У вас вопросы?
У нас ответы:) SamZan.net

тема шифрования Виженера как шифр сложной замены

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

Билет 20

Система шифрования Виженера, как шифр сложной замены.

Шифры сложной замены называют многоалфавитными, так как для шифрования каждого символа исходного сообщения применяют свой шифр простой замены. Многоалфавитная подстановка  последовательно и циклически меняет используемые алфавиты.Система Вижинера подобна такой системе шифрования Цезаря, у которой ключ подстановки меняется от буквы к букве. Этот шифр многоалфавитной замены можно описать таблицей шифрования, называемой таблицей (квадратом) Вижинера.

Таблица Вижинера используется для зашифрования и расшифрования. Таблица имеет два  входа: • верхнюю строку подчеркнутых символов, используемую для считывания очередной буквы исходного открытого текста;

• крайний левый столбец ключа.Последовательность ключей обычно получают из числовых значений букв ключевого слова.  При шифровании исходного сообщения его выписывают в строку, а под ним записывают ключевое слово (или фразу). Если ключ оказался короче сообщения, то его циклически повторяют. В процессе шифрования находят в верхней строке таблицы очередную букву исходного текста и в левом столбце очередное значение ключа. Очередная буква шифртекста находится на пересечении столбца, определяемого шифруемой буквой, и строки, определяемой числовым значением ключа.

2.Протоколы ESP в IPSec.

Протокол инкапсулирующей защиты содержимого ESP (Encapsulating Security Payload) обеспечивает конфиденциальность, аутентичность, целостность и защиту от повторов для пакетов данных. Следует отметить, что конфиденциальность данных протокол ESP обеспечивает всегда, а целостность и аутентичность являются для него опциональными требованиями. Конфиденциальность данных обеспечивается путем шифрования содержимого отдельных пакетов. Целостность и аутентичность данных обеспечиваются на основе вычисления дайджеста.

В протоколе ESP функции аутентификации и криптографического закрытия могут быть задействованы либо вместе, либо отдельно друг от друга. При выполнении шифрования без аутентификации появляется возможность использования механизма трансляции сетевых адресов NAT (Network Address Translation), поскольку в этом случае адреса в заголовках IP-пакетов можно модифицировать.

Билет 20:

12

0

5

1

2

-2

2

1

5

2

0

-12

2

D=5

П

О

Д

П

И

С

Ь

16

15

5

16

9

18

26

М1

М2

11110001

11110000

М3

М4

11110000

11111111

М5

М6

11110000

11110101

М7

М8

11110001

11110000

М9

М10

11110000

11111001

М11

М12

11110001

11110010

М13

М14

11110001

11111010


Билет 21

1.Шифр Вернамана. Виженера. Цезаря.

Так как шифр Цезаря является частным случаем шифра простой замены, то как и для всех шифров простой замены - шифрование шифром Цезаря заключается в замене символов открытого текста согласно таблице шифрования, которая для шифра Цезаря формируется следующим образом: первому символу алфавита соответствует k+1-ый символ этого же алфавита, второму - k+2-ый, третьему - k+3-ый и так далее (предпоследнему - k-1-ый, последнему символу алфавита - k-ый), где k - ключ, так например при k=3, "А" заменяется на "Г", "Б" на "Д", "В" на "Е", "Э" на "А", "Ю" на "Б", "Я" на "В".

Суть шифрования шифром Вернама проста для понимания и реализации на компьютере. Для того чтобы зашифровать открытый текст нужно всего лишь произвести объединение двоичного кода открытого текста с двоичным кодом ключа операцией "исключающее ИЛИ", полученный двоичный код, представленный в символьном виде и будет шифровкой шифра Вернама. Если попробовать полученную шифром Вернама шифровку еще раз зашифровать шифром Вернама с этим же ключом, мы вновь получим открытый текст. Собственно, зашифрование шифра Вернама идентично его расшифрованию, что и говорит нам о том, что шифр Вернама является симметричным шифром.

