными ранее измерениями темперамента с использованием различных моделей связей были изучены В. В. Белоусом — учеником и коллегой В. С. Мерлина. В. В. Белоус выявил криволинейную (U-образную) связь между многими измерениями темперамента (например, между эмоциональной возбудимостью и экстраверсией, а также между эмоциональной возбудимостью и ригидностью) [Мерлин, 1977, 1978; Белоус, 1981]. В. В. Белоус данный тип взаимосвязи между характеристиками темперамента обозначил термином «инвариант». Он полагал, что этот тип взаимоотношений имеет компенсаторную природу [Белоус,1981].

17.4. ИНДИВИДУАЛЬНЫЕ ОСОБЕННОСТИ ПОВЕДЕНИЯ У ЖИВОТНЫХ

Важная тенденция, которая сформировалась в разработке проблемы природы индивидуально-психологических различий после Б. М. Теплова и В. Д. Небылицына и была основана на модели поведения, может быть представлена работами П. В. Симонова, выполненными в данной области. Главный компонент модели поведения, использованной П.В. Симоновым, был связан с разработанной им информационной теорией

374

эмоций [Симонов, 1975, 1981, 1987]. Согласно данной теории (подробно см. гл. 7), эмоция является результатом взаимодействия двух факторов: силы и качества действующей потребности (мотива) и субъективной оценки возможности (вероятности) удовлетворения этой потребности. Поведение представляет собой форму активности, которая изменяет вероятность и продолжительность контактов субъекта с внешним объектом, который может удовлетворить потребность индивида.

Симонов указывает на специфику разных структур мозга (лобной коры, гиппокампа, амигдалы и гипоталамуса) в организации поведения. Он отмечает, что особенности взаимодействия между этими структурами в процессе организации поведения могут непосредственно относиться к темпераменту [Симонов, 1981]. В своих экспериментах Симонов [1987] оценивал поведенческие индикаторы экстраверсии и нейротизма у крыс и исследовал влияние экспериментальных поражений разных структур мозга на эти индикаторы. На основе всей совокупности полученных результатов Симонов высказал предположение, согласно которому индивидуальные особенности взаимодействия между «информационной» (лобная кора—гиппокамп) и «мотивационной» (амигдала— гипоталамус) системой образуют основу для такого параметра индивидуальности, как «экстраверсия-интроверсия». Взаимоотношение между другими двумя системами (лобная кора—гипоталамус, с одной стороны, и амигдала—гиппокамп — с другой) определяет другой параметр индивидуального поведения — «нейротизм-эмоциональную устойчивость». Симонов отмечал, что в рамках разработанных им представлений павловская сила нервной системы соответствует не экстраверсии, а эмоциональной устойчивости [Симонов, 1987] (более подробно см. в гл. 7).

17.5. ИНТЕГРАЦИЯ ЗНАНИЙ ОБ ИНДИВИДУАЛЬНОСТИ

В конце 1980-х гг. с целью формирования новой стратегии исследования природы индивидуально-психологических различий между людьми В. М. Русалов разработал методику опросного типа для оценки ведущих параметров темперамента — «Опросник структуры темперамента» (ОСТ). В качестве теоретической основы данной разработки Русалов использовал концепцию системной организации деятельности мозга, предложенную П. К. Анохиным. В соответствии с этой концепцией, поведение человека, являясь результатом взаимодействия между организмом и средой, представляет собой последовательность (континуум) поведенческих актов. Каждый такой акт организуется и осуществляется как система, состоящая из четырех блоков: 1) афферентный синтез; 2) принятие решения (формирование программы и акцептора результата

375

действия); 3) реализация действия и 4) обратная связь, обеспечивающая сличение предвиденных и реальных параметров результата. Эти блоки образуют универсальную функциональную метасистему, которая лежит в основе любого действия и поведенческого акта (подробно см. гл. 14).

Русалов предположил, что существование четырехступенчатой внутренней структуры функциональной системы действия (поведенческого акта) может обусловливать наличие четырех фундаментальных параметров формальной организации индивидуального поведения человека. Первый параметр может характеризовать широту афферентного синтеза и связан с уровнем напряженности взаимодействия организма со средой; второй параметр отражает легкость переключения с одной программы действия на другую; третий параметр индицирует скорость выполнения программы поведения и, наконец, четвертый параметр отражает порог обнаружения рассогласования между ожидаемым результатом и фактическим исходом действия. В соответствии с нашей классификацией подходов к анализу природы индивидуально-психологических различий, данный подход может быть отнесен к классу, который основан на модели поведения.

В целях операционализации четырехкомпонентной схемы Русалов высказал предположение о взаимосвязи между этими гипотетическими параметрами и устойчивыми характеристиками индивидуальности. Он использовал для этого некоторые характеристики темперамента, которые были проанализированы в работах В. Д. Небылицына, А. И. Крупнова, В. Д. Мозгового (см. [Небылицын, 1976]), Б. Р. Кадырова [1976], М. В. Бодунова [1977а, 19776] и В. М. Русалова [1979], а именно, три аспекта активности как свойства темперамента (эргичность, пластичность, темп) и эмоциональность. Русалов предположил, что скоростной аспект активности может быть связан с быстротой реализации программ поведения. Пластичность (вариабельность) как фактор активности может быть сопоставлена с гибкостью программирования действий, которая отражается в легкости переключение с одной программы поведения на другую. Эргичность может быть связана с широтой афферентного синтеза. И наконец, эмоциональная чувствительность может быть соотнесена с уровнем чувствительности к рассогласованию обратной связи.

На основе этих допущений, а также ряда эмпирических данных [Бодунов, 1977а, 19776; Русалов, 1979] Русалов сформулировал гипотезу, согласно которой четыре параметра темперамента (эргичность, пластичность, темп и эмоциональность) могут быть рассмотрены как ортогональные факторы индивидуальности. В дополнение к этому, Русалов высказал предположение о наличии специфичности проявления темперамента в зависимости от того, является деятельность предметно либо социально ориентированной.

376

Предложенная в итоге В. М. Русаловым восьмимерная структура темперамента включала следующие параметры: социальная эргичность, социальная пластичность, социальный темп, социальная эмоциональность, предметная эргичность, предметная пластичность, предметный темп и предметная эмоциональность. Эта структура была отображена в восьми шкалах «Опросника структуры темперамента». Результаты проведенных психометрических исследований [Русалов, 1989,1990а, 19906] показали, что все шкалы являются надежными (консистентными). Шкалы «Опросника...» продемонстрировали хорошо интерпретируемые корреляции со шкалами «Личностного опросника Айзенка» и «Павловского темпераментального опросника». Что касается факторной структуры ОСТ, высокий уровень корреляций между отдельными шкалами демонстрирует возможность использования меньшего количества факторов для равноценного объяснения интериндивидуальной вариации анализируемых характеристик индивидуальности.

Данные, представленные Русаловым [1989, 19906], а также Бодуновым и др. [1996] позволяют заключить, что для полного описания общей вариации достаточно 3-4 факторов. Трехкомпонентная структура включает факторы предметной активности, социальной активности и эмоциональности. В четырехкомпонентной структуре выделяется дополнительный фактор индивидуального темпа, который объединяет особенности проявления этой характристики в обеих сферах — предметной и социальной. Как отмечал В. М. Русалов [19906], трехфакторная структура полностью соответствует концепции структуры темперамента, предложенной В. Д. Небылицыным. Более строгая интерпретация может состоять в том, что три шкалы ОСТ (эргичность, пластичность и темп) трактуются как аспекты (а не факторы) активности, имеющие специфические особенности проявления в предметной и коммуникативной сферах деятельности.

17.6. КРОССКУЛЬТУРНЫЕ ИССЛЕДОВАНИЯ ИНДИВИДУАЛЬНОСТИ

В последние годы в дифференциальной психофизиологии начала применяться методология кросскультурного исследования.

Кросскультурные дифференциально-психофизиологические исследования позволяют решить две основные задачи: 1) описание специфичности психологических феноменов и/или форм поведения, обусловленной особенностями конкретной культурной среды; 2) выявление сходства и идентичности (универсальности) психологических феноменов и/или форм поведения в разных культурах. Вторая задача прямо связана с разработкой центральной для дифференциальной психофизиологии проблемы выделения природно детерминированных целостных характеристик индивидуальности.

377

Успешность создания кросскультурно эквивалентного психодиагностического инструментария зависит от того, учитываются ли соотношения между специфическими и универсальными аспектами исследуемого психологического феномена. Эффективная стратегия создания психометрических процедур диагностики свойств темперамента, которая учитывает эти соотношения, была предложена Я. Стреляу и А. Англяйтнером [Strelau et al., 1990] и использовалась при разработке эквивалентной русскоязычной формы пересмотренной версии «Темпераментального опросника Стреляу» (ТОС-П) [Бодунов, Романова, 1993].

Исходным моментом этой стратегии является операционализация теоретических конструктов (свойств индивидуальности), на которые ориентированы создаваемые шкалы. Операционализация конструктов состоит в формулировании дефинитивных компонентов для каждого конструкта. Дефинитивные компоненты конструктов образуют основу для продуцирования отдельных заданий (вопросов) диагностической методики. Общий фонд вопросов для всех языковых версий метода должен отображать как можно более широкий спектр поведенческих актов и ситуаций, в которых могут проявляться исследуемые темпераментальные характеристики в разных культурах. Учет культурной специфики проявления этих характеристик состоит в отборе из общего фонда при помощи специально разработанных психометрических процедур [Strelau et al., 1990] тех вопросов, которые в данной культуре (языковой версии) являются наиболее репрезентативными для оцениваемых универсальных конструктов. Это означает, что в разных языковых (культурных) версиях метода количество вопросов и их содержание может быть различным. Кросскультурное сопоставление оказывается возможным благодаря концептуальной эквивалентности (универсальности) лежащих в основе теоретических конструктов и их дефинитивных компонентов. В проведенном исследовании [Бодунов, Романова, 1993] конструировалась русская версия опросника ТОС-П. Данный опросник оценивал три относительно независимых конструкта, базирующихся на концепции свойств нервной системы И. П. Павлова: силу возбуждения, силу торможения и подвижность нервной системы.

Результаты на русскоязычной популяции сопоставлялись с данными, полученными при помощи аналогичной процедуры в Германии, Польше и Южной Корее. Итоговые редуцированные версии опросника в исследуемых странах отличались как по количеству вопросов, так и по их содержанию. В среднем эти версии (при попарном сопоставлении) совпадали не более чем на 60 % по количеству идентичных вопросов. Южнокорейская версия оказалась наиболее сходной по количеству идентичных вопросов с русскоязычной версией, которая, в свою очередь, обнаружила наибольшее сходство с польской версией. Германская версия оказалась наиболее сходной с польской версией опросника. По-видимому, специфические особенности исследуемых национальных версий ТОС-П отображают градиент культурного сходства в проявлении темпераментальных характеристик у данных народов.

Проведенное сопоставление (с использованием современных методов конфирматорного факторного анализа) выделенных в разных культурах факторных структур, отображающих соотношения между конструктами, которые лежат в основе метода ТОС-П, выявило значительное сходство между ними. Данное сходство не зависело от пола и уровня образования испытуемых. Это свидетельствует о кросскультурной эквивалентности (универсальности) оцениваемых при помощи ТОС-П конструктов. Относительная независимость структуры темперамента от особенностей культуры указывает на преимущественно природную детерминацию темпераментальных характеристик индивидуальности [Бодунов, Романова, 1993].

Глава 18. ПСИХОФИЗИОЛОГИЯ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ

На границах естественных наук и психологии сформировался ряд специальных научных дисциплин и направлений, в том числе психология труда, инженерная психология и эргономика, объектом исследования которых является человек труда.

Основной задачей этих дисциплин является изучение широкого круга психофизиологических, психологических и социально-психологических свойств человека, которые проявляются в конкретной деятельности, оказывают влияние на эффективность и качество этой деятельности, определяют надежность и работоспособность человека, его психическое состояние, удовлетворенность трудом и психофизиологические ресурсы. В связи с постоянным изменением характера труда, насыщением его интеллектуальным содержанием и увеличением напряженности существенными направлениями гуманизации и повышения надежности труда становятся психофизиологический анализ деятельности человека, оптимизация его психофизиологических состояний, решение задач профессионального отбора и профпригодности, определение и формирование индивидуально-психофизиологических качеств человека, важных для выполнения той или иной конкретной деятельности, и оптимизация неблагоприятных психических состояний.

380

18.1. ТЕОРЕТИЧЕСКИЕ ОСНОВАНИЯ ПРИМЕНЕНИЯ ПСИХОФИЗИОЛОГИИ ДЛЯ РЕШЕНИЯ ПРАКТИЧЕСКИХ ЗАДАЧ В ПСИХОЛОГИИ ТРУДА

Пониманию необходимости и перспективности изучения психофизиологических процессов в профессиональной деятельности способствуют представления, рассматривающие психическое и физиологическое (нейрофизиологическое) в контексте отражательной функции нервной системы [Бехтерева, 1971]. С позиций деятельностного подхода психическое отражение также не существует вне «чувственной ткани», вне нейрофизиологических процессов и не реализуется без них [Леонтьев, 1981].

На современном этапе психологов и физиологов, занимающихся проблемами психологии и психофизиологии труда, объединяет понимание того, что физиологическое обеспечение психических процессов в деятельности имеет системный характер. К концепциям, в которых раскрывается системная организация физиологических процессов, относятся теория функциональной системы П. К. Анохина [ 1968], концепции установки или механизма доминанты, по А. А. Ухтомскому, отражающей «функциональный настрой» организма [1950], физиологии активности Н. А. Бернштейна [1966], динамической локализации функций А. Р. Лурии [ 1984], представления о пространственной синхронизации колебаний биопотенциалов мозга М. Н. Ливанова [1972], о структуре психологической системы деятельности Б. Ф. Ломова [1984] и В. Д. Шадрикова [1983] и др.

В соответствии с этими концепциями структурные изменения в психической деятельности на современном этапе сопоставляются уже не только и не столько с частными нейрофизиологическими процессами, а с их организацией, т. е. только через процессы «системного уровня» [Швырков, 1978] (см. гл.14). С позиций системного подхода психическое и физиологическое в обеспечении и детерминации деятельности неразрывно связаны и не могут существовать порознь, и это положение намечает, по представлениям Б. Ф. Ломова [1984, с. 357], конструктивный путь решения прикладных задач оптимизации профессиональной деятельности.

Именно такой подход характерен для работ практических психофизиологов, в которых анализ физиологических процессов используется для решения разнообразных задач, связанных с профессиональной деятельностью.

18.2. МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПСИХОФИЗИОЛОГИЧЕСКОГО АСПЕКТА ПРИКЛАДНЫХ ИССЛЕДОВАНИЙ

В прикладных исследованиях комплексный характер психофизиологических исследований обеспечивается применением полиэффекторного метода, включаю-

381

щего регистрацию частоты сердечных сокращений (ЧСС), электропневмограммы (ЭПГ), электромиограммы (ЭМГ), электроокулограммы (ЭОГ), кожно-гальванической реакции (КГР) и других параметров (см. гл. 2). Эффективность этого метода во многом зависит от того, насколько четко определены критерии оценки регистрируемых показателей, и от того, насколько адекватно используются данные параметры для решения поставленных задач.

В связи с таким количеством параметров была проведена их унификация, обобщение и систематизация приемов анализа и оценки изменений психофизиологических функций. В перечень показателей, отражающих динамику регистрируемых параметров, вошли показатели длительности, латентного периода, средних значений амплитуды и частоты реакций за определенный интервал времени, пространственно-временное распределение показателей и другие характеристики [Проблемы системн. исслед., 1986]. Постепенно исследователи перешли от желания получить информацию о как можно большом количестве показателей к отбору необходимых и достаточных характеристик, доминирующих в данном виде деятельности и в наибольшей степени связанных с ее реализацией.

18.3. ПСИХОФИЗИОЛОГИЯ ПРОФЕССИОНАЛЬНОГО ОТБОРА И ПРОФПРИГОДНОСТИ

Применение психофизиологических методов в психологии труда было вызвано необходимостью разработки объективных и количественных критериев психофизиологического отбора, которая как проблема возникла в связи с развитием техники и ее усложнением, а также появлением профессий, предъявляющих к психическим качествам и психофизиологическим возможностям работающего человека все более жесткие требования.

В отечественной психологии разработка методических приемов отбора основана на знании психофизиологической природы применяемых испытаний и определенных теоретических концепциях [Майзель и др., 1964; Геллерштейн, 1968].

В процессе профотбора процедура выявления статической картины наличных знаний, навыков и умений человека была заменена системой проверки и измерения у данного индивида его способностей к приобретению новых, специфических для данной деятельности, функций и навыков к обучению. Кроме того, в систему профотбора стали включать испытания, оценивающие индивидуально-психологические и личностные качества человека, одни из которых поддаются целенаправленному воздействию или воспитанию, а другие являются более стойкими и практически не меняются под влиянием жизненного опыта человека. Последние находятся в более тесной связи с нейрофизиологическими особенностями субъекта и поэтому были охарактеризованы как «психофизиологические качества индивидуальности». К ним можно отнести такие качества субъекта, как эмоциональная уравновешенность, самообладание, выдержка, способность к сосредоточению, психи-

382

ческая выносливость, переключаемость, объем и распределение внимания и т. п. Особенностью этих качеств «психофизиологической группы» является то, что они сами и свойства нервной системы (НС) (см. гл. 17), их определяющие, поддаются экспериментальному изучению и количественной оценке [Небылицын, 1976; Гуревич, 1978].

В число методов, используемых в задачах профотбора и определения профпригодности, принято включать методы определения основных и частных (парциальных) свойств НС и особенностей вегетативной регуляции (по параметрам пульса, дыхания и КГР).

В основу психофизиологической системы профотбора вошли такие представления, достаточно теоретически и практически проработанные, как связь силы НС с порогами ощущения, с концетрацией внимания, со спонганной отвлекаемостью и помехоустойчивостью; зависимость скорости переключения с одной деятельности на другую от подвижности нервных процессов в микроинтервалы времени; влияние на пропускную способность оператора и реакцию на предвиденные стимулы (появление периода «психической рефрактерности» и принятие логических решений) уравновешенности нервных процессов и отношения силы НС по отношению к возбуждению; связь силы НС по отношению к процессу возбуждения или к процессу торможения и таких особенностей НС, как подвижность и «уравновешенности нервных процессов» [Майзель и др., 1964].