Суть зашифрования шифром Виженера схожа с зашифрованием шифром Цезаря, с той лишь разницей, что если шифр Цезаря сопоставляет для всех символов сообщения (открытого текста, скрываемого в шифровке) одно и то же значение сдвига, то в шифре Виженера для каждого символа открытого текста сопоставлено собственное значение сдвига. Это означает, что длина ключа шифра Виженера должна быть равна длине сообщения. Однако запомнить такой ключ расшифрования, если сообщение будет длинным, непросто. Из этого затруднительного положения выходят так: за ключ шифра Виженера берут слово (фразу), удобное для запоминания, слово (кодовая фраза) повторяется до тех пор, пока не станет раным длине сообщения. Получившуюся последовательность символов и используют для зашифрования шифром Виженера при помощи таблицы Виженера.

2.Базы защиты в IPSEC.

Решение реализации IPSec, работающей на хосте или шлюзе, об определении способа защиты, который она должна применить к трафику основано на использовании в каждом узле, поддерживающем IPSec, двух типов баз данных: базы данных безопасных ассоциаций (Security Associations Database, SAD) и базы данных политики безопасности (Security Policy Database, SPD).

При установлении безопасной ассоциации, как и при любом другом логическом соединении, две стороны принимают ряд соглашений, регламентирующих процесс передачи потока данных между ними. Соглашения фиксируются в виде набора параметров. Для безопасной ассоциации такими параметрами являются, в частности, тип и режим работы протокола защиты (AH или ESP), методы шифрования, секретные ключи, значение текущего номера пакета в ассоциации и другая информация. Наборы текущих параметров, определяющих все активные ассоциации, хранятся на обоих оконечных узлах защищенного канала в виде баз данных безопасных ассоциаций SAD. Каждый узел IPSec поддерживает две базы SAD - одну для исходящих ассоциаций, а другую для входящих.

Другой тип базы данных - база данных политики безопасности SPD - задает соответствие между IP-пакетами и установленными для них правилами обработки. Записи SPD состоят из полей двух типов - поля селектора пакета и поля политики защиты для пакета с данным значением селектора.

Каждый узел IPSec должен поддерживать две базы SPD: одну - для исходящего трафика, а другую - для входящего, так как защита в разных направлениях может требоваться разная. Базы данных политики безопасности создаются и управляются либо пользователем (этот вариант больше подходит для хоста), либо системным администратором (вариант для шлюза), либо приложением.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №24

1.Основные режимы работ алгоритма  RSA.

 RSA – криптографическая система открытого ключа, обеспечивающая такие механизмы защиты как шифрование и цифровая подпись. Алгоритм RSA работает так: берутся два достаточно больших простых числа p и q и вычисляется их произведение (модуль) n = p*q. Затем выбирается число e, удовлетворяющее условию 1< e < (p - 1)*(q - 1) и не имеющее общих делителей кроме 1 (взаимно простое) с числом (p - 1)*(q - 1). Затем вычисляется число d таким образом, что (e*d - 1) делится на (p - 1)*(q – 1). (e – открытый показатель; d – частный показатель; (n; e) – открытый ключ; (n; d). – частный ключ).Если бы существовали эффективные методы разложения на сомножители (факторинга), то, разложив n на сомножители (факторы) p и q, можно было бы получить частный (private) ключ d. Таким образом надежность криптосистемы RSA основана на трудноразрешимой – практически неразрешимой – задаче разложения n на сомножители (то есть на невозможности факторинга n) так как в настоящее время эффективного способа поиска сомножителей не существует.

3. Для шифра Эль-Гамаля с заданными параметрами найти недостоющие параметры и описать процесс передачи сообщения от А к В

p=23 g=5 Cb=8 k=10 m=10

Решение

А и В выбирают p и g.

В: генерирует секретный и открытый ключи, Св закрытый ключ, находим открытый ключ dв.

Dв=gCbmod p =58mod23=16

В передает свой открытый ключ dв

Далее А выбирает число К=10

Вычисляет числа

r=gkmod p = 510mod 23 = 9

e=m*dвK mod p =10*1610mod 23=15

А передает В пару чисел (r, e) = (9,15)

В получив (r, e) = (9, 15) вычисляет

m'= e*rp-1-Cвmod p= 15*923-1-16 mod 23= 15*914mod 23=10

Сообщение передано

2. Классификация VPNКлассифицировать VPN решения можно по нескольким основным параметрам:По степени защищенности используемой среды:1.Защищённые-Наиболее распространённый вариант виртуальных частных сетей. С его помощью возможно создать надежную и защищенную сеть на основе ненадёжной сети, как правило, Интернета. Примером защищённых VPN являются: IPSec, OpenVPN и PPTP.2.Доверительные- Используются в случаях, когда передающую среду можно считать надёжной и необходимо решить лишь задачу создания виртуальной подсети в рамках большей сети. Проблемы безопасности становятся неактуальными. Примерами подобных VPN решений являются: Multi-protocol label switching (MPLS) и L2TP (Layer 2 Tunnelling Protocol) (точнее сказать, что эти протоколы перекладывают задачу обеспечения безопасности на другие, например L2TP, как правило, используется в паре с IPSec).По способу реализации1)В виде специального программно-аппаратного обеспеченияРеализация VPN сети осуществляется при помощи специального комплекса программно-аппаратных средств. Такая реализация обеспечивает высокую производительность и, как правило, высокую степень защищённости.2)В виде программного решенияИспользуют персональный компьютер со специальным программным обеспечением, обеспечивающим функциональность VPN.3)Интегрированное решениеФункциональность VPN обеспечивает комплекс, решающий также задачи фильтрации сетевого трафика, организации сетевого экрана и обеспечения качества обслуживания.По назначению:1)Intranet VPNИспользуют для объединения в единую защищённую сеть нескольких распределённых филиалов одной организации, обменивающихся данными по открытым каналам связи.2)Remote Access VPNИспользуют для создания защищённого канала между сегментом корпоративной сети (центральным офисом или филиалом) и одиночным пользователем, который, работая дома, подключается к корпоративным ресурсам с домашнего компьютера, корпоративного ноутбука, смартфона или интернет-киоскa.3)Extranet VPNИспользуют для сетей, к которым подключаются «внешние» пользователи (например, заказчики или клиенты). Уровень доверия к ним намного ниже, чем к сотрудникам компании, поэтому требуется обеспечение специальных «рубежей» защиты, предотвращающих или ограничивающих доступ последних к особо ценной, конфиденциальной информации.4)Internet VPNИспользуется для предоставления доступа к интернету провайдерами, обычно в случае если по одному физическому каналу подключаются несколько пользователей.5)Client/Server VPNОн обеспечивает защиту передаваемых данных между двумя узлами (не сетями) корпоративной сети. Особенность данного варианта в том, что VPN строится между узлами, находящимися, как правило, в одном сегменте сети, например, между рабочей станцией и сервером. По типу протокола:Существуют реализации виртуальных частных сетей под TCP/IP, IPX и AppleTalk. Но на сегодняшний день наблюдается тенденция к всеобщему переходу на протокол TCP/IP, и абсолютное большинство VPN решений поддерживает именно его. Адресация в нём чаще всего выбирается в соответствии со стандартом RFC5735, из диапазона Приватных сетей TCP/IPПо уровню сетевого протоколаПо уровню сетевого протокола на основе сопоставления с уровнями эталонной сетевой модели ISO/OSI.

БИЛЕТ №25

1.Алгоритм шифрования RSA.На данный момент асимметричное шифрование на основе открытого ключа RSA (расшифровывается, как Rivest, Shamir and Aldeman - создатели алгоритма) использует большинство продуктов на рынке информационной безопасности. Его криптостойкость основывается на сложности разложения на множители больших чисел, а именно - на исключительной трудности задачи определить секретный ключ на основании открытого, так как для этого потребуется решить задачу о существовании делителей целого числа. Наиболее криптостойкие системы используют 1024-битовые и большие числа. Рассмотрим алгоритм RSA с практической точки зрения. Для начала необходимо сгенерировать открытый и секретные ключи: Возьмем два больших простых числа p and q.Определим n, как результат умножения p on q (n= p*q).Выберем случайное число, которое назовем d. Это число должно быть взаимно простым (не иметь ни одного общего делителя, кроме 1) с результатом умножения (p-1)*(q-1). Определим такое число е, для которого является истинным следующее соотношение (e*d) mod ((p-1)*(q-1))=1. Hазовем открытым ключем числа e и n, а секретным - d и n.Для того, чтобы зашифровать данные по открытому ключу {e,n}, необходимо следующее: разбить шифруемый текст на блоки, каждый из которых может быть представлен в виде числа M(i)=0,1,2..., n-1( т.е. только до n-1). зашифровать текст, рассматриваемый как последовательность чисел M(i) по формуле C(i)=(M(I)^e)mod n.Чтобы расшифровать эти данные, используя секретный ключ {d,n}, необходимо выполнить следующие вычисления: M(i) = (C(i)^d) mod n. В результате будет получено множество чисел M(i), которые представляют собой исходный текст. Следующий пример наглядно демонстрирует алгоритм шифрования RSA:Зашифруем и расшифруем сообщение "САВ" по алгоритму RSA. Для простоты возьмем небольшие числа - это сократит наши расчеты.