Позже количество профессионально значимых психофизиологических свойств НС было расширено за счет включения в систему профотбора такого параметра, как «концентрируемость» нервных процессов, который определяет реакции индивида на некоторые особые ситуации, например аварийную сигнализацию («сверхсильные раздражители») при дежурстве у распределительных щитов электростанций [Гуревич, 1978]. Еще одним практически важным для профотбора и работы субъекта свойством НС является «прочность» однажды образованных связей, составляющая основу прочности запоминания.

Без включения оценки этих свойств в систему профотбора нельзя объяснить и предвидеть особенности поведения человека в различных ситуациях, так как в каждой из них к нему предъявляется набор специфических требований. Так, для экстремальных ситуаций, вызывающих состояния стресса или напряженности, роль свойств НС существенно увеличивается: решающее значение начинают приобретать врожденные свойства НС. Однако если экстремальность условии не очень нелика, то оказывается возможной компенсация недостающих качеств, впервые замеченная Е. А. Климовым [1969], но имеющая место и в других связанных с экстремальностью профессиях. Установлены факты одинаково высокой профессиональной успешности лиц с различной силой НС, а данные о формировании специфических психофизиологических приспособительных механизмов сняли вопрос о пригодности лиц со слабой НС даже для профессий водителя [Небылицын, 1976].

Определение наличия необходимых в этих ситуациях качеств может помочь индивиду не только найти пути и способы компенсации недостающих у него ка-

383

честв там, где эта компенсация необходима и возможна, но и профессинально сориентироваться. В этом авторы видели основной смысл изучения свойств НС у человека в практических целях.

В целом можно сказать, что в настоящее время исследования по психологическому отбору или профессиональной профпригодности базируются на методологических принципах системно-структурного подхода к оценке функционального соответствия компонентов системы «человек—техника—профессиональная среда», разрабатываемого в отечественной психологии и означающего применительно к данным задачам необходимость целостного познания структурной взаимосвязи — «ансамбля» профессионально значимых статистических и динамических свойств и качеств личности, параметров структуры и условий деятельности, показателей ее эффективности и надежности [Небылицын, 1976; Платонов, 1982; Ломов, 1984 и др.].

Именно результаты исследований по проблемам индивидуальности, психофизиологии благодаря работам Б. М. Теплова [1961], В. Д. Небылицына [1976], В. М.Русалова[1979],В. С. Мерлина [1986] и их учеников стали основой для дифференциальной психофизиологии профотбора и нашли широкое применение при решении основных задач психологии труда.

18.4. ПСИХОФИЗИОЛОГИЧЕСКИЕ КОМПОНЕНТЫ РАБОТОСПОСОБНОСТИ

Способность человека к выполнению конкретной деятельности в рамках заданных временных лимитов и параметров эффективности определяет содержание работоспособности как основной составляющей надежности человека. При рассмотрении работоспособности как сложного многопланового явления, для ее оценки применяется комплексный подход, при котором используются показатели, относящиеся к разным системам: показатели эффективности или продуктивности деятельности, показатели самочувствия человека и психофизиологические показатели состояния систем и функций организма, которые входят в качестве обеспечивающих и оперативных компонентов в функциональную систему деятельности. В качестве психофизиологических показателей используются преимущественно ЧСС, ЭПГ, ЭМГ,ЭОГ,КГРидр.

Только на основании совместного анализа данных по соотношению изменений в продуктивности деятельности и в психофизиологических показателях в процессе рабочего дня как для физической, так и умственной деятельности на кривой работоспособности (рис. 18.1) были выделены следующие стадии.

1. Стадия врабатывания, которая включает три подстадии:

- первичной мобилизации — наблюдается в момент начала деятельности и длится до нескольких минут. Она характеризуется кратковременным снижением значе-

384

ний практически всех показателей деятельности и активации физиологических систем. Этот эффект связан с внешним торможением, возникающим в результате изменения характера стимуляции;

-гипермобилизации — охватывает «предстартовый» период и характеризуется повышением как неспецифической активации, так и специфических сдвигов, например активизацию анализаторов, переход организма в состояние готовности к восприятию информации. На психологическом уровне происходит построение плана деятельности и мысленное «проигрывание» ее ключевых этапов. Постепенное повышение работоспособности сопровождается выраженными колебаниями продуктивности, точности, качества работы и состоянием повышенной нервно-психической напряженности: учащением пульса и дыхания, повышением кровяного давления, депрессией альфа-ритма, повышением доли тета-и бета-ритмов (см. гл. 2);

-гиперкомпенсации — происходит поиск адекватного приспособления к требованиям деятельности и формирование устойчивого динамического стереотипа деятельности. Показатели деятельности и психофизиологические показатели отличаются нестабильностью.

Рис. 18.1. Стадии работоспособности, выделенные по соотношению показателей деятельностного, психического и психофизиологического уровней функциональной системы деятельности (разделены вертикальными линиями):

1 — врабатываемость; 2 — оптимальная работоспособность; 3 — полная компенсация; 4 — неустойчивая компенсация; 5 — конечный порыв; 6 — прогрессивное снижение работоспособности; а — максимальные резервные возможности; б — эффективность работы; в — утомление; г — напряженность [Егоров, Загрядский,1973]

385

2. Стадия оптимальной работоспособности характеризуется стабильными параметрами деятельности и организма. Она определяется как «устойчивое рабочее состояние» или состояние «функционального комфорта», отражающее оптимальность психофизиологических затрат (высокая продуктивность достигается минимальными затратами). Статистически достоверных изменений в психофизиологических показателях не наблюдается.

3. Стадия полной компенсации, которая постепенно приходит на смену предыдущей и отражается в снижении работоспособности и развитии начальных признаков состояния утомления, субъективно переживаемом как состояние усталости. Компенсация утомления происходит за счет волевых усилий и активизации физиологических механизмов, что отражается в более высоких, чем в период врабатываемости, вегетативных сдвигах и развитии состояния нервно-психического напряжения.

4. Стадия неустойчивой компенсации (или выраженного утомления) характеризуется нарастающим утомлением и снижением работоспособности. В этом состоянии наблюдается выраженное чувство утомления и разнообразные по направленности и интенсивности изменения психофизиологических показателей как следствие сложного взаимодействия активационных, регуляторных и компенсаторных систем различного уровня, изменения в которых происходят неодновременно и зависят от структуры конкретной деятельности и от того, какая психическая функция испытывает большее напряжение. В этой стадии выделяются подстадии субкомпенсации — сохраняется высокая продуктивность. Компенсация возникающих трудностей осуществляется за счет менее ответственных (энергетически и функционально) процессов и, в частности, путем подключения дополнительных ресурсов.

5. Стадия «конечного порыва» — в конце работы при адекватном воздействии на мотивационно-волевую сферу, в особенности при наличии высокозначимых для субъекта целей, может происходить кратковременное повышение продуктивности за счет привлечения «неприкосновенных» психофизиологических резервов организма. Очевидно, что такой режим работы является экстремальным для организма и ведет, как правило, к переутомлению и хроническим заболеваниям.

6. Стадия декомпенсации — прогрессивное снижение работоспособности, когда быстро нарастают симптомы утомления, снижается продуктивность и эффективность работы и наблюдаются значительные сдвиги во всех психофизиологических показателях, связанных с системами активации. В этом состоянии волевые усилия уже не обеспечивают активизацию компенсаторных и защитных систем, з операторской деятельности появляются отказы и срывы, когда дальнейшее выполнение деятельности может и должно быть прекращено [Егоров, Загрядский, 1973; Платонов, 1978; Шапкин, Дикая, 1996].

Как показывают эти данные, построение кривой работоспособности для конкретного субъекта возможно только с привлечением психофизиологических измерений. Эти исследования имели исключительное практическое значение для разработки режимов труда, для оценки эффективности и надежности человека, работающего в системах «человек—техника—среда».

386

18.5. ПСИХОФИЗИОЛОГИЧЕСКИЕ ДЕТЕРМИНАНТЫ АДАПТАЦИИ ЧЕЛОВЕКА К ЭКСТРЕМАЛЬНЫМ УСЛОВИЯМ ДЕЯТЕЛЬНОСТИ

В настоящее время основными направлениями в изучении адаптации стали определение этапов становления психофизиологической системы адаптации, критериев ее сформированности, выделение компонентов структуры этого феномена, стратегий развития его составляющих во времени и определение детерминант этого развития.

На основе системного анализа в сформированной психологической системе адаптации, кроме когнитивного и мотивационно-волевого, исследователи выделяют активационный компонент, который связан с органическими и функциональными затратами, направленными на достижение значимых для субъекта целей, с одной стороны, и компенсацию факторов, препятствующих достижению этих целей, — с другой [Александровский, 1976].

Феноменально регулирующая роль механизмов активизации, преобразования и распределения ресурсов проявляется в индивидуальном паттерне фоновой ЭЭГ-активности, повышении или снижении общего уровня активации в процессе адаптации, величине диапазона перестроек ЭЭГ в критический период адаптации и в динамике ЭЭГ на микроинтервалах времени.

На основе анализа взаимодействия ЭЭГ-показателей активационного и продуктивных параметров когнитивного компонентов адаптации в операторской деятельности были выделены когнитивные стратегии адаптации, определяющие динамику эффективности деятельности и характер распределения физиологических ресурсов. Показано, что гибкая и мобилизационная стратегии реализуются преимущественно при большом объеме ресурсов, а стратегии компенсации и угадывания — при дефиците ресурсов [Шапкин, Дикая, 1996].

Колебательный характер психофизиологических процессов, усиливающийся в измененных психофизиологических функциональных состояниях (ПФС; см. параграф 5), объясняет причины пропуска значимого сигнала и появление отказов и «провалов» (lapses) в деятельности оператора вследствие ухудшения ФС человека (см. также гл. 8). Были выделены «провалы» трех видов: 1) «пульсары» — пропуски сигналов, не связанные со значительным изменением ЭЭГ, когда испытуемый как бы «теряет» сигнал и начинает использовать стратегию угадывания; 2) конструктивные «провалы» — провалы типа микросна, сопровождающиеся резким увеличением мощности медленных волн и уменьшением мощности альфа- и быстрых волн. После самостоятельного пробуждения наблюдается даже повышение продуктивности обнаружения сигнала; 3) деструктивные «провалы», когда для пробуждения требуется постороннее вмешательство и продолжение деятельности стано-

387

вится практически невозможным. Последние характеризуются увеличением мощности медленных и уменьшением мощности бета-2-ритма и наблюдаются при выраженной деформации ПФС испытуемого [Шапкин, Дикая, 1996].

Психофизиологические данные помогают на практике различать состояния психической адаптации и дезадаптации, выявлять динамику и формы процесса адаптации, уровни и варианты адаптационных систем, а также определять группы факторов, влияющих на процесс адаптации, которые усиливают или уменьшают компенсаторные возможности и ресурсы человека.

18.6. ПСИХОФИЗИОЛОГИЧЕСКИЕ ФУНКЦИОНАЛЬНЫЕ СОСТОЯНИЯ (ПФС)

Актуальность изучения ПФС определяется их вкладом в обеспечение эффективности деятельности и надежности человека, а также увеличением количества профессий и изменением условий труда, когда психофизиологические возможности человека становятся определяющими в развитии тех или иных ПФС. Именно данные психофизиологических исследований в сочетании с психологическими методами обусловили исследования ПФС, выделив их в отдельный предмет изучения.

В русле этих исследований ПФС понимается как системная реакция (от организменного до личностно-психологического уровня), обеспечивающая необходимый уровень ресурсного обеспечения деятельности и компенсации возникающих затруднений. Поскольку основным критерием изменения состояния является изменение характера ресурсного обеспечения, именно этот аспект является базовым в исследованиях ПФС и обусловливает применение электрофизиологических методов для их объективной оценки (полиэффекторный метод).

Накоплено большое количество эмпирических данных о различных типах ПФС, а также разработаны методы и критерии их диагностики [Суворова, 1975; «Методы и критерии оценки функц. комфорта», 1978; Фролов, 1987; «Практикум по осн. физиол. труда», 1988; Леонова, 1994 и др.]. Определены и типичные для профессиональной деятельности состояния: монотония, утомление и напряженность. Характер функционирования обеспечивающих деятельность физиологических и психологических систем организма позволил выделить системные основания для дифференциации состояний напряженности. Преобладание когнитивного или эмоционально-активационного компонентов определяет развитие эмоциональной, или операциональной, напряженности [Наенко, 1976], а принцип, основанный на анализе изменения психофизиологической цены деятельности [Чайнова, 1986], позволяет различать продуктивную и непродуктивную формы напряженности. Обобщенный и количественный показатель цены деятельности, разработанный на основе психофизиологических параметров, стал широко использоваться в эргономических исследованиях для оптимизации условий, со-

388

держания и режимов трудовой деятельности, оценки и прогнозирования работоспособности.

В отличие от тех, кто фактически отождествляет ПФС человека с ФС мозга, представители субъектно-деятель-ностного направления при анализе ПФС основываются на психологических традициях, выдвигая на первый план активность субъекта труда, и рассматривают физиологические изменения в ПФС как вторичные по отношению к мотивам и целям деятельности.

Еще одной из проблем ПФС, имеющей практическое значение, является проблема саморегуляции состояний, основная цель которой — гармонизация взаимоотношений с окружающим миром и с самим собой (Котик, 1974; Конопкин, 1980). Эта цель может быть достигнута благодаря активизации механизмов непроизвольной и произвольной саморегуляции различного уровня, обучению способам и приемам произвольной саморегуляции, включая аутотренинг, йогу и др. Подход к саморегуляции ПФС как определенному виду психической деятельности позволил показать, что ее успешность определяется индивидуальным стилем саморегуляции [Дикая, 1990], (Щедров, 1994), который является результатом взаимодействия двух механизмов: на психодинамическом уровне — механизма экстраверсии-интраверсии, который обеспечивает поведенческую и эмоциональную вариативность, и на физиологическом — определенного типа вегетативной регуляции (эрго-трофотропного), ответственного за энергетическое обеспечение психической деятельности.

У лиц с гармоничным стилем (экстравертов с высокой энергетикой) оба механизма работают как один слаженный механизм, у них достаточно жизненных сил, чтобы активно взаимодействовать с окружающим миром. Другая тактика — у лиц с экономным стилем саморегуляции (интровертов с низкой энергетикой). Эти испытуемые, имея слабые энергетические ресурсы, осторожны, стараются не тратить свои эмоции понапрасну, и если им приходится работать в условиях, требующих больших энергетических затрат, то у них быстро развиваются состояния утомления, депрессии и психического истощения. Однако в комфортных условиях этот стиль саморегуляции может быть для них оптимальным. Совсем другая картина наблюдается в группе интровертов с эрготропным реагированием. Будучи не очень активными в поведении и имея большие резервы, они как бы накапливают ресурсы и поэтому в напряженных условиях могут позволить себе выплеснуть эмоции наружу, не ухудшая своего состояния. Их стиль саморегуляции, который определен нами как накопительный, также приближается к оптимальному. В наиболее сложной ситуации оказываются экстраверты с трофотропным реагированием, представители затратного стиля. Обладая низкими энергетическими ресурсами, в своем поведении они затрачивают массу энергии, что делает их стиль саморегуляции наиболее неэффективным, неоптимальным. Знание индивидуального стиля позволяет более успешно осуществлять регуляцию ПФС и разрабатывать индивидуально ориентированные системы обучения методам саморегуляции.

389

18.7. БИОЛОГИЧЕСКАЯ ОБРАТНАЯ СВЯЗЬ (БОС)

Интерес к исследованиям биологической обратной связи (БОС) в целях произвольного управления ФС на основе объективной информации о динамике психофизиологических показателей возник в связи с данными об изменениях в ФС человека, предшествующих изменениям в деятельности и обусловливающих их. Психофизиологическая сущность метода состоит в организации на основе БОС дополнительного сенсорного контроля над физиологическим процессом с возможностью последующей выработки ассоциативного (условнорефлекторного) регулирования с целью направленного изменения выбранного параметра. Эти методы примечательны своей универсальностью и неспецифичностью, так как открывают возможности в регулировании произвольных и непроизвольных нервных, соматических и вегетативных функций, участвующих в регуляции ФС, и профессиональных функций [Василевский, 1982; Полыпин, 1983].

Представление о физиологических причинах эффекта БОС как важнейшем принципе организации и функционирования живых систем было разработано П. К. Анохиным в созданной им теории функциональных систем (см. гл. 14). Исходя из этой теории, под влиянием БОС происходит усиление мотива достижения и произвольное использование дополнительных энергетических ресурсов и, как следствие, расширение границ работоспособности человека [Анохин, 1978]. В качестве сигналов БОС чаще всего используются значимые сдвиги в показателях КГР (изменение частоты фазических колебаний и уровня тонической составляющей), изменения 4СС или ЭЭГ (чаще всего в диапазоне альфа-ритма: его частоты и амплитуды).

В настоящее время в связи с техническими возможностями и компьютеризацией многих видов профессиональной деятельности можно создать системы управления с использованием БОС практически от любого психофизиологического показателя, как отдельного, так и в совокупности с другими, даже от моментов синхронных изменений в показателях нескольких функций с целью их изменения в необходимом для данной деятельности направлении.

И, конечно, на эффективность применения БОС влияют индивидуально-психологические характеристики человека. Обнаружено, что БОС предпочитают люди, обладающие высокой эмоциональной чувствительностью или стремлением к самоконтролю, особенно контролю за ситуацией и состоянием, с опорой на первосигнальные или второсигнальные регулирующие образы и т. д.

Методы саморегуляции деятельности и состояния на основе БОС позволяют не только влиять на эффективность выполнения профессиональной деятельности, поддержание работоспособности и снижение

390

напряженности, но и используются в биотехнических системах с целью индивидуальноориентированного воздействия на работоспособность человека и повышение его надежности.

Особо следует остановиться на использовании в ряде прикладных задач метода специальных психофизиологических исследований (СПФИ), который основан на комплексной регистрации психофизиологических характеристик эмоционального состояния с использованием специального прибора — полиграфа, часто неверно именуемого «детектором лжи», или «лайдетектором».

Инициатором работ по применению методов психологии в целях выявления скрываемой информации еще в 1920-е гг. был А. Р. Лурия [1984]. В основу этих работ был положен широко применявшийся в экспериментальной психологии ассоциативный метод, в дополнение к которому он предложил регистрировать с помощью прибора время реакций испытуемого на слова-раздражители. Согласно сформулированному им принципу, выявление у человека скрываемой им информации психофизиологическим методом — «единственная возможность изучить механику внутренних «скрытых» процессов путем соединения скрытых психических процессов с каким-нибудь одновременно протекающим и доступным для непосредственного наблюдения процессом, в котором внутренние закономерности и соотношения находили бы свое отражение» [Лурия, 1984, с. 231].

Более полувека этот метод применяется для решения следующих практических задач: скриннинговые проверки нанимаемого на службу персонала, периодическое тестирование работающего персонала на соответствие требованиям, предъявляемым к его работе, служебные расследования фактов хищения, подлога и других случаев нанесения ущерба фирме, включая защиту секретной информации. В настоящее время обобщение специалистами многолетних данных, проведенное в США, показало, что точность метода применительно к разным задачам составляет 80-95 %. Основными причинами ошибок являются трудности в интерпретации изменений физиологических показателей при полиграфической регистрации, вызванные недостаточной разработанностью концептуального аппарата, несовершенством вопросников, предъявляемых человеку в ходе тестирования, невыполнением требований комплексной регистрации психофизиологических характеристик, с одной стороны, и недостаточной квалифицированностыо и низким морально-этическим статусом специалистов, проводящих испытания, отсутствием учреждений, обеспечивающих подготовку и лицензирование таких специалистов, с другой стороны [Холодный, Савельев, 1996].

18.8. ПСИХОФИЗИОЛОГИЧЕСКИЙ АНАЛИЗ СОДЕРЖАНИЯ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ

Психофизиологический анализ профессиональной деятельности предполагает «рассмотрение ее как сложного, многомерного и многоуровневого, динамического

391

и развивающегося явления» [Ломов, 1984, с. 216], и поэтому исследование деятельности не должно ограничиваться анализом только психологических составляющих и их социальной обусловленности — необходимы изучение физиологического обеспечения деятельности и разработка концепций, анализирующих физиологические процессы, ее реализующие. Именно поэтому психофизиологический анализ деятельности, изучение ее структуры и физиологических составляющих и их взаимоотношений с психологическими составляющими стало существенным направлением в совершенствовании трудовой деятельности человека, возникновение которой связано с исследованием рабочих движений, проведенных еще И. М. Сеченовым.

Психофизиологические особенности отдельных видов трудовой деятельности вошли составной частью в профессиографию — психологическое описание профессий, что позволило сделать более объективным психологический анализ деятельности. Совершенствование методов психофизиологического анализа преимущественно физических видов труда было в основном связано с анализом движений и таких их характеристик, как скорость, сила в определенные интервалы времени одновременно с параллельной регистрацией тех физиологических функций, которые преимущественно обеспечивают выполнение этих работ: электромиография, электрокардиография, пневмография и т. п. [Косилов, 1967]. В результате было показано, что физическая работа сопровождается выраженными функциональными сдвигами вегетативных функций, степень которых отражает тяжесть и интенсивность физической работы. Полученные данные послужили основанием для рационализации труда, разработки режимов труда и отдыха, рекомендаций по безопасности труда и профессиональному обучению.

В отличие от физической работы, умственная деятельность характеризуется большим разнообразием и становится основной в целом классе операторских профессий. Важность психофизиологического анализа деятельности специалистов-операторов в системах управления подчеркивалась многими психологами. В связи с тем, что содержанием подобной деятельности является прием информации, ее переработка и принятие решения, функциональные изменения, происходящие в организме человека, отражаются преимущественно не в изменениях вегетативных процессов, а в динамике изменений характеристик ЦНС.

Именно поэтому первоначально психофизиологический анализ деятельности рассматривался как особый вид операций, подчиненных цели деятельности, но обладающих своими подцелями и находящихся на разных иерархических уровнях психологической системы деятельности [Зараковский, 1968]. Комплексные исследования изменений активационно-энергетической составляющей функциональной системы деятельности по данным полиграфического анализа показали, что активационный компонент деятельности является интегративной психофизиоло-

Рис. 18.2. Отражение в динамике длительностей межсаккадических интервалов (МСИ) проблемностей разного уровня, возникающих в процессе выполнения субъективно сложной деятельности (по пилотированию самолета).

По горизонтальной оси — время выполнения деятельности; по вертикальным осям: на правой шкале — длительность МСИ, но левой шкале — верхние границы таксонов, характеризующих включенность следующих уровней регуляции: 1 — непосредственного взаимодействия; 2 — опосредованной координации; 3 — программно-целевой организации; 4 — личностно-нормативный; 5— мировоззренческих коррекций [Голиков, Костин. 1996]

393

гической подсистемой, которая включает специфические и неспецифические механизмы активации, взаимодействующие с когнитивными и мотивационно-эмоциональными подсистемами деятельности. Данный вид психофизиологического анализа позволяет определять функциональную нагрузку конкретного оператора и те умственные операции или ситуации, на которые падает большая нагрузка и ответственность за успешность выполнения работы и на которые должно быть направлено внимание психологов труда и инженерных психологов [Зараковский, 1968].

Одной из таких ситуаций в умственной деятельности является проблемная ситуация, которая, по определению Б. Ф. Ломова, представляет собой «ситуацию, включающую неопределенность, требующую принятия решения и возникающую на всех уровнях отражения и регуляции деятельности» [1984, с. 224]. Чем выше степень несоответствия между объективной действительностью и ее психическим отражением, тем больше времени необходимо субъекту, чтобы понять и оценить это несоответствие, решить проблему, тем более эмоционально он переживает при принятии решения.

Для анализа проблемностей и их классификации обычно используются содержательные психологические методы, а физиологические методы только подтверждают субъективную напряженность при принятии решения. Выделив на основе содержательных психологических методов три класса проблемностей, Ю. Я. Голиков и А. Н. Костин [1996] в качестве количественного метода выявления проблемностей проанализировали особенности ЭОГ — межсаккадические интервалы (МСИ) в движениях глаз, рассматриваемые в ряде работ в качестве объективных индикаторов структурных единиц деятельности, длительность которых определяется ее сложностью. Выделение с помощью таксономического анализа нескольких диапазонов МСИ и соотнесение их с содержанием проблемностей позволило авторам дать количественную оценку проблемностям разного класса, определить психологическую структуру деятельности, ее субъективную сложность, степень освоения данной деятельности конкретным субъектом и повысить надежность деятельности (рис. 18.2). Это исследование еще раз показало, насколько важен для психофизиологического анализа деятельности обоснованный выбор физиологических параметров.

Глава 19. СРАВНИТЕЛЬНАЯ ПСИХОФИЗИОЛОГИЯ

Сравнительная психофизиология — наука, нацеленная на установление закономерностей и выявление различий в структурной и функциональной организации мозга, поведении и психике у животных разных видов, в том числе и у человека. Сравнительный метод позволяет оценить филогенетическую близость видов и, тем самым, способствует разработке представлений об эволюции мозга, психики и поведения.

Различия между животными разных видов, а также между животными и людьми многообразны. И если морфологические и поведенческие различия между ними, как правило, очевидны, то в том, что касается психики, субъективного мира разных животных подобные заключения оказываются довольно общими и слабо аргументированными, поскольку трудно определить, в чем же заключаются эти различия, а тем более установить их причину.

Как известно, существовало два разных подхода к изучению психического. В первом случае для описания субъективного мира животного наблюдатель использовал аналогию с собственным «внутренним миром», что, помимо субъективизма (отсутствия общепризнанной определенности), придавало психике животных антропоморфные черты. Примером такого рода могут служить описания, в которых даже действия беспозвоночных связываются с чувствами, рассудком и свободой воли (Romanes, 1883

395

[цит. по: Кэндел, 1980, с. 15]), а также утверждения, что «чувства и интуиция, различные эмоции и способности, такие как любовь, память, внимание, любопытство, подражание, благоразумие и т. д., составляющие предмет гордости человека, в зачаточном, а иногда и хорошо развитом виде могут быть обнаружены у более низкоорганизованных животных» (Darwin, 1871 [цит. по: Кэндел, 1980, с. 14]).

Напротив, «объективная» психология по сути отвергала категорию психического, утверждая, что можно «написать труд по психологии..., ни разу не использовав такие термины, как «сознание», «психические состояния», «переживания», проверяемые интроспективно, «образы» и т. п. Все можно описать в понятиях стимулов и реакций, формирования навыков, интеграции этих навыков и т. д.» [Watson, 1913, с. 167]. Оба этих подхода, хотя и в модифицированном виде (особенно второй), в силу развития методов исследования мозга и поведения, — сохранились и до настоящего времени в виде бытовой психологии и «классической» нейрофизиологии, в которой подразумевается, но не всегда эксплицируется, что изучение строения и активности мозга позволит до конца объяснить поведение. Проблемы, связанные с определением психического и поиском адекватных методов его изучения, до сих пор однозначно не решены, что определяет существование разнообразных подходов к их решению (см. гл. 14).

19.1. ПОЯВЛЕНИЕ ПСИХИЧЕСКОГО

Наиболее принятой в настоящее время точкой зрения является та, что психическое — атрибут живых систем, а неживая природа, включая созданные людьми сложные устройства, психикой не обладает. Это важное отличие живых систем от неживых отмечено П. Милнером в «Физиологической психологии»: «Изобретатель даже самой сложной самоорганизующейся машины может, на свое счастье, не беспокоиться о том, чтобы обеспечить своему изобретению непосредственное осознание его входного сигнала, которое, по-видимому, свойственно животным (по крайней мере, мне самому). Он может сделать машину, которая будет сортировать предметы в соответствии с длиной волны отражаемого ими света, но он не может указать на какое-то одно из реле или транзисторов и сказать, что когда через него проходит ток, машина, скажем, «ощущает» желтый цвет. Можно сделать машину, которая будет взвизгивать и подпрыгивать в присутствии определенных раздражителей, и даже такую, которая будет запоминать полученный опыт, чтобы избегать подобных воздействий в будущем, но ее изобретатель не станет утверждать, что вложил в нее способность чувствовать то, что мы называем болью» [Милнер, 1973, с. 14]. Но, признавая появление психики у животных, некоторые авторы, однако, отделяют ее от них, рассматривают психическое как некую отдельную реальность, «ментальный мир» [Popper, Eccles, 1977]. Этот мир может взаимодействовать с мозгом высокоорганизованных животных. Таким образом, если для П.

396

Милнера «осознание» и «ощущение» возникают в самой живой системе, в мозге животного, то, с точки зрения Дж. Экклса [Eccles, 1992], мозг — лишь «место встречи» или «устройство», с помощью которого организм имеет возможность взаимодействовать с «ментальным миром».

Несмотря на существующее разнообразие мнений о моменте появления психики (все живое обладает психикой; психика только у животных; только у животных, обладающих нервной системой; только у млекопитающих), наблюдается сходство мнений по поводу того, что появление в эволюции человека явилось началом кардинальных изменений в соотношениях организма со средой и сопровождалось изменениями в психике. Как бы ни определялось психическое (психические процессы и состояния, субъективный мир, индивидуальный опыт), пропасть между инфузорией и человеком — безгранична (рис. 19.1): в своем окружении (рис. 19.1, Л, слева) инфузория, по видимому, «выделяет» лишь те немногие объекты, которые для нее витально значимы, например пища (рис. 19.1, Л, справа), и, напротив, используя накопленный многообразный опыт поколений и общественное производство, люди оказались способны создавать дворцы, намного превышающие потребности одного человека или семьи в укрытии, и произведения искусства — для удовлетворения «эстетических чувств».

Рис. 19.1. А. Среда обитания инфузории (слева). Весь субъективный мир инфузории (справа) [Uexkull, 1957].

397

Вне зависимости от уровня эволюционного развития, по каким бы критериям сложности ни проводилось сравнение ныне живущих животных, придется согласиться, что «все животные, от наиболее просто организованных до самых сложных, вписаны в их уникальные миры одинаково полно. Простой мир соответствует простым животным, а хорошо структурированный мир (well-articulated world) — сложным» [Uexkull, 1957, р. II]. Усложнение субъективного мира и принципиальное увеличение приспособительных потенций в эволюционном ряду оказались обусловлены появлением и развитием нервной системы. Значительно большие, даже по сравнению с другими приматами, возможности приспособления человека к действию многообразных и сильных по интенсивности неблагоприятных факторов среды тоже, главным образом, связаны с особенностями организации его мозга. Безусловно, важным оказалось и другое, а именно, что структурные изменения мозга, обусловившие появление специфически человеческих особенностей последнего, произошли у предшественников человека, к этому времени уже «приобретших» плаценту и молочные железы, видоизменененные кости таза, стоп и кистей рук, особенное строение артикуляционного аппарата. Все это в комплексе и позволило человеку занять вершину эволюционной пирамиды.

Рассмотрим эволюцию видов и структурной организации мозга для того, чтобы полнее представить картину эволюции психического и выяснить, когда и каким образом могли происходить эти изменения.

19.2. ЭВОЛЮЦИЯ ВИДОВ

Современные данные об эволюции животных указывают на расхождение линий эволюции и развитие параллельных линий (рис. 19.2, Л), в том числе и среди млекопитающих (рис. 19.2, Б), и среди приматов (рис. 19.2, В). Это, в частности, означает, что сравнение строения мозга у грызунов, хищников и приматов или же у гориллы, шимпанзе и человека является исследованием не филогенетической, а адаптивной эволюции [Батуев, 1979], поскольку развитие шло в параллельных, независимых друг от друга линиях от общего, в каждом из ранее названных примеров своего, предшественника. Выводы о филогенетической эволюции видов и мозговых структур возможны лишь на основе анализа в последовательных рядах. Например, линия, ведущая к человеку, схематично может быть представлена следующим образом: рептилиеподобные млекопитающие — однопроходные — сумчатые--насекомоядные — обезьяны — приматы — большие обезьяны — африканские человекообразные обезьяны (рис. 19.2, Б, В), хотя и очевидно, что ныне живущие виды могут в той или иной степени отличаться от своих исходных форм — вымерших предков.

Прежде чем перейти к краткому описанию основных структурных различий мозга филогенетически разных животных и выяснению эволюционных закономер-

398

ностей в развитии мозга, следует остановиться на вопросе о том, что является источником многообразия признаков, с которым имеет дело естественный отбор, и в результате каких «событий» появляются новые таксоны. Считается, что процессы развития находятся под генетическим контролем и что эволюцию следует рассматривать как результат изменений в генах, регулирующих онтогенез. Одним из оснований для заключения о том, что морфогенез, а тем самым и морфологическая эволюция (появление новых групп организмов) связаны не столько с изменениями структурных генов, сколько с изменениями регуляторных генов, управляющих ге-

399

нетической программой онтогенеза, являются данные, свидетельствующие о том, что морфологическая эволюция слабо коррелирует с молекулярной эволюцией (эволюцией белков). Так, например, лягушки за 150 млн лет своей истории почти не изменились ни анатомически, ни по образу жизни, в то время как диапазон морфологического разнообразия у млекопитающих велик: от летучих мышей до китов, от слонов до человека. Несмотря на «морфологический консерватизм» лягушек, аминокислотные последовательности их белков подверглись значительным эволюционным изменениям. И, наоборот, человек и шимпанзе быстро дивергировали400

и многие систематики относят их к разным семействам, однако аминокислотные последовательности их белков на 99 % одинаковы [Рэфф, Кофмен, 1986]. Другими аргументами в пользу морфогенеза за счет регуляторных генов служат данные об отсутствии корреляции между сложностью организации животного и величиной генома, наблюдаемые различия в величине генома у близкородственных животных, которые имеют сходную морфологическую сложность, а также то, что количество генов в геноме гораздо выше количества экспрессируемых (функционирующих) генов.

Регуляторные гены являются «переключателями» между альтернативными путями развития, и количество их относительно невелико. Они функционируют на протяжении всего процесса развития, управляя процессом онтогенеза тремя различными способами: 1) регулируя время наступления тех или иных событий;

2) делая выбор из двух возможностей, тем самым определяя судьбу клеток и частей зародышей и 3) интегрируя экспрессию структурных генов и обеспечивая создание стабильных дифференцированных тканей.

Рис. 19.2. А. Филогенетическое дерево Metazoa [по Рэфф, Кофман, 1986]. Пунктирная линия — условная граница между таксонами с элементарной сенсорной психикой и таксонами с перцептивной психикой [по Фабри, 1993]

Б. Эволюционное дерево млекопитающих с выделением этапов филогенетической эволюции и уровней адаптивной эволюции [Батуев, 1979]. В. Филогенетическое дерево высших обезьян [Povinelli, Preuss, 1995]

Поскольку регуляторный ген способен влиять на скорость роста какой-то определенной структуры, он контролирует как сроки появления, так и размеры данной структуры. А поскольку онтогенез слагается из связанных между собой процессов, т. е. формирование каждой отдельной структуры зависит как во времени, так и в пространстве от формирования других структур, изменения в сроках возникновения одного морфогенетического события могут иметь глубокие последствия, изменяя многие дальнейшие зависящие от него ступени онтогенеза [Рэфф, Кофмен, 1986]. Важно отметить, что модификации генетических регуляций приводят к возникновению новых структур, в том числе и разных «конструкций» мозга, а тем самым, и типов поведения, открывающих новые адаптивные возможности. Очевидно, что бифуркации на всех схемах, представленных на рис, 19.2, связаны именно с такими процессами появления новых признаков. В дальнейшем, после бифуркаций, изменения носят характер адаптивной эволюции, как это, например, показано на рис. 19.2, Б в ряду млекопитающих. Такой тип морфогенеза может объяснить «скачки» в развитии живого, связанные как с возникновением нервной системы и появлением психики, так и с формированием сложноорганизованпого мозга человека с его отличной от других животных психикой, а также то, почему, даже приложив неимоверные усилия и создав все условия, не удастся «превратить» шимпанзе в человека, енота «заставить» говорить, а кролика — охотиться на слонов.

Наряду с зоологической, существует и психологическая классификация животных. Одной из них является классификация К. Э. Фабри, для создания которой он использовал представления А. Н. Леонтьева о «психике как форме отражения, позволяющей животному организму адекватно ориентировать свою активность по отношению к компонентам среды» [Фабри, 1993, с. 7], а в качестве уровней развития психики выделил уровень элементарной сенсорной психики и уровень перцептивной психики, граница между которыми проходит на уровне членистоногие, головоногие и хордовые (см. пунктирную линию на рис. 19.2, А), хотя оказалось, что не все крупные таксоны укладываются в эти рамки. Для высших позвоночных в этой классификации имеется стадия интеллекта, при том, что отмечаются принци-

401

пиальные различия между интеллектом животных и людей, заключающиеся в том, что мышление животных всегда имеет конкретно-чувственный характер и осуществляется через действия с предметами. Для наиболее часто используемых определений психики (а именно, психика как психические процессы и состояния — субъективный мир — индивидуальный опыт) детальных психологических классификаций животного мира пока не создано.