---Выберем p=3 and q=11. --------Определим n= 3*11=33. -------Hайдем (p-1)*(q-1)=20. Следовательно, d будет равно, например, 3: (d=3).-----------------Выберем число е по следующей формуле: (e*3) mod 20=1. Значит е будет равно, например, 7: (e=7).----------Представим шифруемое сообщение как последовательность чисел в диапозоне от 0 до 32 (незабывайте, что кончается на n-1). Буква А =1, В=2, С=3.-------------------------------------Теперь зашифруем сообщение, используя открытый ключ {7,33}

C1 = (3^7) mod 33 = 2187 mod 33 = 9;
C2 = (1^7) mod 33 = 1 mod 33 = 1;
C3 = (2^7) mod 33 = 128 mod 33 = 29; Теперь расшифруем данные, используя закрытый ключ {3,33}.

M1=(9^3) mod 33 =729 mod 33 = 3(С);
M2=(1^3) mod 33 =1 mod 33 = 1(А);
M3=(29^3) mod 33 = 24389 mod 33 = 2(В);
Данные расшифрованы!

2.Основные протоколы в VPN.

VPN (англ. Virtual Private Network – виртуальная частная сеть) – логическая сеть, создаваемая поверх другой сети, например Internet. Несмотря на то, что коммуникации осуществляются по публичным сетям с использованием небезопасных протоколов, за счёт шифрования создаются закрытые от посторонних каналы обмена информацией. VPN позволяет объединить, например, несколько офисов организации в единую сеть с использованием для связи между ними неподконтрольных каналов.
По своей сути VPN обладает многими свойствами выделенной линии, однако развертывается она в пределах общедоступной сети, например Интернета. С помощью методики туннелирования пакеты данных транслируются через общедоступную сеть как по обычному двухточечному соединению. Между каждой парой «отправитель–получатель данных» устанавливается своеобразный туннель – безопасное логическое соединение, позволяющее инкапсулировать данные одного протокола в пакеты другого. Сети VPN строятся с использованием протоколов туннелирования данных через сеть связи общего пользования Интернет, причем протоколы туннелирования обеспечивают шифрование данных и осуществляют их сквозную передачу между пользователями. Семейство сетевых протоколов для реализации VPN довольно обширно, однако лишь три из них получили широкое распространение. Это IPSec, PPTP и L2TP. IPSec – Internet Protocol Security - PPTP – Point-to-Point Tunneling Protocol - создан усилиями Microsoft, US Robotics и ряда других разработчиков. L2TP – Layer 2 Tunneling Protocol - гордость "сетевого монстра" - Cisco. Особенности, недостатки и преимущества каждого из протоколов – это отдельная и весьма обширная тема, которая выходит за рамки настоящей статьи. Необходимо отметить, что по ряду причин наиболее распространенным протоколом VPN в настоящее время является IPSec. Более 65 процентов частных виртуальных сетей созданы на его основе. Поэтому в этот раз мы будем говорить лишь об аппаратно-программных решениях, в которых IPSec является основным. PPP обладает несколькими преимуществами по сравнению со своим старшим собратом Serial Line Internet Protocol (SLIP). В качестве примера можно привести аутентификацию с использованием CHAP и сжатие данных. В набор PPP входят протокол Link Control Protocol (LCP), ответственный за конфигурацию, установку, работу и завершение соединения точка-точка, и протокол Network Control Protocol (NCP), способный инкапсулировать в PPP протоколы сетевого уровня для транспортировки через соединение точка-точка. Это позволяет одновременно передавать пакеты Novell IPX и Microsoft IP по одному соединению PPP.Безусловно, PPP является важной частью PPTP и L2TP. Благодаря PPP стало возможным использование PPTP и L2TP для выполнения удаленных приложений, зависящих от немаршрутизируемых протоколов. На физическом и канальном уровнях PPTP и L2TP идентичны, но на этом их сходство заканчивается, и начинаются различия.ТуннелированиеДля доставки конфиденциальных данных из одной точки в другую через сети общего пользования сначала производится инкапсуляция данных с помощью протокола PPP, затем протоколы PPTP и L2TP выполняют шифрование данных и собственную инкапсуляцию.В соответствии с моделью OSI протоколы инкапсулируют блоки данных protocol data unit (PDU) по принципу матрешки: TCP (транспортный уровень) инкапсулируется протоколом IP (сетевой уровень), который затем инкапсулируется PPP (на канальном уровне).После того как туннельный протокол доставляет пакеты из начальной точки туннеля в конечную, выполняется деинкапсуляция. PPTP инкапсулирует пакеты IP для передачи по IP-сети.