19.3. ЭВОЛЮЦИОННЫЕ ПРЕОБРАЗОВАНИЯ МОЗГА

Строение мозга у животных разных видов различно. И хотя, как следует из рис. 19.3, родственные виды, например среди ракообразных или млекопитающих, имеют общие черты в строении мозга, между собой они мало похожи. Именно с появлением нервной системы организмы получили возможность быстрой адаптации к быстро меняющимся факторам среды, что, безусловно, давало преимущества в борьбе за существование. У предков млекопитающих, как и у современных рептилий, кора больших полушарий была слабо дифференцирована [Батуев, 1979]. Но на пути от рептилиеподобных предков млекопитающих до ныне живущих млекопитающих произошло значительное увеличение коры мозга по сравнению с другими структурами мозга (рис. 19.4), изменение количества (рис. 19.3, В), размеров и формы корковых областей, их модульного строения и связей [Kaas, 1987], произошло увеличение переднего мозга и, как предполагается [McLean, 1993; Povinelli, Preuss, 1995], перемещение главенствующей роли от стриарного комплекса сначала к лимбической системе, а затем к неокортексу и особенно к префронтальной области коры (рис. 19.3, Б).

Рис. 19.3. А. Схематичное представление мозга животных, относящихся к линиям моллюсков, членистоногих и хордовых (масштабы разные) [по Кэндел, 1980]

Важной чертой эволюции млекопитающих является уже упомянутое увеличение неокортекса, при этом степень этого увеличения отличает приматов от остальных млекопитающих, а человека — от остальных приматов. В частности, соотношение площади неокортекса у мыши, макаки и человека составляет 1:100:1000 соответственно [цит. по: Rakic, 1995], а соотношение объемов коры мозга и спинного мозга у крыс и у человека — 31 : 35 и 77 : 2 соответственно (рис. 19.4) [Swanson, 1995]. Такая экспансия неокортекса, как полагают, связана с модификацией регуляторных генов, определяющих митотическое деление клеток вентрикулярного (пролиферативного) слоя коры [Rakic, 1995]. При этом, по-видимому, кора развивалась под влиянием внутрикорковых или непрямых таламических подкорковых влияний [Krubitzer, 1995]. Такое развитие коры привело к возникновению новых мощных приспособительных функций [Innocenti, Kaas, 1995]. Можно предположить, что именно это явилось основой такого свойства нервной системы, которое У. Матурана обозначил как способность нервной системы

Рис. 19.3.

Б. Условное представление триединой эволюции трех основных мозговых ансамблей, приведших к образованию переднего мозга у людей и у других развитых млекопитающих [McLean, 1993]. 

В. Корковые поля у примитивных млекопитающих (еж), у млекопитающих с незначительно более развитой нервной системой (белка) и у двух млекопитающих с умеренно развитым мозгом (кошка и совиная обезьяна) [Kaas, 1987]

«взаимодействовать со своими собственными внутренними состояниями, как если бы те были независимыми сущностями» [Матурана, 1995, с. 104]. В таком «взаимодействии» нервной

402

системы со своими собственными состояниями может лежать ключ и к пониманию онтологической сути субъективных состояний — «переживаний», «мыслей», «образов», — а также языка и мышления.

Внутрикорковые процессы рассматриваются рядом авторов в качестве нейронной основы сознания [Маунткасл, 1981; Эделмен, 1981; Eccles, 1992]. Так, например, в концепциях В. Маунткасла и Дж. Эделмена сознание

404

возникает на основе повторного входа «сигнализации» (см. гл. 11), при этом, согласно одним взглядам, данный процесс происходит в модульных распределенных сетях [Маунткасл, 1981], а согласно другим — в вырожденной группе нейронов [Эделмен, 1981]. По мнению же Дж. Экклса, сознание — побочный эффект, возникший в эволюции неокортекса, наблюдающийся только у

Пропорции структур мозга, %

Крыса

Человек

Кора головного мозга

31

77

Базальные ядра

7

4

Промежуточный мозг

6

4

Средний мозг

4

1

Задний мозг

7

2

Мозжечок

10

10

Спинной мозг

35

2

Рис. 19.4. Сравнение размеров разных отделов цетральной нервной системы крысы и человека. Пропорции между областями мозга соблюдены [Swanson, 1995]

405

млекопитающих и сводящийся к взаимодействию мозга и ментального мира в множестве пресинаптических окончаний корковых нейронов, которые образуют морфологическую единицу — дендрон [Eccles, 1992].

19.4. СРАВНИТЕЛЬНЫЙ МЕТОД В СИСТЕМНОЙ ПСИХОФИЗИОЛОГИИ

Системная психофизиология, основы которой были заложены трудами В. Б. Швыркова и его коллег, основана на признании: 1) единой психофизиологической реальности, в которой психологическое и физиологическое — лишь разные стороны рассмотрения системных процессов; 2) способности организмов достигать необходимые для своего выживания результаты — определенные соотношения со средой — в качестве критерия эволюционного отбора. При этом индивидуальный опыт отражает филогенетическую историю выживания вида и онтогенетическое развитие индивида и состоит из набора функциональных систем, которые являются элементами субъективного мира, и 3) того, что поведенческий акт формируется в процессе систе-могенеза — образования новой функциональной системы [Швырков, 1985, 1987, 1995] (см. также гл. 14,15).

Как же с позиций этого подхода выглядят межвидовые различия поведения и психики и как использовать уже имеющиеся знания о системной структуре индивидуального опыта животных в исследованиях человека?

Современный срез эволюционирующей биосферы представлен животными разных видов и разного филогенетического уровня. Они имеют не только разную анатомию, но и разный репертуар актов поведения. В одной и той же среде разные виды выделяют совершенно разное в зависимости от их поведенческих возможностей и экологии [Uexkull, 1957; Гибсон, 1988; Матурана, 1995; Reed, 1995]. Развитие нервной системы привело к более дробному, более дифференцированному соотношению организма со средой [Uexkull, 1957; Швырков, 1978; Александров, 1989; Матурана, 1995], а следовательно, и более сложной структуре индивидуального опыта. Судить об этой структуре можно на основании изучения активности нейронов, специализированных относительно элементов опыта.

Представления о том, что поведенческие возможности определяются разнообразием наборов специализированных нейронов [Швырков, 1985; Крушинский, 1986; Edelman, 1987], уже получили экспериментальное подтверждение (см. гл. 14, 15). Была установлена системоспецифичность нейронов, т. е. принадлежность каждого нейрона только одной системе. Именно эти разработки сделали метод исследования импульсной активности нейронов в поведении объективным методом изучения структуры индивидуального опыта, его формирования и реализации.

Поскольку использование данных, полученных в рамках структурно-функциональной парадигмы, для

406

формулировки заключений о системной специализации нейронов затруднено (см. в [Александров, 1989]), экспериментальное решение задач системной психофизиологии возможно путем выяснения типов и количества поведенчески специализированных нейронов разных типов (паттерны специализации нейронов), вовлеченных в обеспечение поведения, и анализа динамики импульсной активности этих нейронов на последовательных этапах поведения (в разных актах). Сравнительное же системно-психофизиологическое исследование заключается в сопоставлении подобных показателей у особей, принадлежащих к разным видам.

Сравнительные исследования системной организации активности мозга в поведении направлены на выяснение особенностей структуры и особенностей формирования индивидуального опыта у животных разных видов. Они должны дать ответ также и на вопрос о наиболее общих закономерностях системной организации активности мозга и поведения, инвариантных у животных с разным строением нервной системы. Выявление общих и видоспецифичных характеристик формирования и реализации индивидуального опыта явится основой для развития системно-эволюционных представлений о мозге, поведении и психике. В частности, оно будет способствовать установлению тех особенностей системной организации мозговой активности, которые отличают человека от животных.

Имеющиеся в литературе данные свидетельствуют как о сходных, так и о различных характеристиках системной организации индивидуального опыта человека и животных. Как и у животных, у людей зарегистрирована активность нейронов, связанная с определенными актами, а также обнаружена зависимость этой активности от цели поведения [Раева, 1977]. В то же время описанные у разных животных нейроны «лиц» [Baylis et al., 1985; Perrett et al., 1982; Kendrick, Baldwin, 1987; Heit et al., 1988 и др.] могут быть отнесены к системам актов «социального» поведения, изучение которого на нейрональном уровне у животных также уже начато [Oomura et al., 1983; Швыркова, 1990 и др.].

Что касается специфики человека, у него были обнаружены нейроны «слов», т. е. клетки, избирательно активирующиеся при предъявлении определенного слова [Heit et al., 1988; Creutzfeldt et al., 1989 и др.]. Этот факт позволяет предположить существование «добавки» к опыту животных, в виде специфически человеческого опыта — знаний. Последнее может изучаться путем сопоставления активности мозга «с индивидуальной историей воспитания, обучения и обстоятельств жизни конкретного человека» [Швырков,1995].

Глава 20. ПСИХОФИЗИОЛОГИЯ И МОЛЕКУЛЯРНАЯ ГЕНЕТИКА МОЗГА

Главный объект изучения в психофизиологии — это мозговые процессы, опосредующие поведение, психику и сознание. Адекватным уровнем описания подобных «высших» функций мозга являются не просто физиологические механизмы возбуждения и торможения отдельных нейронов, областей и структур мозга, а специфические системные процессы и функциональные системы, осуществляющие взаимоотношение целого организма с предметной средой в контексте структуры видового и индивидуального опыта (см. гл. 14). Естественно возникает вопрос о том, откуда берутся такие системы, как они возникают в эволюции, как они складываются в ходе развития мозга и по каким механизмам они видоизменяются под влиянием опыта и обучения? Ответ на эти вопросы выходит за пределы синтеза только психологии и физиологии и требует обращения ко многим другим дисциплинам, включая нейроанатомию, эмбриологию, эволюционную биологию и молекулярную генетику. Объяснить, почему это так, — задача настоящей главы.

408

20.1. МОЗГ- ОРГАН, ЭКСПРЕССИРУЮЩИЙ НАИБОЛЬШЕЕ ЧИСЛО ГЕНОВ В ОРГАНИЗМЕ

На молекулярном уровне специфичность каждой из клеток организма создается составом белков, из которых она построена и которые обеспечивают ее функции. Эти белки синтезируются за счет активности генов в составе ДНК, содержащейся в ядре клетки в геноме организма. Синтез белка посредством считывания информации с гена в виде молекулы матричной РНК (мРНК) и ее трансляции в белковую молекулу называется экспрессией гена.

В каждой клетке экспрессируются далеко не все гены, а только определенная их часть, которая и определяет молекулярную специфику ее композиции и функций. Обычно для построения того или иного органа достаточно экспрессии в его клетках лишь нескольких процентов от общего числа генов в геноме.

Один из важнейших фактов, обнаруженный молекулярной генетикой мозга, состоит в том, что число генов, активных в мозге млекопитающих, значительно превосходит количество генов, экспрессирующихся во всех других органах и тканях.

Еще первые работы по оценке сложности состава мРНК в мозге мышей установили, что она огромна и приближается почти к 120 млн нуклеотидов, по сравнению, к примеру, с приблизительно 30 млн нуклеотидов в мРНК печени и почки (Hahn et al., 1982). Позже, методами молекулярного клонирования, удалось вычислить, что из приблизительно 80-100 тыс. генов, составляющих геном крысы, около 50-60 тыс. экспрессируются в мозге, причем экспрессия более половины из них мозгоспецифична. Это в несколько раз превышало число генов, активных в печени, почках, селезенке или сердце (Milner, Sutcliffe, 1983; Sutcliffe et al., 1983).

В действительности молекулярный репертуар мозга может быть даже еще больше. Продукты многих мозгоспецифических генов подвержены альтернативному сплайсингу — экспрессия гена в разных клетках может давать различные белки за счет использования разной комбинации функциональных блоков одного и того же гена (Santama et al., 1995; Ulrich et al., 1995; Zacharias et al., 1995).

Человеческий мозг подчиняется такой же закономерности. Анализ тканеспецифичности экспрессии случайным образом выбранных 2505 генов из кДНК библиотеки мозга человека показал, что половина исследованных генов имеет мозго-специфическую экспрессию (Zhao et а1„ 1995). Этот расчет находит независимое подтверждение, происходящее из медицинской генетики. Приблизительно 50 % из реестра генетических заболеваний человека содержат те или иные симптомы нарушений функций нервной системы (Caviness, 1982). Таким образом, и у человека как минимум каждый второй ген связан с обеспечением той или иной функции нервной системы.

409

Значение этого факта состоит в том, что он заставляет серьезным образом пересмотреть представления о роли и месте нервной системы в эволюционной истории организмов.

20.2. ЭВОЛЮЦИЯ ГЕНОМА МЛЕКОПИТАЮЩИХ В ЗНАЧИТЕЛЬНОЙ СТЕПЕНИ ОБЕСПЕЧИВАЛА ЭВОЛЮЦИЮ ГОЛОВНОГО МОЗГА

Процесс эволюции организмов можно оценивать различным образом. Традиционные морфологические способы, использующиеся еще с конца XVIII века, основаны на изучении трансформации строения органов и тканей. Однако анатомические критерии не позволяют учесть все сложные эволюционные преобразования, часто выражающиеся в изменении строения и функций белков, ферментов, гормонов, рецепторов, детальных связей между клетками. Все это — события, не меняющие макроанатомию, но кардинальным образом влияющие на процессы интеграции и, в конечном счете, выживание организмов. Гораздо более чувствительным для учета подобных эволюционных изменений оказывается молекулярно-генетический анализ. Каждая сохраненная отбором модификация строения и функций гена, каждое появление в клетке или органе нового стабильно экспрессирующегося гена, свидетельствуют об отдельном эволюционном событии, общая сумма которых и отражает процесс проходившей эволюции.

Рассчитав с помощью этого метода количество экспрессирующихся в органе генов, мы можем вычислить общий объем «усилий» эволюции, затраченных на его создание. Такие расчеты, приведенные в предыдущем разделе, приводят к поразительному выводу; Из них следует, что эволюция генома млекопитающих в значительной мере выполняла задачу генетического обеспечения организации и функций мозга. Этот факт придает совершенно неожиданный оборот мысли известного палеонтолога и философа Тейяра де Шардена, что «история жизни есть, по существу, развитие сознания, завуалированное морфологией» (Тейяр де Шарден, 1965). Очевидно, что еще до наступления эпохи молекулярной биологии, выдающемуся гуманисту удалось интуитивно заметить одну из основных тенденций генетической эволюции — ее связь с эволюцией функций нервной системы.

Объяснение этого «молекулярно-генетического феномена мозга» становится сегодня одной из центральных задач нейронауки. Она сводится к необходимости ответить на вопрос: посредством каких из своих свойств нервная система определяла «нейроэволюцию» — эволюцию генома в направлении накопления генов, экспрессирующихся в мозге?

Рассмотрим подробнее некоторые условия решения этой проблемы.

410

20.2.1. В эволюции мозга использовались гены, ранее выполнявшие не нервные функции

По мере клонирования генов, работающих в нервной системе, постепенно выяснялось, что при создании мозга эволюция пользовалась, выражаясь словами Ф. Жакоба, «методом перелицовки старого». Оказалось, что в построении структур мозга млекопитающих участвуют гены, функции которых на более ранних этапах эволюции не были связаны с нервной системой.

Разберем лишь один из примеров подобного эволюционного консерватизма.

Белки, кодируемые геном SEC1 у дрожжей обусловливают доставку секреторных пузырьков к плазматической мембране. Это составляет только одно из звеньев целого секреторного каскада, включающего везикулярный транспорт из эндоплазматического ретикулума (ЭР) в комплекс Гольджи, а оттуда к плазматической мембране или вакуоли.

Гомолог гена SEC1 был обнаружен и у млекопитающих. Оказалось, что он специфически экспрессируется в нервной системе и что кодируемый им белок участвует в механизмах секреции нейромедиаторов из синаптических везикул. Сегодня известно, что в транспорте синаптических везикул к пресинаптической мембране во время нейросекреции критическую роль играют два семейства белков — VAMP белки (или синаптобревины), расположенные на синаптических пузырьках, и синтаксины, расположенные на специфических участках пресинаптической мембраны. У дрожжей были найдены гомологи синаптобревинов и синтаксинов, и оказалось, что они также участвуют в процессах секреции (табл. 20.1).

Таблица 20.1 Семейства белков, регулирующих процессы секреции у дрожжей и нервных клеток (по Bennet & Sheller, 1993 и Pfeffer, 1994)

Семейство

Гомолог у дрожжей

Участок транспорта у дрожжей

Гомолог в синаптическом окончании

rab

YPT1

Из ЭР в Гольджи

гаЬЗа

SEC4

Из Гольджи к мембране

VAMP

BET1/SLY12

Из ЭР в Гольджи

VAMP1 или VAMP2

SEC22/SLY2

Из ЭР в Гольджи

SNC1 и SNC2

Из Гольджи к мембране

Синтаксин

SED5

Из ЭР в Гольджи

Синтаксин А или В

PEP12

Из Гольджи к мембране

SSO1 и SSO2

Из Гольджи к мембране

411

Кроме того, было обнаружено, что Sec1 взаимодействует с двумя белками дрожжей — Sso1 и Sso2. Оба эти белка оказались родственны семейству синтаксинов, участвующих в синаптическом высвобождении нейромедиаторов у млекопитающих.

В результате вырисовывается картина (табл. 20.1), в соответствии с которой процессы мембранного транспорта в секреторных путях обеспечиваются группой консервативных генов, которые обнаруживаются от дрожжей до нервных клеток млекопитающих. Некоторые из этих генов известны, однако другие Sec гены еще предстоит идентифицировать, причем весь предыдущий опыт подсказывает, что обнаружение генов этой группы у дрожжей может служить надежным предсказанием их функций в клетках мозга млекопитающих (Bennet, Sheller, 1993; Pfeffer, 1994).

Широкое распространение такого молекулярного консерватизма (Albright et al., 2000) означает, что одним из главных условий решения проблемы «нейроэволюции» должно быть установление принципов вовлечения генов, возникших на донервных этапах эволюции, в развитие и обеспечение функций нервной системы у сложно огранизованных организмов.