Клиенты PPTP используют порт назначения 1723 для создания управляющего туннелем соединения. Этот процесс происходит на транспортном уровне модели OSI. После создания туннеля компьютер-клиент и сервер начинают обмен служебными пакетами. Таким образом, во время второго прохода данные достигают транспортного уровня. Однако информация не может быть отправлена по назначению, так как за это отвечает канальный уровень OSI. Поэтому PPTP шифрует поле полезной нагрузки пакета и берет на себя функции второго уровня, обычно принадлежащие PPP, т. е. добавляет к PPTP-пакету PPP-заголовок (header) и окончание (trailer). На этом создание кадра канального уровня заканчивается. Далее, PPTP инкапсулирует PPP-кадр в пакет Generic Routing Encapsulation (GRE). После того как кадр PPP был инкапсулирован в кадр с заголовком GRE, выполняется инкапсуляция в кадр с IP-заголовком. IP-заголовок содержит адреса отправителя и получателя пакета. В заключение PPTP добавляет PPP заголовок и окончание. На Рисунке 1 показана структура данных для пересылки по туннелю PPTP. Главное достоинство L2TP в том, что этот протокол позволяет создавать туннель не только в сетях IP, но и в таких, как ATM, X.25 и frame relay. К сожалению, реализация L2TP в Windows 2000 поддерживает только IP.L2TP применяет в качестве транспорта протокол UDP и использует одинаковый формат сообщений как для управления туннелем, так и для пересылки данных. L2TP в реализации Microsoft использует в качестве контрольных сообщений пакеты UDP, содержащие шифрованные пакеты PPP. Надежность доставки гарантирует контроль последовательности пакетов. Сообщения L2TP имеют поля Next-Received и Next-Sent. Эти поля выполняют те же функции, что и поля Acknowledgement Number и Sequence Number в протоколе TCP.После того как L2TP (поверх IPSec) завершает процесс аутентификации компьютера, выполняется аутентификация на уровне пользователя. Для аутентификации можно задействовать любой протокол, даже PAP, передающий имя пользователя и пароль в открытом виде. Это вполне безопасно, так как L2TP поверх IPSec шифрует всю сессию. Однако проведение аутентификации пользователя при помощи MSCHAP, применяющего различные ключи шифрования для аутентификации компьютера и пользователя, может усилить защиту.L2TP поверх IPSec обеспечивает более высокую степень защиты данных, чем PPTP, так как использует алгоритм шифрования Triple Data Encryption Standard (3DES). 3DES был разработан для защиты особо секретных данных, и его применение разрешено только в Северной Америке. Если столь высокий уровень защиты не нужен, можно использовать алгоритм DES с одним 56-разрядным ключом, что позволяет снизить расходы на шифрование (3DES использует три 56-разрядных ключа).L2TP поверх IPSec выполняет шифрование данных и аутентификацию на уровнях компьютера и пользователя. Кроме того, при помощи алгоритма Hash Message Authentication Code (HMAC) Message Digest 5 (MD5) L2TP обеспечивает аутентификацию данных. Для аутентификации данных этот алгоритм создает хеш длиной 128 разрядов.