20.2.2. Важную роль в эволюции нервной системы играли гены, контролирующие ее развитие

Одно из важных открытий молекулярной генетики последних лет состоит в том, что не все гены организма, по-видимому, имели одинаковое значение в механизмах эволюции. Наиболее существенную роль в эволюции органов, в том числе и нервной системы, вероятно, играли те же самые гены, которые контролируют и критические стороны развития этих структур (см. гл. 19). В терминах разделения генов на «селекторные», регулирующие развитие, и «реализаторные», которые в конечном счете обеспечивают построение структур (Tautz, 1996), это в первую очередь «селекторные» гены. Часто эти гены кодируют транскрипционные факторы — белки, регулирующие экспрессию других генов. Типичным примером могут служить го-меобоксные гены.

Гомеобоксные гены кодируют транскрипционные факторы, содержащие консервативный ДНК-связывающий участок из 180 аминокислот и выполняющие разнообразные функции в ходе развития. Они широко представлены у всех эукариот, но претерпели обширную радиацию у ранних многоклеточных, превратившись в ряд гомеобоксных семейств, общих для многих классов многоклеточных. У большинства животных гомеобоксные гены определяют развитие структур вдоль передне-задней оси тела. На ДНК эти гены сгруппированы в комплексы, и позиция генов внутри комплекса коррелирует со временем их экспрессии в развитии и зоной экспрессии вдоль оси тела.

412

К числу таких гомеобоксных генов относятся гены, входящие в состав комплекса antennapedia-bithorax, регуляторные гены, контролирующие развитие структур вдоль передне-задней оси у дрозофилы (рис. 20.1). Однако гомологи этих генов у позвоночных, известные как гены семейства Нох, экспрессируются преимущественно в перекрывающихся доменах спинного и головного мозга (рис. 20.2). Их экспрессия обнаруживается в эмбриональном мозге мышей и человека и имеет выраженную приуроченность к морфологическим сегментам нервной системы. Мутации в определенных Нох генах ведут к нарушениям развития или полному отсутствию соответствующих ромбомер-специфичных нервных структур (Akam, 1995;

Double, Morata, 1994; Krumlaufet al., 1993).

Какую главную проблему рождают эти и другие сходные исследования в быстро развивающейся области эволюционной молекулярной генетики развития? Демонстрируя молекулярное взаимопроникновение механизмов развития и эволюции, они поднимают критический вопрос о принципах преемственности и смены функций генов в условиях эволюционно усложняющейся морфологической организации.

Решение этого вопроса критически зависит от понимания функций генов в процессах естественного отбора.

Рис. 20.1. Нарушения развития при мутациях гомеобоксных генов:

А нормальная дрозофила, имеющая одну пару крыльев (развивающихся из сегмента Т2), и дрозофила мутантная по гомеобоксному гену Ultrabithorax, развивающаяся с двумя парами крыльев (из сегментов Т2 и ТЗ);

Б мутация гомеобоксного гена Antennapedia у дрозофилы, вызывающая развитие конечностей на месте антенн

Рис. 20.2. Роль гомеобоксных генов в формировании мозга позвоночных в эмбриогенезе

(A) — Сагиттальный срез мышиного эмбриона. 8 ромбомеров обозначены r1-r8; III-XII — черепные двигательные нервы; V, VII, IX нервы выходят из заднего мозга через ромбомеры r2, г4 и r6, sc. спинной мозг; т — средний мозг; d промежуточный мозг; t — передний мозг.

(B) — Схематическая иллюстрация областей экспрессии генов семейства Нох-2, Кrох-20 и int-2 (гомолога FGF) в соотношении с локализацией ромбомеров r1-r8.

(C) — Комплекс генов Нох-2 мыши имеет сходную организацию с комплексом гомеобоксных генов Bithorax у дрозофилы

414

20.3. ПРОБЛЕМА НЕЙРОЭВОЛЮЦИИ СВЯЗЫВАЕТ БИОЛОГИЮ С ПСИХОЛОГИЕЙ

Естественный отбор, действующий на гетерогенные по составу популяции организмов, приводит к дифференциальному размножению тех особей, которые имеют преимущества по тем или иным

показателям приспособленности. Измененная отбором популяция имеет и измененные пропорции генов, которые были связаны с признаками, попавшими под действие естественного отбора. В связи с этим, для анализа процессов эволюции в современной эволюционной биологии используют показатель относительного изменения частот генов в популяции. Однако естественный отбор не действует непосредственно на уровне генов. Он происходит на уровне целостных организмов (фенотипов) и их взаимоотношений со средой. Именно в ходе естественного отбора, который действует на функции и структуры, увеличивающие выживаемость или размножение, происходят популяционные изменения частот генов, связанных с этими функциональными системами. Поэтому для понимания механизмов эволюционных преобразований функций генов необходим свод «трансформационных правил», который бы связывал изменения в «пространстве генотипов» с изменениями в «пространстве фенотипов».

С помощью ясного графического анализа известный генетик Р. Левонтин продемонстрировал, что для соотнесения изменения частот генов с реальным процессом естественного отбора требуется набор из четырех таких трансформационных правил (рис. 20.3). Первое (T1) связывает зиготы (G1), через процессы эмбрионального развития, с теми признаками организма, которые несут селективные преимущества. Второе (T2) определяет преобразования зрелых фенотипов на протяжении индивидуальной жизни и связано с экологическими взаимодействиями в процессе борьбы за существование, спаривания и естественного отбора. Третье 3) соотносит фенотипы с образованием половых клеток, законами рекомбинации и другими зависимостями, проецирующими фенотипы на генотипы. Наконец, четвертое (T4) описывает формирование новых зигот (G1) и определяется правилами сортировки генов, такими как законы Менделя и закон Харди-Вайнберга, позволяющими, исходя из родительских генотипов, предсказывать генотипы следующего поколения..

Таким образом, данный набор правил трансформации образует своеобразный «эволюционный цикл». Для нас в этом цикле особенно важны две фазы — T1 и T2, На первой из них происходит развитие функциональных структур организма, обеспечивающих выживание и размножение, а на второй — использование этих структур в ходе естественного отбора. У организмов с высокоразвитой нервной системой фаза T2 тесно связана с механизмами адаптивной модификации сложившихся в развитии функциональных систем или формирования новых, то есть с процес-

415

сами индивидуального обучения (см. гл. 15) и системогенеза новых поведенческих актов (см. гл. 14). Где-то в роли этих процессов в естественном отборе и следует искать решение проблемы нейроэволюции — ответ на вопрос, почему в нервной системе наблюдалась такая концентрация эволюционных генетических изменений?

Особенность анализа этой проблемы в терминах эволюционного цикла состоит в том, что он помещает ее в контекст более широкого круга биологических воп-

Рис. 20.3. Схема путей преобразования генотипа популяции от поколения к поколению [Левонтин, 1978]. Схема показывает, как процессы естественного отбора могут быть связаны с изменением частот генов в популяции. Результаты эволюции проявляются в изменениях пространства генотипов, однако средством эволюционных изменений служат процессы естественного отбора, протекающие в пространстве фенотипов. Вертикальные линии представляют правила трансформации, необходимые для того, чтобы связать гены с развитием и поведением. T1 обозначает развитие; T2 обозначает поведение и модификации взрослого организма в условиях отбора; Т3 представляет формирование гамет; T4 представляет формирование оплодотворенной яйцеклетки, готовой к вступлению в следующий эволюционный цикл

416

росов. Действительно, любой орган и его функции, возникшие в ходе биологической эволюции, должны были создаваться внутри этого цикла. Поэтому, чтобы понять психику как функцию определенной динамической организации структур мозга и тела, следует понять, как эти структуры и их организация возникли в ходе биологической эволюции. Это составляет часть проблемы морфологической эволюции — одной из центральных нерешенных проблем современной биологии. Ее решение, в свою очередь, требует теории эволюции эмбрионального развития, теории, описывающей процессы генерации новых структур в организме.

Наконец, решение этой проблемы не может быть полным, если не включить в нее описание механизмов отбора этих структур соматическим и естественным отбором в процессах, определяемых поведением и психикой. Следовательно, мы оказываемся в своего рода «циркулярной ловушке», выход из которой возможен только при совокупном решении всех составляющих ее вопросов. Вследствие этого, проблема происхождения и адаптивных функций психики и проблема нейроэволюции перестают быть предметом только психологии и наук о мозге. Для решения проблемы нейроэволюции требуется единая теория, связывающая эмбриологию, морфологию, физиологию и психологию. Исследования, учитывающие факт нейроэволюции, обязаны показать, как поведение и опыт вписывают новую морфологию, возникающую при генетически измененном развитии мозга, в процессы адаптации, оцениваемые на весах естественного отбора. Они должны также ответить на вопрос, как две фазы эволюционного цикла — обучение и развитие — связаны с генами и регуляцией их экспрессии в мозге.

В следующих разделах мы рассмотрим некоторый материал, накапливающийся для решения этой проблемы.

20.4. МОЛЕКУЛЯРНАЯ ГЕНЕТИКА УСТАНАВЛИВАЕТ КОНТАКТ МЕЖДУ РАЗВИТИЕМ МОЗГА И НАУЧЕНИЕМ

 

Итак, молекулярно-генетические исследования последних лет показывают, что мозг млекопитающих является самым сложным по генетическому обеспечению органом тела. Более половины генов человеческого генома связаны с его построением или функционированием. Это обстоятельство рождает проблему «нейроэволюции» — вопрос о том, благодаря каким своим свойствам и каким образом мозг накапливал в эволюции такое число работающих в нем генов. Решение этого вопроса должно осуществляться с учетом того, что в мозге работают многие из генов, возникшие еще до появления нервной системы или первоначально не связанные с ее функциями. Многие из этих генов у млекопитающих обеспечивают процессы развития нервной системы и кодируют различные транскрипционные факторы. Приобретение ими мест экспрессии в нервной системе должно было происходить под контролем естественного отбора на их функции в мозге, дающие

417

увеличение преимущества в выживании и/или размножении. Эти функции могли осуществляться на двух фазах эволюционного цикла. Одна из них — формирования видоспецифических адаптивных функциональных систем, а вторая — их модификации и приспособление к меняющимся условиям среды за счет поведения и индивидуального обучения. Поэтому для решения проблемы нейроэволюции и построения биологического фундамента психологии первостепенное значение приобретает изучение генетических основ обучения, развития нервной системы и молекулярно-генетического взаимодействия этих двух доменов.

Установление этих связей сталкивается со сложностями, поскольку и биология развития, и физиология научения, каждая имеют свою независимую историю, свои традиции, свои методы и подходы. Нейрофизиология поведения, научения и памяти долгое время оперировала в основном электрическими процессами, активностью отдельных нейронов, изучала механизмы регуляции эффективности синаптической передачи (гл. 2, 14, 15). В биологии развития традиционно господствовало изучение морфогенетических полей, градиентов, организаторов, взаимодействий слоев клеток. Исследования в этих дисциплинах очень незначительно перекрывались и на шкале индивидуального развития организма. Однако новые данные молекулярной генетики дают основание считать, что граница между развитием нервной системы и научением в действительности гораздо менее отчетлива, чем это считалось ранее.

Наиболее конструктивным для установления контакта между физиологией научения и биологией развития, оказалось исследование молекулярных основ консолидации долговременной памяти.

20.4.1. Формирование нового опыта требует экспрессии генов в мозге

Современные представления о молекулярно-биологических механизмах обучения и памяти строятся на положении о кратковременной и долговременной формах хранения информации в мозге (гл. 6). В основе этой теории лежит открытие Г. Мюллера и А. Пильзекера, обнаруживших в 1900 г., что переход из кратковременной и легко нарушаемой памяти в долговременную и устойчивую память происходит у человека в течение первого часа после получения им новой информации. Они назвали этот процесс консолидацией памяти (Muller, Pilzecker, 1900).

Основным шагом в понимании биологических механизмов консолидации памяти стало открытие 1960-х гг., показавшее, что переход памяти из кратковременной в долговременную форму требует синтеза новых

418

молекул РНК и белка, т.е. экспрессии генов. Было установлено, что волна синтеза новых белков в клетках при запоминании информации совпадает с периодом консолидации памяти, обнаруженным Мюллером и Пильзекером, а химическая блокада экспрессии генов в этот период нарушает образование долговременной памяти (Davis, Squire, 1984). Оказалось также, что «критическое окно» амнестическогр действия блокаторов экспрессии генов универсально для самых разных видов обучения и различных организмов, от беспозвоночных до человека (Goelet et al., 1986). Данное предположение также хорошо согласовывалось с гипотезой об участии клеточного роста и изменения морфологии синапсов в долговременной памяти (Tanzi, 1893; НеЬЬ, 1949).

Таким образом, понятие долговременной памяти постепенно трансформировалось из условного обозначения относительной продолжительности явления в компонент биологической концепции, связывающей научение и опыт с морфогенезом и развитием (Bailey, Kandel, 1994). Критическим звеном этой концепции стал молекулярный механизм консолидации памяти, отождествляемый с активацией транскрипции генов в нервных клетках при научении. Однако то, какие именно гены активируются в при научении и каковы их функции в нервных клетках, долгое время оставалось неизвестным.

20.4.2. При научении в мозге активируются гены транскрипционных факторов

Первыми генами, активация которых была обнаружена в мозге при обучении, оказались так называемые «непосредственные ранние гены», кодирующие транскрипционные факторы.

«Непосредственные ранние гены» были впервые обнаружены при изучении механизмов геномного ответа на действие факторов роста, запускающих процессы клеточного цикла (Greenberg, Ziff, 1984; Lau, Nathans, 1985). Индукция их транскрипции происходила несмотря на подведение ингибиторов синтеза белка, то есть строилась на механизмах, заранее готовых для восприятия экстраклеточных стимулов. Первые из идентифицированных продуктов генов данного семейства оказались ядерными белками, связывающимися с ДНК и регулирующими транскрипцию других генов. По этим свойствам данные гены значительно напоминали группу «непосредственных ранних генов» бактериофагов и эукариотических ДНК-вирусов, поэтому, по аналогии с вирусными генами, эта группа быстро активирующихся генов получила название «клеточных непосредственных ранних генов» (Lau, Nathans, 1985). Это же семейство часто обозначается как «гены первичного ответа», «гены раннего ответа» или просто «ранние» гены (Анохин, 1997).

Одним из первых в данной группе был клонирован ген c-fos. Его структура и свойства хорошо изучены, и он может служить прототипом генов данного семейства. Первоначально было установлено, что в

419

ходе эмбрионального развития c-fos играет важную роль в регуляции процессов клеточного роста и пролиферации. Оказалось также, что один белок, кодируемый геном c-fos, сам по себе не может инициировать или подавить транскрипцию генов-мишеней, необходимых для инициации клеточного деления или дифферен-цировки. Он должен образовать димеры с молекулами других транскрипционных факторов, объединяемых в семейство, получившее название АР-1 (Curran, Morgan, 1987). Помимо c-fos в это семейство входят fos-B, c-jun, jun-B, jun-D, fra-1, fra-2 и ряд пока еще не идентифицированных генов. Кроме того, были клонированы и другие ранние гены, такие как ets-1, ets-2, Мус, Myb, Krox-20, zif/286, NGFI-B, mKr2, Arg3.1 (Sheng, Greenberg, 1990; Herdegen, Leath, 1998). Продукты многих из них, хотя и не всех, также являются регуляторными белками, контролирующими транскрипцию. Гены, экспрессия которых находится под контролем индуцируемых транскрипционных факторов, были названы, по аналогии с вирусными системами, «поздними» генами, «генами позднего ответа» или «эффекторными» генами (Curran, Morgan, 1987), а весь двухфазный механизм регуляции транскрипции с участием этих двух классов генов является одним из наиболее универсальных способов обеспечения процессов клеточного деления и роста в развитии (рис. 20.4).

Рис. 20.4. Двухфазная регуляция транскрипции генов в клетке с помощью продуктов «ранних» генов.

Внеклеточные стимулы (гормоны, факторы роста, нейромедиаторы) могут вызвать активацию транскрипции «ранних» генов, включая гены c-fos и c-jun. Воздействие экстраклеточных сигналов на промоторы этих генов осуществляется посредством вторичных мессенджеров. Fos,Jun и ряд других белков этого семейства синтезируются в цитоплазме и быстро траспортируются в ядро, где могут образовывать гетеро- и гомодимерные комплексы. Эти комплексы обладают специфической ДНК-связывающей активностью и способны изменять транскрипцию других генов-мишеней («поздних» генов)

420

Таблица 20.2 Особенности экспрессии непосредственных ранних генов (НРГ) в мозге при обучении

№ п/п

Свойства экспрессии непосредственных ранних генов в мозге

1

В мозге взрослых животных, находящихся в «спокойных» условиях, транскрипция большинства НРГ находится на низком, часто недетектируемом уровне

2

В условиях, ведущих к процессам научения, — при потере результативности ранее выработанных действий животного, при новых и неожиданных воздействиях среды или исчезновении привычных и ожидаемых событий — происходит быстрая активация транскрипции НРГ в нервной системе

3

Активация транскрипции НРГ начинается сразу после попадания животных в ситуацию обучения

4

Экспрессия НРГ при научении происходит в нервных, но не глиальных клетках

5

Паттерны распределения клеток, экспрессирующих ранние гены, имеют генерализованный характер и охватывают обширные районы мозга. Конкретная топография экспрессии определяется характером воздействия и задачами обучения

6

Экспрессия НРГ регулируется обучением в разные сроки постнатального развития, от рождения до взрослого возраста

7

Активация НРГ затухает по мере потери новизны воздействия или после завершения выработки и автоматизации нового навыка. Обыденная поведенческая активность животных, выполнение ими приобретенных автоматизированных навыков, действие знакомых им сигналов и событий или нахождение животных в привычной им среде, не требующей обучения, не сопровождаются экспрессией НРГ в нервной системе

В середине 1980-х гг. несколько исследовательских групп обнаружили экспрессию гена c-fos в мозге обучающихся взрослых животных. Это повлекло за собой широкий спектр исследований участия этого и других «непосредственных ранних генов» в самых разных задачах обучения. Некоторые из результатов этих исследований суммированы в таблице 20.2.

Прямое подтверждение критической роли экспрессии гена c-fos в формировании памяти дали эксперименты с избирательной блокадой его активности в мозге (Mileusnic, Anokhin, Rose, 1996; Lamprecht, Dudai, 1996; Grimm et al., 1997). Эти опыты показали, что подавление трансляции мРНК c-fos в структурах мозга нарушает долговременную, но не кратковременную память в различных моделях обучения и у разных видов животных.