Задача. Для шифра Эль-Гамаля с p=19, g=2, Cb= 11, k=4 описать процесс передачи сообщения m=5 пользователю В.Решение

А и В выбирают p и g.В: генерирует секретный и открытый ключи, Св закрытый ключ, находим открытый ключ dв.Dв=gCbmod p =211mod19=15.В передает свой открытый ключ dв.Далее А выбирает число К=10.Вычисляет числа.r=gkmod p = 24mod 19 = 16

e=m*dвK mod p =5*15 4 mod 19=7.А передает В пару чисел (r, e) = (16,14)

В получив (r, e) = (16, 14) вычисляет .m'= e*rp-1-Cвmod p= 7*1619-1-11 mod 19= 7*167mod 19=5.Сообщение предано

БИЛЕТ №26

1.Блочные и поточные шифры.

Постулатом для симметричных криптосистем является секретность ключа. Симметричные криптосхемы в настоящее время принято подразделять на блочные и поточные.Блочные криптосистемы разбивают текст сообщения  (файла, документа   и т.д.) на отдельные блоки и затем осуществляют преобразование этих блоков с использованием ключа. Блочные шифры оперируют с блоками открытого текста. К ним предъявляются следующие требования:

---достаточная криптостойкость;

---простота процедур зашифрования и расшифрования;

---приемлимая надежность.

Практически все современные блочные шифры являются композиционными - т.е состоят из композиции простых преобразований или F=F1oF2oF3oF4o..oFn, где F-преобразование шифра, Fi-простое преобразование, называемое также i-ым циклом шифрования. Само по себе преобразование может и не обеспечивать нужных свойств, но их цепочка позволяет получить необходимый результат. Например, стандарт DES состоит из 16 циклов.Поточные криптосистемы работают несколько иначе. На основе ключа системы вырабатывается некая последовательность - так называемая выходная гамма, которая затем накладывается на текст сообщения. Таким образом, преобразование текста осуществляется как бы потоком по мере выработки гаммы. Как правило, используются для нужд военных, шифрования в средствах связи и т.д.

Шифрование в поточных шифрах осуществляется на основе сложения некоторой ключевой последовательности (гаммы) с открытым текстом сообщения. Сложение осуществляется познаково посредством XOR. Уравнение зашифрования выглядит следующим образом:  ci = mi Е ki для i=1,2,3...   где ci - знак шифротекста, mi - знак открытого текста, ki - знак ключевой последовательности.

3.Для шифра Эль-Гамаля с заданными параметрами найти недостоющие параметры и описать процесс передачи сообщения от А к В

p=19 g=2 Cb=11 k=4 m=10 ЗАДАЧА НЕ ТА!!! ОНА ПОДОБНА!!!!

Решение

А и В выбирают p и g.

В: генерирует секретный и открытый ключи, Св закрытый ключ, находим открытый ключ dв.

Dв=gCbmod p =211mod19=15

В передает свой открытый ключ dв

Далее А выбирает число К=10

Вычисляет числа

r=gkmod p = 24mod 19 = 16

e=m*dвK mod p =10*15 4 mod 19=14

А передает В пару чисел (r, e) = (16,14)

В получив (r, e) = (16, 14) вычисляет

m'= e*rp-1-Cвmod p= 14*1619-1-11 mod 19= 14*167mod 19=10

Сообщение предано

2.Защита на канальном уровне протоколы:PPTP, L2F, L2TP.

Протоколы РРТР (Point-to-Point Tunneling Protocol), L2F (Layer-2 Forwarding) и L2TP (Layer-2 Tunneling Protocol) — это протоколы туннелирования канального уровня модели OSI. Общим свойством этих протоколов является то, что они используются для организации защищенного многопротокольного удаленного доступа к ресурсам корпоративной сети через открытую сеть, например через Интернет.

Все три протокола — РРТР, L2F и L2TP — обычно относят к протоколам формирования защищенного канала, однако этому определению точно соответствует только протокол РРТР, который обеспечивает туннелирование и шифрование передаваемых данных. Протоколы L2F и L2TP поддерживают только функции туннелирования.