Сходные данные были получены и для других членов семейства непосредственных ранних генов (Anokhin, 1997; Herdegen, Leath, 1998). Общее же число кандидатных генов «пластичности», индуцируемых в нервной системе, по некоторым оценкам, может составлять до 1000 и кДНК, библиотека из около 500 из них была приготовлена (Nedivi et аl., 1993).

421

20.4.3. Вслед за активацией «ранних» генов при научении происходит экспрессия «поздних» генов

Как уже упоминалось, многие «ранние» гены кодируют транскрипционные факторы, регулирующие активность наборов эффекторных «поздних» генов. Поэтому, если долговременные изменения в мозге при формировании памяти действительно инициируются продуктами «ранних» генов, то геномный ответ нервных клеток на обучение должен быть таким же, как и у других клеток на факторы роста — т. е. двухфазным: вначале должна происходить экспрессия ранних генов, а затем активация регулируемых ими генов-мишеней. Еще в 1969 г. предположение о подобной двухстадийпой активации генома при научении высказал Э. Глассман: «Можно предположить следующую последовательность химических событий, которые ведут к консолидации долговременной памяти: белок-1 —> РНК —> белок-2... Образование белка-1 основывается на сообщении о том, что у золотых рыбок пуромицин одновременно предотвращает изменения синтеза РНК и нарушает память. Если окажется, что правильны другие объяснения этого феномена, то данный белок можно будет с легкостью исключить из схемы. Пока же соблазнительно предположить, что этот белок является активатором специфических генов, которые кодируют РНК, образующуюся на следующем этапе» (Glassman, 1969,с. 635).

И действительно, при стимуляции нервной системы транскрипционные факторы, кодируемые «ранними» генами, инициируют «вторую волну» синтеза белка, которая начинается через несколько часов после первоначального воздействия (Анохин, 1997). Так, при исследовании динамики синтеза РНК и белка в гиппокампе крыс после обучения активному избеганию было обнаружено, что увеличение включения радиоактивных предшественников возрастает в течение первого часа после сеанса, потом падает и приблизительно 3 часа находится на контрольном уровне, а затем, на 6-10 часу, вновь существенно возрастает (Pohle, Matthies, 1974; Ruthrich et al., 1974; Popov et al., 1976). В полном соответствии с этим обстоятельством, введение в мозг ингибитора синтеза белка анизомицина через 3-5 часов после обучения нарушает консолидацию долговременной памяти (Tiunova et al., 1998). При этом сами гены транскрипционных факторов, таких как c-fos и c-jun, во время второй фазы синтеза РНК не экспрессируются (Анохин, 1997).

Какие же эффекторные гены активируются в мозге под воздействием индуцируемых транскрипционных факторов?

422

20.4.4. В составе второй волны экспрессии генов при научении активируются морфорегуляторные молекулы

Среди «поздних генов» лучше всего исследованы мишени транскрипционных белков fos/jun, имеющие участки связывания с АР-1 элементами ДНК. АР-1 элемент присутствует в промоторных областях большого числа генов, многие из которых активируются в ответ на разнообразные экстраклеточные воздействия (Sheng, Greenberg, 1990). В число генов, содержащих AP-1 участок, входят, например, гены препроэнкефалина, S-100, нейрофиламентов, тирозингидроксилазы и N-CAM (Prentice et al., 1987; Lindenbaum et al„ 1988; Masiakowski, Shooter, 1988; Sonnenberg et al., 1989; Sheng, Greenberg, 1990).

Гены молекул N-CAM (neural cell adhesion molecules), относящиеся к семейству генов молекул клеточной адгезии, представляют в этом отношении особый интерес. Молекулы клеточной адгезии, или «морфорегуляторные молекулы» (Edelman, 1988), экспрессируясь на поверхности клеточных мембран, регулируют агрегацию и дисагрегацию клеток в процессах развития (Edelman, Jones, 1995). Блокада экспрессии или связывания молекул клеточной адгезии ведет к нарушениям морфогенетических паттернов в развитии. Ген N-CAM экспрессируется как в эмбриональном, так и во взрослом мозге. Мыши с направленной мутацией гена N-CAM имеют измененнную морфологию мозга, нарушения поведения и обучения (Tomasievich et al., 1993; Cremer et al., 1995).

Особенно интересно, что функционально активные молекулы клеточной адгезии образуются во время второй волны синтеза белка после обучения (Scholey et al., 1993, Mileusnic et al., 1995). Антитела к молекулам клеточной адгезии способны вызвать у животных амнезию только при введении в течение строго фиксированного критического периода после обучения. Этот период охватывает интервал от 6 до 8 часов после обучения у крыс (Doyle et al., 1992) и от 4 до 6 часов у цыплят (Mileusnic et al., 1995; Scholey et al., 1995), и совпадает со временем, когда после обучения должны активироваться гены-мишени для продуктов ранних генов. В совокупности с тем, что гены N- САМ несут в своих промоторах AP-1 элементы, связывающиеся с транскрипционными факторами семейства fos/jun, это дает основания полагать, что они включаются при обучении в каскад молекулярных событий, индуцируемых «ранними» генами. В результате реактивации во взрослом мозге этих и других контролирующих развитие морфорегуляторных молекул нервные клетки могут прибретать при формировании нового опыта способность к перестройке своих синаптических контактов и специализации относительно вновь образующихся функциональных систем (Rose, 1995; Анохин, 1996,1997).

423

20.5. НА МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКОМ УРОВНЕ НАУЧЕНИЕ СОСТАВЛЯЕТ С РАЗВИТИЕМ ЕДИНЫЙ КОНТИНУУМ

Таким образом, при научении в нервных клетках наблюдается следующая последовательность молекулярно-генетических процессов. Вначале рассогласование текущей ситуации с имеющимся опытом запускает активацию каскада «ранних» регуляторных генов в группах клеток, опосредующих эти процессы. Продукты «ранних» генов индуцируют, в свою очередь, экспрессию «поздних» генов, в том числе генов морфорегуляторных молекул, являющихся ключевыми участниками процессов морфогенеза при эмбриональном развитии. Эти и другие эффекторные гены стабилизируют участие нейронов в новой, сложившейся в результата обучения, функциональ-

424

ной системе. При этом основные молекулярно-генетиче-ские элементы и этапы молекулярного каскада дифференцировки клетки оказываются чрезвычайно сходными при научении и развитии (рис. 20.5). В определенном смысле мы можем сказать, что на молекулярном уровне научение выступает как непрекращающийся процесс развития (Анохин, 1996).

Однако механизмы регуляции экспрессии генов при научении имеют одно чрезвычайно важное отличие от сходных процессов в развитии.

Рис.20.5. Общность молекулярных механизмов регуляции экспрессии генов при развитии нервной системы и научении

20.6. НА СИСТЕМНОМ УРОВНЕ АКТИВНОСТЬ «РАННИХ» ГЕНОВ В МОЗГЕ ПРИ НАУЧЕНИИ ПЕРЕХОДИТ ПОД КОГНИТИВНЫЙ КОНТРОЛЬ

Выше уже упоминалось, что вопрос о том, вызовет или нет какая-либо поведенческая ситуация экспрессию «ранних» генов в клетках мозга, критическим образом зависит от содержания прошлого индивидуального опыта животного и определяется фактором субъективной новизны данного события (см. табл. 20.2). Это хорошо видно из следующего эксперимента.

Мышей помещали в камеру, где они получали серию неизбегаемых электрокожных раздражений. Это вызывало у них массивную активацию экспрессии гена c-fos в ряде структур головного мозга — коре, гиппокампе и

мозжечке. Однако, после того как животных регулярно подвергали этому воздействию на протяжении шести дней, в конце концов та же самая процедура, связанная с аверсивной стимуляцией, переставала вызывать активацию c-fos в клетках мозга. Хотя животные продолжали подвергаться электрокожному раздражению, это воздействие утеряло свою новизну и перешло в категорию ожидаемых событий в системах их индивидуального опыта. Таким образом, экспрессия c-fos в данных условиях вызывается вовсе не внешними стимулами, действующими на мозг, а их несоответствием материалу инидивидуальной памяти. Наиболее демонстративно это можно было увидеть на животных специальной группы, которым наносили раздражение на протяжении пяти дней, а на шестой день помещали их в ту же камеру, но электрокожную стимуляцию они в ней не получали. Это отсутствие стимуляции вызывало на первый взгляд парадоксальный эффект — животные данной группы демонстрировали значительную активацию экспрессии гена c-fos в мозге, особенно в гиппокампе (Anokhin et а1., 1991).

Описывая эту закономерность в терминах теории функциональных систем (см. гл. 14), можно сказать, что экспрессия «ранних» генов в клетках головного мозга

425

бодрствующего взрослого животного наступает при условии рассогласования обстановочной, пусковой или мотивационной афферентации с акцептором результатов действий в какой-либо из врожденных или приобретенных функциональных систем организма. Другими словами, это означает, что активность «ранних» генов в поведении является производной от системных процессов сличения афферентации и содержания индивидуального опыта на нейронах головного мозга, процессов, которые определяются фактором новизны, то есть категорией субъективной оценки организмом среды и собственного поведения.

Следовательно, взаимоотношение процессов развития нервной системы и научения требует описания на двух различных уровнях. На уровне регуляции экспрессии генов научение действительно составляет с развитием мозга единый континуум. В обоих случаях дифференцировка нервных клеток зависит от активации в них определенных транскрипционных факторов. Некоторые из этих белков кодируются семейством «ранних» генов. Активация этих генов и в развивающемся и обучающемся мозге осуществляется посредством факторов роста, медиаторов и гормонов. Вслед за экспрессией транскрипционных факторов наступает вторая волна активации «поздних» или эффекторных генов. Белковые продукты этих генов выполняют разнообразные функции в нервных клетках. В частности, молекулы клеточной адгезии и другие синаптические белки изменяют связи нейрона, устанавливая функциональную специализацию клетки в системе межклеточных отношений. Сходство молекулярных механизмов клеточной специализации на границе между завершающими стадиями созревания нервных связей и началом их модификации в поведении настолько велико, что, пользуясь одними лишь критериями молекулярного анализа, часто невозможно определить, относится ли рассматриваемый клеточный процесс к развитию или к научению.

Однако демаркация между процессами развития и научения отчетливо выявляется при системном анализе проблемы. Если на уровне молекулярных механизмов регуляции транскрипции научение действительно выступает как продолжающийся процесс развития, то на системном уровне управление этим клеточным процессом претерпевает фундаментальную трансформацию. Оно переходит из-под контроля только локальных клеточных и молекулярных взаимодействий под контроль более высокого порядка — общемозговых ннтегративных процессов, которые протекают в функциональных системах, составляющих индивидуальный опыт организма.

20.7. МОЗГ, ПСИХИКА И ЭВОЛЮЦИЯ ГЕНОМА: НА ПУТИ К ТЕОРИИ НЕЙРОЭВОЛЮЦИИ

Сказанного в настоящей главе достаточно, чтобы увидеть, что мы находимся только на самых начальных подступах к решению проблемы нейроэволюции — пробле-

426

мы, которая связывает системы мозга, опосредующие участие психики и сознания в процессах естественного отбора, с эмбриональным развитием нервной системы, генами и морфологической эволюцией. Однако уже сегодня мы можем определить основные направления решения этой проблемы и те элементы, из которых должна складываться полноценная теория нейроэволюции.

Ясно, что в эволюции мозга, как и других органов тела, критическую роль играли регуляторные гены, определяющие процессы эмбрионального развития. По-видимому, к таким генам относятся прежде всего гены различных транскрипционных факторов и морфорегуляторных молекул. Но, в отличие от других соматических органов, в созревшем мозге многие из этих генов вновь активируются — в ситуациях новизны и научения. Вследствие этой реактивации нейроны фиксируют свое участие во вновь образующихся функциональных системах за счет долговременного изменения своих синаптических связей. В результате в нервной системе морфогенез по сути никогда не прекращается.

Таким образом, в отношении мозга две фазы эволюционного цикла — созревание (первичный системогенез) и адаптивные модификации (вторичный системогенез) функциональных систем,

Рис. 20.6. Связь и генетическое родство процессов первичного системогенеза (созревания функциональных систем) и вторичного системогенеза (адаптивной модификации существующих функциональных систем и возникновения новых систем при научении (см. гл. 14, разд. 7.9) процессах системной специализации ) в эволюционном цикле

обеспечивающих дифференциальное выживание, — оказываются тесно связанными на уровне механизмов регуляции экспрессии генов (рис. 20.6).

Такое сходство естественно заставляет думать об интенсивных эволюционных взаимодействиях и переходах между двумя этими доменами.

Есть основания полагать, что именно на путях исследования этих взаимодействий может быть получен ответ на один из наиболее сложных и захватывающих вопросов современной науки — как в ходе филогенеза мозг стал органом, определяющим эволюцию генома?

В решении этого вопроса критическую роль играет то, что на стадии вторичного системогенеза экспрессия генов в мозге оказывается под контролем системных когнитивных процессов, эффективность которых постоянно оценивается естественным отбором.

Глава 21. КЛИНИЧЕСКАЯ ПСИХОФИЗИОЛОГИЯ

21.1. ПРЕДМЕТ И ЗАДАЧИ

Освещение проблем психофизиологии не может считаться достаточно полным, если оно не включает раздела, посвященного психической патологии. Еще И. П. Павлов считал, что психиатрия является как бы физиологическим экспериментом, поставленным самой природой.

С одной стороны, достижение конечной цели психиатрии, то есть понимание природы психических заболеваний, нахождение методов их диагностики и лечения, невозможно только через наблюдения, анализ и обобщение клинического материала. Необходимое понимание тех глубинных мозговых процессов, которые проявляются в психопатологии, тесно связано с развитием современных инструментальных методов исследования мозга, среди которых особая роль принадлежит картированию электроэнцефалограммы (ЭЭГ) и другим методам «нейроимиджинга», или «визуализации живого мозга». Эти методы вкратце описаны в главе 2.

С другой стороны, изучая патофизиологию когнитивных и эмоциональных процессов и сопоставляя ее с нарушениями этих функций при шизофрении и депрессии, можно обнаружить некоторые нейрофизиологические механизмы, которые как бы «скрыты» от глаз исследователя в норме, но «обнажены» у больных.

429

21.2. МЕТОДЫ ИССЛЕДОВАНИЯ

21.2.1. История развития

Начиная с 1929 г., когда Ганс Бергер открыл ЭЭГ, и до 1960-х гг., когда была разработана и стала популярной методика исследования вызванных потенциалов (ВП) мозга, исследование ЭЭГ было важным методом в нейрофизиологии. С появлением компьютерной техники в 1980-х гг. стало возможным схематически проецировать электрические поля на поверхность головы, что положило начало развитию методов «нейроимиджинга», или визуализации структур и функциональных процессов мозга человека, что имеет особо важное значение для клинической психофизиологии.

21.2.2. Методы «визуализации живого мозга»

Сюда относятся методы, определяющие структурные изменения мозговой ткани, — компьютерная томография (КТ) и магнитно-резонансная томография (МРТ); методы, оценивающие функциональное состояние ЦНС, — позитронно-эмиссионная томография (ПЭТ), анализ скорости мозгового кровотока (СМК), который можно также изучать с помощью однофотонной эмиссионной компьютерной томографии (СПЕКТ), и функциональная магнитно-резонансная томография (фМРТ), а также компьютеризованная электроэнцефалографическая топография (КЭТ). Отображение активностей сразу многих областей мозга, позволяющее визуализировать и оценить различия в уровнях активирования этих областей, часто называют «картированием мозга» и также применяют для исследования таких процессов, как внимание, память, различные виды мышления.

21.2.3. Картирование мозга

В случае, когда для картирования используется отведение медленной электрической активности мозга, получаемое изображение отражает постоянно меняющееся пространственное распределение электрических полей по поверхности головы. Первым преимуществом подобного картирования мозга является то, что оно основано на количественном анализе ЭЭГ и компьютерной технике. Оно может с успехом применяться только в тех случаях, если исследователь является хорошим специалистом в области клинической электроэнцефалографии. Вторым преимуществом является представление результатов этого анализа в наглядной, легкой для понимания форме. Необходимым требованием к методу является применение ста-

430

тистических тестов, позволяющих судить об уровне значимости полученных данных. Третье преимущество состоит в том, что картирование — метод, имеющий высокую разрешающую способность. Этот метод постоянно развивается и совершенствуется. Наряду с картированием спектральной мощности ритмов ЭЭГ недавно появился метод картирования внутрикорковых связей, который будет описан ниже.

Особое значение метод картирования мозга имеет для исследования психической патологии, при которой нарушается топографическое распределение биопотенциалов. Многочисленные исследования последних лет показывают, что методы «визуализации живого мозга», о которых говорилось выше, способствовали прогрессу в понимании мозговых основ психических процессов [Maurer, Dierks, 1991]. Патологические изменения психики могут возникать под влиянием множества факторов. В настоящей главе мы рассмотрим те из них, которые возникают при так называемых «функциональных психозах», т. е. в случаях, когда отсутствует явное органическое поражение головного мозга (травма, опухоль, сосудистые нарушения), причем остановимся только на двух основных функциональных психозах — шизофрении и депрессии.

21.3. ШИЗОФРЕНИЯ

21.3.1. Краткая характеристика заболевания

Название «шизофрения» дал этой болезни Э. Блейлер, который обнаружил ее наиболее существенный признак — группу нарушений психики, проявляющихся в расстройствах восприятия, мышления, эмоций, поведения и «расщеплении психики». Последняя, характерная, особенность и есть перевод с греческого языка термина «шизофрения», который происходит от двух корней — «расщепляю» и «душа» или «ум». Имеется целый ряд клинических признаков (прежде всего), а также нейрохимических, психологических, нейрофизиологических; существует целый ряд теорий шизофрении, но ни одна из них не может пол-

431

ностью объяснить все проявления этого заболевания, так как этиология шизофрении остается неизвестной. В данной главе будут изложены нейрофизиологические методы исследования.

В настоящее время адекватным является синдромальный подход к изучению психофизиологии шизофрении, в соответствии с которым больные могут быть разделены на группы по преобладанию позитивных или негативных симптомов [Andreasen, 1983, 1984]. К позитивным симптомам относятся бред и галлюцинации, которые иногда определяют как синдром «нереальности», а также тревожность и повышенная эмоциональная напряженность, которые можно выделить как «активный синдром» [Gruzelier, 1996]. К негативным симптомам относятся эмоциональное уплощение, социальная изоляция и обеднение, или «дефект», личности. Больные первой группы, характеризующиеся острой симптоматикой, имеют более сохранную психику и лучший прогноз, чем больные второй группы, которые, как правило, имеют длительное хроническое или особо неблагоприятное течение с быстро развивающимся дефектом личности; эти больные хуже поддаются терапии и имеют неблагоприятный прогноз.

21.3.2. Некоторые особенности мозговых структур и их функций при шизофрении

Названные выше методы визуализации живого мозга дают ценную информацию о состоянии некоторых структур мозга. Наибольшие изменения при шизофрении наблюдаются со стороны лобных и височных областей коры, зрительного бугра, миндалины, гиппокампа; имеют также место увеличение объема желудочков мозга и уменьшение мозолистого тела [Downhill, Buchsbaum, 2000].

Изменения объема зрительного бугра указывают на нарушения сенсорно-перцептивных процессов, которые и выявляются при исследовании ВП мозга. У больных шизофренией было обнаружено снижение амплитуды поздних компонентов соматосенсорного ВП, особенно волны Р ggg [Стрелец, 1968, 1989; Ива-ницкий, Стрелец, 1973; Шагас, 1975]. За последнее десятилетие выявлены также изменения и более ранних компонентов ВП, которые рассматриваются как нарушение при шизофрении «фильтрации» сенсорного входа [Gruzelier, 1996, 1999]. В главе 11 описан механизм информационного синтеза, который нарушен при шизофрении.

432

Ряд работ выявил нарушение уровня активации различных областей коры головного мозга при шизофрении: понижение активации левого полушария по сравнению с правым [Flor-Henry, 1983] и разный уровень активации лобных областей правого и левого полушарий. При помощи нейропсихологических тестов было обнаружено [Gruzelier, 1994], что больные с позитивными симптомами лучше, чем здоровые выполняли тесты на вербальную, а больные с негативными — на невербальную (пространственную) кратковременную память. Отсюда был сделан вывод, что у первых более высокий уровень активации височно-гиппокампальных областей левого полушария, а у вторых — правого. В дальнейшем асимметрия межполушарной активации при шизофрении получила подтверждение методами визуализации живого мозга.

21.3.3. Картирование спектральной мощности ритмов ЭЭГ при шизофрении

Анализ спектральной мощности ритмов ЭЭГ производится на основе регистрации ЭЭГ. Для выявления патологической картины распределения биоэлектрической активности мозга при шизофрении необходимо исследовать как группы больных, так и здоровую контрольную группу испытуемых. Желательно, чтобы все больные были без медикаментозного лечения или не получали его не менее чем семь дней до исследования.

В исследовании, проведенном нами, регистрация ЭЭГ осуществлялась от 16 отведений по системе 10-20 с референтными электродами на мочках прилегающих ушей. Фрагменты ЭЭГ подвергаются быстрому преобразованию Фурье с последующим усреднением. Карты строятся методом интерполяции на основании пространственного распределения мощности ритмов ЭЭГ для каждого отведения во всех частотных диапазонах.

Спектральная мощность ритмов ЭЭГ исследуется в покое (при закрытых глазах) и в когнитивной пробе, направленной на исследование взаимодействия полушарий. Эта проба включала одновременно и умственный счет, и пространственное воображение — от испытуемых требовалось устно подсчитать время по воображаемому циферблату, например от пяти часов вечера сегодняшнего дня до восьми часов утра вчерашнего. Обнаружено, что мощность альфа-ритма в затылочных областях в норме симметрична, в то время как у больных шизофренией имеет место выраженная асимметрия, причем направленность асимметрии у двух исследованных групп — противоположна. У больных с позитивной симптоматикой мощность альфа-ритма

433

выше в левой затылочной области (01), а с негативной — в правой (02) (рис. 21.1). Коэффициент асимметрии для альфа-ритма в затылочных областях при шизофрении с позитивными и негативными симптомами равен 9,0 и -14,5, соответственно. Эти различия достоверно, хотя и разнонаправленно отличаются от нормы (где коэффициент 1,9 — не значим). При открывании глаз асимметрия у больных шизофренией становилась достоверной и в париетальных областях, и сохранялась такой же при выполнении пробы. Таким образом, у подгруппы больных с позитивной симптоматикой мощность альфа-ритма в левом заднем квадранте выше, чем в нравом (рис. 21.1,5), что может указывать на повышенную активацию правого заднего квадранта. У больных с негативной симптоматикой, напротив, мощность альфа-ритма выше в правом заднем квадранте (рис. 21.1,5), что указывает на повышенную активацию теменно-затылочных областей левого полушария. Как

Рис. 21.1. Распределение спектральной мощности альфа-ритма у здоровых (1), больных с «позитивными» (2) и «негативными» (3) симптомами в покое (А), при открывании глаз (Б) и во время выполнения когнитивной пробы (В). Шкала в правой части рисунка указывает численное значение показателя спектральной мощности

434

показали исследования Дж. Грузелье [Gruzelier, 1994,1996], у больных шизофренией с позитивными и негативными симптомами асимметрия обнаруживается в передних корковых квадрантах. Обнаруженная асимметрия активации определенных зон коры и несоответствие ее уровня в передних и задних мозговых областях, по-видимому, обусловливаег также нарушение их частотного соответствия. Эти исследования легли в основу нового направления в картировании мозга при шизофрении — картирования внутрикоркового взаимодействия на различных «резонансных» частотах.

21.3.4. Картирование внутрикоркового взаимодействия при шизофрении

Шизофрения — заболевание, которое связано, в основном, не с поражением определенных структур мозга, а с нарушением взаимоотношений между этими структурами, с их функциональной дезинтеграцией. Электрофизиологически нарушения взаимоотношений между мозговыми структурами изучаются с помощью методов синхронизации биопотенциалов [Ливанов, 1972], корреляционного анализа [Монахов, Стрелец, 1970], когерентности [Болдырева, 1992; Weiss, Rapplesberger, 2000] и картирования внутрикорковых связей [Иваницкий, 1990].

Когерентность — степень синхронизации, основанная на оценке интеграции между различными отделами мозга на частоте, усредненной для всего частотного диапазона у каждого испытуемого. М. Н. Ливанов [1972] считал, что синхронизация создает условия для возникновения функциональной связи и, возможно, является выражением этой связи.

А. М. Иваницкий [1990] разработал метод картирования внутрикорковых связей (Intracortical Interaction Mapping, ИМ), который основан на идее М. Н. Ливанова о том, что точное совпадение (синхронизация) по частоте компонентов спектров ЭЭГ различных корковых областей указывает на наличие связей между ними. Процедура, используемая для данного метода, состоит в следующем. После быстрого преобразования Фурье спектры мощности подвергают трехкратному сглаживанию, затем компьютер определяет три наиболее высоких но амплитуде пика в каждом из диапазонов ЭЭГ. Пики определяют как спектральные точки, амплитуда которых больше, чем амплитуда двух соседних точек. Благодаря процедуре сглаживания обычно в каждой такой полосе остаются по два-четыре спектра. Путем сопоставления выявляются пики, которые точно совпадают по частоте в данном и каждом из остальных отведений. После этого для каждой области и для каждого диапазона ЭЭГ подсчитывается число совпадающих пиков. Это число затем нормализуется путем деления числа совпадающих пиков на число электродов минус единица, чтобы избежать

435

влияния числа используемых электродов на характеристики взаимодействия. На основе этих данных методом интерполяции строится карта мозга, на которой корковые зоны, отличающиеся по числу связей с другими областями, соединяются «стрелками».

Нами разработана модификация этого метода [Стрелец и др., 2000], которая заключается в том, что после нахождения пиков, совпадающих по частоте в отведениях от различных областей, связи между этими пиками не усредняются, а по вероятности их появления выделяются наиболее типичные из них; достоверность этих связей определяется по методу Монте-Карло.

21.3.5. Взаимосвязи между корковыми областями на высокочастотном бета-ритме

Наибольший интерес представляет собой проблема взаимосвязей на высокочастотном бета-ритме, поскольку на этой частоте, согласно последним данным, осуществляется взаимодействие (binding) между различными отделами мозга во время сенсорно-перцептивных процессов, при когнитивной деятельности и мышлении [Basar, 1992; Whittington et al, 1997; Traub et al., 1996] (гл. 8 ).

При шизофрении архитектура внутрикорковых связей на высокочастотном бета-ритме значительно отличаются от нормы. На рис. 21.2 приведены результаты нашего исследования когерентности у групп здоровых (верхний ряд), больных шизофренией с позитивными симптомами (средний ряд) и больных шизофренией с негативными симптомами (нижний ряд). Как видно из рисунка, у здоровых в состоянии покоя имеется только две межполушарных связи — между центральными и затылочными областями. При выполнении когнитивного задания количество межполушарных связей у здоровых увеличиливается до восьми, причем наряду с прямыми связями — между всеми гомологичными отведениями — наблюдаются также «косые» связи — между лобными отведениями каждого из полушарий с центральными отведениями противоположных полушарий, а также между левым центральным и правым теменным и между правым теменным и левым затылочным отведениями.

Рис. 21.2. Взаимосвязи на высокочастотном бета-ритме у здоровых (1), больных с «позитивными» (2) и «негативными» (3) симптомами, полученные методом когерентности в покое (А) и во время выполнения когнитивного задания (Б). Шкала в нижней части рисунка соответствует частотам, на которых обнаруживаются связи

У больных шизофренией обеих групп с помощью этого метода удалось выявить полное отсутствие межполушарных связей на высокочастотном бета-ритме как в состоянии покоя, так и при выполнении когнитивной пробы.

Таким образом, феномен «связывания» различных, пространственно удаленных мозговых областей коры в процессе когнитивной деятельности при шизофрении нарушен. Подобные нарушения интеграции у больных шизофренией описаны в современной литературе [Bennet, 1997; Gruzelier, 1999], однако в этих и приведенных выше работах давались пробы на одно из полушарий, тогда как в нашем

Рис. 21.3. Связи на высокочастотном бета-ритме у здоровых (/), больных с «позитивными» (2) и «негативными» (3) симптомами, полученные при картировании усредненных связей в покое (Л) и во время выполнения когнитивного задания (Б). Шкала в нижней части рисунка соответствует частотам, на которых обнаруживаются связи

437

исследовании предъявлялась проба, специально направленная на исследование интеграции между двумя полушариями. Можно предполагать, что дезинтеграция, «разрыв» большого числа нейронных связей, в большей степени межполушарных, по-видимому, обусловливает неспособность больных шизофренией к адекватной активации корковых областей в условиях когнитивной деятельности.

Методом исследования внутрикорковых связей [Иваницкий, 1990] (с вычислением средней по группе частоты) были получены данные, сходные с теми, которые получены методом когерентности, однако у обеих групп больных было выявлено по одной межполушарной связи при выполнении когнитивной деятельности — между затылочными областями (рис. 21.3). Интересно, что в состоянии покоя у больных первой группы имелись четыре межполушарных связи, которые парадоксальным образом исчезли при выполнении задания. Полученные этим методом данные в основном подтверждают вывод о нарушении межполушарных связей при шизофрении и, кроме того, позволяют отметить еще два момента. Во-первых, наличие одной межполушарной связи у каждой группы больных свидетельствует о большей чувствительности метода исследования усредненных внутрикорковых связей по сравнению с когерентностью. Во-вторых, наличие межполушарных связей только на уровне затылочных областей может указывать на проведение информации не через мозолистое тело, а, возможно, через задние спайки свода (comissura fomicis) или подкорковые структуры. Затруднение проведения информации через мозолистое тело согласуется с данными об уменьшении у больных размера мозолистого тела [Guenter, 1991; Downhill, Buchsbaum, 2000].

Самые интересные данные о характере взаимосвязей на высокочастотном бета-ритме могут быть получены с помощью метода определения наиболее типичных для каждой группы связей; в норме наиболее типичными оказались связи на частоте приблизительно 40 Гц.

Самые интересные данные о характере взаимосвязей на высокочастотном бета-ритме были получены с помощью третьего метода, определения наиболее типичных для каждой группы связей, который позволяет определить не только наличие или отсутствие связей, но и частоту, с которой они появляются, поскольку, как уже отмечалось, частота в этом методе не усредняется по группе. Этим методом было показано (рис. 21.4), что в норме наиболее типичными оказались связи на частоте приблизительно 40 Гц, которые характерны для феномена взаимодействия. В со-

438

стоянии покоя на этой частоте отмечались связи между теменной и височной областями левого полушария и между центральной и затылочной областями правого; впутриполушарные связи регистрировались между левой лобной и правой центральной, а также между затылочными областями. При выполнении когнитивной пробы появлялось четыре межполушарных связи на частоте 38 Гц: правой центральной области с лобной, височной, теменной и затылочной областями и шесть внутриполушарных (в левом полушарии).

У больных с позитивной симптоматикой межполушарные связи отсутствуют. При когнитивной

Рис. 21.4. Связи на высокочастотном бета-ритме у здоровых (1), больных с «позитивными» (2) и «негативными» (3) симптомами, полученные при картировании типичных связей в покое (Л) и во время выполнения когнитивной пробы (Б). Шкала в нижней части рисунка соответствует частотам, на которых обнаруживаются связи

деятельности у них наблюдаются внутриполушарные связи на частоте около 40 Гц — между лобной и височной областями в обоих полушариях; в правом полушарии имеются также связи височной области с центральной и теменной, теменной с лобной и центральной областями.

У больных шизофренией с негативной симптоматикой на частоте около 40 Гц имеется только три связи, возникающие в правом полушарии при когнитивной деятельности — между правой височной и лобной, центральной и теменной областями.

Таким образом, третий метод исследования внутрикоркового взаимодействия, метод исследования типичных для группы связей позволяет выявить нарушения межполушарного взаимодействия на частоте около 40 Гц у обеих групп больных шизофренией. Однако, если у острых больных с позитивными симптомами

439

межполушарные связи вообще отсутствуют, то у больных с негативными симптомами возникает новая сеть взаимосвязей на относительно низкой частоте бета-ритма — около 30 Гц. У острых больных полное разрушение сети межполушарных связей обусловлено высокой вариабельностью физиологических показателей, которая, в свою очередь, определяет разнообразие клинических симптомов. Образование новой сети взаимосвязей на отличной от нормы частоте у больных с негативными симптомами может указывать на переход заболевания в хроническую стадию. Можно предположить, что нарушение соответствия частотных спектров двух полушарий при шизофрении, обусловленное разными уровнями их активации, препятствует межполушарной передаче и «приему» информации.

Современными исследованиями [Traub et al., 1996; Whittington et al., 1997] показано, что бета-ритм может возникать из гамма-ритма (частотой выше 40 Гц), который и обусловливает наблюдающиеся при шизофрении нарушения взаимосвязей. Согласно этим данным, гамма-ритм образуется при тетанической стимуляции гиппокампальных срезов за счет разрядов тормозных интернейронов, которые взаимодействуют друг с другом, поддерживая ритмическую импульсацию. Обнаружено, что при тетанической стимуляции, вдвое превышающей ту, которая необходима для возникновения гамма-ритма, этот ритм превращается в бета-ритм, функциональная значимость которого достаточно ясна.

Тот факт, что в норме межполушарные связи по высокочастотному бета-ритму, выполняющему активационную функцию, повышаются при когнитивной дея-

Рис. 21.5. Взаимосвязи на альфа-ритме у здоровых (1), больных с «позитивными» (2) и «негативными» (3) симптомами, полученные методом когерентности в покое (А) и во время выполнения когнитивного задания (Б). Шкала в нижней части рисунка соответствует частотам, на которых обнаруживаются связи

440

тельности, а при шизофрении — отсутствуют или возникают на более низкой частоте, может быть связан с нарушением при шизофрении шипикового аппарата тормозных интернейронов, участвующих в генерации гамма-ритма [Whittington et al., 1997]. Несомненно, описанные выше предположительные механизмы нарушения внутрикоркового взаимодействия при шизофрении будут постоянно дополняться как электрофизиологическими, так и биохимическими данными. Так, уже известно, что образование гамма-ритма опосредуется рядом медиаторов, в частности гамааминомасляной кислотой (ГАМК).

21.3.6. Взаимосвязи на других частотах

Предполагается, что между быстрыми и медленным ритмами ЭЭГ имеется связь, которую можно выразить математически [Basar, 1992; Weiss, Rappelsberger, 2000]. Характерно, что связь между нарушениями самого быстрого, гамма-ритма, при шизофрении сочетается с нарушениями самого медленного, дельта-ритма. Повышение у больных шизофренией по сравнению с нормой дельта-ритма в передних мозговых

Рис. 21.6. Взаимосвязи на тета-ритме (6-8 Гц) у здоровых (1), больных с «позитивными» (2) и «негативными» (3) симптомами, полученные методом когерентности в покое (Л) и во время выполнения когнитивного задания (Б). Шкала в нижней части рисунка соответствует частотам, на которых обнаруживаются связи

441

областях называется гипофронтальностью [Flor-Henry, Gruzelier, 1983]. Считается, что гипофронтальность лежит в основе когнитивного дефицита при шизофрении.

Исследование когерентности выявило у больных отсутствие наблюдающихся в норме внутрикорковых связей по альфа-ритму между лобными и височными областями обоих полушарий при выполнении когнитивной пробы (рис. 21.5). Существенно отметить, что о нарушении этих же отделов при шизофрении можно судить на основании результатов исследования нейропсихологических тестов.

Представляет интерес, что межполушарные связи по тета-ритму, также исследованные методом когерентного анализа, у обеих групп больных шизофренией не выявлены (рис. 21.6). Этот факт также подтверждает предположение о нарушении проведения информации через мозолистое тело [Guenter, 1991; Downhill, Buchsbaum,2000].

21.4. ДЕПРЕССИЯ

21.4.1 Общая характеристика заболевания

Еще в XIX веке невропатологи отмечали, что инсульт в левом полушарии сопровождается пониженным, тоскливым настроением больного, тогда как при инсульте в правом, напротив, наблюдается повышенное настроение, эйфория и гипомания, иногда с неадекватным поведением и дурашливостью. Это указывает на связь левого полушария с положительными эмоциями, а правого — с отрицательными. В то же время нейрофизологическая картина нарушений при так называемой «эндогенной» депрессии, то есть не связанной с какими-либо внешними факторами — нарушениями органического характера, явными стрессами, — гораздо более сложна. При депрессии, в отличие от шизофрении — повышенная активация правого переднего коркового квадранта сочетается с пониженной активацией правого заднего квадранта; в левом полушарии имеют место обратные взаимоотношения. Как уже отмечалось, это можно объяснить с тем, что депрессия связана с дисфункцией эволюционно более древних структур — лимбической системы и старой коры.

Этиология депрессии, так же как и шизофрении, остается неизвестной. Большую роль в развитии депрессии играют, по-видимому, нарушения регуляции системы биогенных аминов. Главными отличительными признаками депрессии являются нарушение настроения и аффекта, причем настроение характеризует внутреннее эмоциональное состояние, а аффект — его внешнее выражение.

Расстройства настроения представляют собой группу клинических состояний, характеризующихся нарушением настроения, потерей способности контролиро-

442

вать свои аффекты и субъективным ощущением тяжелых страданий. У больных с депрессивным настроением отмечается снижение энергичности и интереса к жизни, чувство вины, они испытывают трудность при необходимости сосредоточиться, теряют аппетит и высказывают мысли о смерти и самоубийстве. Больные с приподнятым настроением обнаруживают экспансивность, полет идей, у них наблюдается уменьшение времени сна, повышение самооценки и наличие грандиозных идей. Часто, но не всегда, приступы депрессии сочетаются с приступами мании, а иногда наблюдаются и смешанные формы. Однако наиболее характерными являются приступы «чистой» или так называемой униполярной депрессии.

Сведения о депрессиях сохранились с древних времен и описаны в Ветхом завете (история короля Саула) и «Илиаде» Одиссея (рассказ о самоубийстве Айякса). Эмиль Крепелин в 1896 г., использовав знания французских и немецких психиатров, создал концепцию маниакально-депрессивного психоза, включающую критерии, большинство из которых используется психиатрами и в настоящее время для определения диагноза. Отсутствие дефекта личности и злокачественного течения при маниакально-депрессивных психозах позволило отдифференцировать их от шизофрении.

21.4.2. Исследование эмоциональных и когнитивных функций при депрессии методом вызванного потенциала (ВП) мозга

У больных депрессией не обнаружено значительных нарушений когнитивных фyнкций; в значительно большей степени, как это показано в исследованиях, использующих регистрацию ВП мозга, отмечаются нарушения внимания [Burkhart, Thomas, 1993]. Важным методом для исследования этого заболевания является изучение распознавания эмоций [Михайлова с соавт., 1994].

При исследовании ВП мозга, получаемых на выигрыш и проигрыш мяча при игре в видеотеннис, было показано, что у здоровых важную роль в организации положительных эмоций играет активация левого полушария, а отрицательных — правого: в первом случае отмечалась более выраженная активация левого полушария, во втором — правого. При этом особенно важно, что активность передних и задних отделов каждого из полушарий в обоих случаях изменяется однонаправ-

443

ленно [Курницкая, 1987]. У больных депрессией картина межполушарных отношений как при успешном, так и при неудачном завершении деятельности одинакова и характеризуется отсутствием однонаправленных сдвигов биопотенциалов передних и задних отделов полушарий при формировании реакций на эмоционально значимые события. Таким образом, разобщенность между передними и задними отделами мозга, определяемая по уровню их активации, играет важнейшую роль в патогенезе депрессии.

Эта разобщенность между передними и задними отделами мозга, которую мы назвали «поперечной функциональной блокадой», была в дальнейшем прослежена в исследовании соматосенсорного ВП [Стрелец, 1989]. Испытуемым предъявляли стимулы трех типов (стимулировали правую руку, левую руку и обе руки одновременно), и они должны были осуществлять выбор реакции из трех альтернатив. На стимуляцию правой руки следовало отвечать нажатием кнопки левой рукой, на стимуляцию левой руки — нажатием кнопки правой рукой, на стимуляцию обеих рук одновременно — не нажимать ни на одну из кнопок. Было исследовано две группы испытуемых — группа здоровых людей и группа больных депрессией в возрасте от 20 до 40 лет. У всех больных был диагносцирован депрессивный синдром длительностью от одного года до трех лет. В состоянии больных отмечалось снижение настроения, подавленность с чувством тоски разной интенсивности и моторная заторможенность. У них также имела место идеаторная заторможенность с плохой сообразительностью и невозможностью сосредоточить свои мысли.

ВП регистрировали на первые и последние 200 стимулов (в начале и в конце стимуляции) обоих полушарий от передних, лобных и задне-ассоциативных, соматосенсорных областей.

У здоровых лиц в начале стимуляции отсутствовали достоверные различия между амплитудой поздних волн ВП в соматосенсорных и лобных областях. Это позволяет считать, что биопотенциалы данных областей характеризовались определенным сходством или синхронностью.

В конце стимуляции амплитуда волны Р300 достоверно понижалась в обеих соматосенсорных областях, то есть поздняя часть ВП как бы сдвигалась в негативную сторону. Аналогичное изменение в лобных областях отсутствовало. Эта относительная негативация характеризует рассогласование активирования передних и задних мозговых отделов, что сопровождается ухудшением качества деятельности:

время реакции и число ошибок увеличивается.

У больных депрессией в начале стимуляции в левой соматосенсорной области амплитуда всех положительных волн ВП была достоверно снижена по сравнению с Нормой. Таким образом, негативация ВП (по волне Р300) левой соматосенсорной области, имевшая место в норме лишь после длительной стимуляции, у больных наблюдалась уже в начале стимуляции в процессе решения задачи по выбору из

444

трех альтернатив, причем она охватывала и более раннюю часть ВП. Аналогичного снижения амплитуды волны Р300 в лобных областях у них не было, в результате чего обнаруживалось нарушение сходства между волной Р300 в лобных и проекционных областях. Обращает на себя внимание тот факт, что эти патологические изменения были выражены у больных именно в левом полушарии, которое в норме связывается с положительными эмоциями. После длительного периода стимуляции у больных, у которых уже в самом начале стимуляции отмечалась некоторая негативация по сравнению с нормой ВП левой соматосенсорной области, дальнейшего усиления этой негативации больше не наблюдалось.

Негативация вызванной активности, наблюдавшаяся у здоровых в конце стимуляции, по-видимому, является нейрофизиологическим выражением процесса утомления в результате монотонной деятельности, требующей, однако, активного внимания. Наличие подобной негативации у больных депрессией уже в начале стимуляции указывает на некоторое сходство нейрофизиологических механизмов этого заболевания с функциональным состоянием здорового мозга при утомлении. Отсутствие же дальнейшей негативации вызванной активности у больных в процессе выполнения деятельности по выбору из трех альтернатив сопоставимо с отсутствием у них клинических признаков утомления. Напротив, в конце исследования у них отмечалось значительное улучшение психического состояния: уменьшение тоски и тревоги, повышение настроения, улучшение в идеаторной сфере — повышение способности сосредоточиться, сконцентрировать внимание, хотя это наблюдалось на фоне некоторой физической усталости. Больные отмечали, что «голова стала яснее», более четко и дифференцированно воспринимали окружающее, повышалась активность мыслительных процессов и эмоциональных реакций. Улучшались также показатели качества деятельности, которые, однако, оставались сниженными по сравнению с нормой. Таким образом, под влиянием длительной стимуляции, сочетающейся с ответной деятельностью, у больных депрессией наблюдалась некоторая нормализация функционального состояния мозга.

По-видимому, большую роль в этой нормализации играет тот факт, что после длительной стимуляции у них исчезает «блокада» между передними и задними областями мозга левого полушария в интервале, соответствующем волне Р300, что, возможно, облегчает развитие взаимосвязи и обмена импульсацией между этими областями и улучшает качество деятельности.

Рис. 21.7. Распределение спектральной мощности альфа-ритма (1), спектральной мощности бета-ритма (2) и взаимосвязей на альфа-ритме (3) у здоровых (А), больных эндогенной депрессией (Б) и больных реактивной депрессией (В) в покое (1,2) и при открывании глаз (3). Шкала в правой части рисунка соответствует численным значениям показателей

Представляет значительный

интерес, что после длительной стимуляции у депрессивных больных функциональная блокада ослабевает, что способствует облегчению взаимосвязей и обмена импульсацией между ними, а также, по-видимому, обусловливает улучшение психического состояния больных. Это позволяет рекомендовать метод сенсорной стимуляции в сочетании с активной деятельностью как вспомогательный метод лечения больных депрессией.

445

21.4.3. Картирование спектральной мощности ритмов ЭЭГ при депрессии

Использование метода картирования мозга послужило дальнейшему развитию исследований «функциональной блокады». Картирование спектральной мощности альфа-ритма у больных эндогенной депрессией и больных реактивной депрессией по сравнению со здоровыми выявило у первой группы два «фокуса» повышенной активации, определяемых по снижению спектральной мощности альфа-ритма (рис. 21.7). Первый фокус, выявляемый у обеих групп больных, располагается в передних областях правого полушария, где мощность альфа-ритма значимо снижена по сравнению с нормой и с симметричными областями левого полушария. Второй фокус повышенной активации, наблюдающийся только у больных эндогенной депрессией, находился в задних областях левого полушария, где мощность альфа-ритма была также достоверно снижена. Соответственно, левый передний и правый задний корковые квадранты у этих больных менее активированы. Спектральная мощность бета-ритма у обеих групп больных повышена в правом переднем корковом квадранте, и у больных реактивной депрессией это единственный фокус повышенной активации. Таким образом, у больных депрессией обнаруживается повышение активации корковых зон, регулирую-

446

щих отрицательные эмоции, и, соответственно, понижение активации областей, связанных с регуляцией положительных эмоций. У больных эндогенной депрессией, кроме того, отмечается асимметрия задних отделов мозга, что в целом создает архитектонику нарушения как меж-, так и внутриполушарного взаимодействия.

Имеются различия между группами здоровых и больных депрессией и по другим ритмам. Суммарная (по всем отведениеям) мощность всех ритмов, за исключением тета-ритма, снижается, а тета-ритма, напротив, повышается по сравнению с нормой.

При функциональных нагрузках (открывании глаз и счете) при депрессии наблюдается достоверно меньшее, чем в норме, снижение мощности альфа-ритма, то есть достоверное снижение реактивности. Кроме того, в этих ситуациях при депрессии наблюдается значительное повышение суммарной мощности тета-ритма. Во всех ситуациях у больных остается неизменным и стойким фокус повышенной мощности бета-ритма в правом переднем корковом квадранте.

21.4.4. Картирование внутрикорновых связей при депрессии

В отличие от симметричной картины внутрикорковых связей в норме (рис. 21.7, Л, 3), при депрессии отмечается асимметрия этого показателя: связи значительно снижены в двух фокусах повышенной активации, обнаруживаемых но показателю мощности альфа- и бета-ритмов — в правом переднем и левом заднем корковых квадрантах (рис. 21.7, 3, Б, В). Снижение впутрикорковых связей в фокусах повышенной активации свидетельствует о застойном характере возбуждения в этих фокусах.

21.4.5. Анатомо-физиологические основы патологии эмоций при депрессии

Диссоциация между уровнем активации внутри каждого из полушарий при депрессии обозначена нами как «поперечная функциональная блокада». Блокада имеет также место между корой головного мозга и лимбической системой, тесно связанной с эмоциональной сферой [Schneider et al., 1995]. При этом повышенная активация правого коркового квадранта, который, как уже отмечалось, является зоной, вовлеченной в регуляцию отрицательных эмоций, играет важнейшую роль в механизме депрессии. Это подтверждается исследованиями реактивной депрессии и стресса, из которых следует, что повышенная активация переднего полюса коры может быть пусковым механизмом в развитии психоэмоционального напряжения и депрессии [Стрелец и др., 1998].

«Поперечная функциональная блокада» препятствует нормальному проведению возбуждения из воспринимающих областей в «исполнительные» и может явиться причиной психической и моторной

447

заторможенности больных. Повышение активации правой лобной области и относительное понижение левой при стрессе и депрессии соответствует положениям информационной теории эмоций П. В. Симонова [Симонов, 1994] (см. гл. 7). Согласно взглядам этого автора, отрицательные эмоции возникают в том случае, когда необходимая для удовлетворения потребности информация, интегрируемая в правой лобной области, превышает имеющуюся, которая представлена преимущественно в левой лобной области.

Данные о повышении и понижении активации соответствующих корковых областей согласуются с результатам исследования Р. Давидсона [Davidson, 1993] и В. Хеллер [Heller, 1993]. По модели Хеллер, построенной преимущественно на нейропсихологических данных, интенсивность эмоционального переживания зависит от правой теменной области, которая, однако, не определяет его знак. Эта функция связана с двумя фронтальными отделами: возбуждение левой лобной области придает эмоциям положительную окраску, в правой — отрицательную.

Застойный характер взаимосвязей между правой лобной областью, регулирующей отрицательные эмоции, и другими отделами мозга, и снижение реактивности в диапазоне альфа-ритма, так же как и повышение мощности тета-ритма, дополняют нейрофизиологическую картину депрессии.

21.5. ЭВОЛЮЦИОННЫЕ АСПЕКТЫ ШИЗОФРЕНИИ И ДЕПРЕССИИ

Возникновение шизофрении в эволюционном плане связано с усложнением структуры мозга, в частности с появлением «новой» коры, со специализацией полушарий (по речи), которая свойственна только человеку. В норме оба полушария тесно взаимодействуют при строго сбалансированном вкладе каждого из них и контроле левого «доминантного» (по речи) полушария над правым. Это сравнительно новое, раздельное, хотя и взаимосвязанное управление выполнением функций высокоспециализированными клетками «новой» коры способствовало, как известно, огромному прогрессу в развитии человечества. «Платой» за вновь приобретенные возможности своего мозга явилась незащищенность новой коры по сравнению со старой. Наиболее слабым звеном этой новой системы оказалось межполушарное взаимодействие.

Второе, важнейшее как по распространенности, так и по тяжести психическое заболевание — депрессия связано, напротив, в большей степени с функциями старой, эволюционно более древней коры и со структурами лимбической системы. Это подтверждается многочисленными фактами, в том числе подверженностью депрессии некоторых животных, не обладающих в полной мере новой корой со специализацией полушарий и четким взаимодействием между ними. В частности, депрессивные проявления могут

448

наблюдаться у кошек и собак. Ярким примером такого депрессивного состояния является смерть собаки от голода на могиле хозяина, от которой ее невозможно увести.

В исследование как шизофрении, так и депрессии картирование мозга внесло более весомый вклад, чем ранее существующие методы. Конечно, нельзя отрицать прогресса, наблюдавшегося в области исследования нейрофизиологических механизмов психических расстройств, достигнутого с помощью метода исследования вызванных потенциалов мозга. Однако эти психические заболевания, особенно депрессия, как оказалось, характеризуются «топографическими» нарушениями, в частности различным уровнем активации отдельных корковых зон, и это удалось отчетливо показать с помощью методов картирования.

21.6. НАРУШЕНИЕ ВНУТРИКОРКОВЫХ СВЯЗЕЙ -КЛЮЧЕВОЕ ЗВЕНО В ПАТОГЕНЕТИЧЕСКИХ МЕХАНИЗМАХ ШИЗОФРЕНИИ И ДЕПРЕССИИ

В заключение необходимо отметить, что шизофрения, начинающаяся с нарушений когнитивной функции, по мере ее прогрессироваиия начинает сопровождаться эмоциональными расстройствами. Больные становятся равнодушными, теряют чувство любви к близким, общение с которыми приобретает только прагматический характер — принимают у них пищу, подарки без благодарности и чувства душевной близости. Эмоциональные расстройства постепенно усиливаются, приобретая наибольшую выраженность в состоянии «дефекта личности», которым заканчиваются тяжелые формы этого заболевания.

С другой стороны, по мере прогрессирования тяжелых форм депрессии также отмечается нарастание расстройств когнитивных функций — внимания, памяти, способности выполнять какие-либо сложные задачи. Однако нарушений типа шизофренического «дефекта личности» у них не происходит.

Таким образом, шизофрению можно рассматривать как модель преимущественно когнитивных расстройств, а эмоциональные нарушения при этом заболевании являются вторичными, как бы производными от первичных нарушений мышления. При депрессии, напротив, эмоциональные нарушения являются первичными и доминирующими, а сравнительно незначительные когнитивные — вторичными, сопутствующими.

Названные особенности шизофрении и депрессии, как было показано выше, соответствуют обнаруженным при этих заболеваниях нарушениям меж- и внутри-полушарных взаимоотношений. Так, при острой шизофрении (с позитивными симптомами) отмечается нарушение системы межполушарных связей, которую еще можно восстановить и при правильном лечении надеяться на хороший прогноз. С другой стороны, при хронической шизофрении (с негативными симптомами)

449

уже возникает новая патологическая сеть межполушарных связей на низкой частоте; такую сеть разрушить значительно труднее, и прогноз в этом случае хуже. Что касается депрессии, то описанный выше нелекарственный патогенетический способ лечения этого заболевания способствует нормализации взаимодействия между передними и задними мозговыми отделами, что приводит к значительному улучшению клинического состояния больного.

* * * * * * *

15

PAGE  5




1. Межличностные отношения детей подросткового возраста
2. Чемашинская средняя общеобразовательная школаОктябрьского района Тюменской области Плохой учитель п.html
3. Детская школа искусств Сценарий концерта преподавателей Детской школы искусств 25 февраля 2010 год
4. Юридическое лицо соответствует- А
5. Проблемы Великой России
6. Тема- Глобальные вычислительные сети
7. і. Відпрацьовані гази надходять у випускний трубопровід збільшеного об~єму й подаються з нього в газову тур.1
8. Курсовая работа- Методика аудиторской проверки
9. Реферативная выпускная работа интерна Файзулина Анна Фанисовна Специальность- фармаце
10. Обеспечение безопасности при производстве, хранение и применение взрывчатых материалов
11. Рубцовск Молодой 1
12. Лабораторна робота4 ЛАБОРАТОРНА РОБОТА 4 Програмування МП КР580ВМ80
13. Череда трехраздельная
14. Тема 1. Предпочтения функции полезности и бюджетное ограничение потребителя
15. Лузы Словообразование и орфография Самостоятельная работа
16. Поняття «зліва»-«справа», «ближче»-«дальше», «попереду»-«позаду», «між»
17. ЛЮМИНЕСЦЕНЦИЯ
18. I. Общая характеристика Новгородской и Псковской судных грамот5 Происхождение Новгородской и Псковск
19. Роман А С Пушкина Евгений Онегин - энциклопедия русской жизни
20. Немецкая компания мировой лидер в области высококачественной бытовой техники таких как стиральные машин