Протокол РРТР (Point-to-Point Tunneling Protocol), предназначен для создания защищенных виртуальных каналов при доступе удаленных пользователей к локальным сетям через Интернет. Он предполагает создание криптозащищенного туннеля на канальном уровне модели OSI как для случая прямого соединения удаленного компьютера с открытой сетью, так и для случая подсоединения его к открытой сети по телефонной линии через провайдера.

Протокол L2F (Layer-2 Forwarding) был разработан компанией Cisco Systems для построения защищенных виртуальных сетей на канальном уровне моделиOSI как альтернатива протоколу РРТР.

Однако в настоящее время он фактически поглощен протоколом L2TP, поэтому далее будут рассматриваться основные возможности и свойства протоколаL2TP.

Протокол L2TP (Layer-2 Tunneling Protocol) разработан в организации IETF (Internet Engineering Task Force) при поддержке компаний Microsoft и CiscoSystems. Протокол L2TP разрабатывался как протокол защищенного туннелирования РРР-трафика через сети общего назначения с произвольной средой. Работа над этим протоколом велась на основе протоколов РРТР и L2F, и в результате он вобрал в себя лучшие качества исходных протоколов.

В отличие от РРТР, протокол L2TP не привязан к протоколу IP, поэтому он может быть использован в сетях с коммутацией пакетов, например в сетях ATM(Asynchronous Transfer Mode) или в сетях с ретрансляцией кадров (frame relay). Кроме того, в протокол L2TP добавлена важная функция управления потоками данных, а также ряд отсутствующих в спецификации протокола РРТР функций защиты, в частности, включена возможность работы с протоколами АН и ESP стека протоколов IPSec.

БИЛЕТ №27

Ассиметричные криптосистемы. Концепция криптосистемы с открытым ключом. Разложение на простые множители.Криптографическая система с открытым ключом (или асимметричное шифрование) — система шифрования, при которой открытый ключ передаётся по открытому (то есть незащищённому, доступному для наблюдения) каналу и используется для проверки ЭЦП и для шифрования сообщения. Для генерации ЭЦП и для расшифровки сообщения используется секретный ключ. Обобщенная схема асимметричной криптосистемы с открытым ключом.

Здесь  применяют два ключа: КА - открытый ключ отправителя A; КВ - секретный ключ получателя В. Раскрытие секретного ключа КВ по известному открытому ключу КА должно быть вычислительно неразрешимой задачей.

Защита информации в асимметричной криптосистеме основана на секретности ключа КВ. Отправитель А, зная открытый ключ КА и сообщение М, может легко вычислить криптограмму С=Ека(М)=Ев(М). Получатель В, используя секретный ключ КВ и криптограмму С, может легко восстановить исходное сообщение М=Dкс(С)=Dв(С)=Dв(Ев(М))Виды асимметричных шифров: RSА, DSA, Elgamal, Diffie-Hellman, ECDSA, Rabin и др.Разложение на простые множители числа n необходимо для вычисления ф-ции Эйлера в алгоритме RSA. Нахождение таких множителей и является сложной задачей, а знание этих множителей используется для вычисления d владельцем ключа. Существует множество алгоритмов для нахождения простых сомножителей, так называемой факторизации.

2.Однонаправленная функция.

Особую роль в криптографии играют однонаправленные функции, которые в общем случае не являются биективными.

Однонаправленной называется такая функция f, для которой легко определить значение функции y=f(x), но практически невозможно отыскать для заданного y такое x, что y=f(x).

Для построения криптографических систем защиты информации чаще используются однонаправленные функции, для которых обратное преобразование существует и однозначно, но вычислительно нереализуемо. Они называются вычислительно необратимыми функциями.

3. Для шифра Эль-Гамаля с заданными параметрами p,g,CB,K найти недостающие параметры и описать процесс передачи сообщения пользователю  В. Дано  p=23, g=5, CB= 8, K=5,m=10

Для всей группы абонентов выбираются некоторое большое простое число р и число g, такие, что различные степени g суть различные числа по модулю р. Числа р и g передаются абонентам в открытом виде. Затем каждый абонент группы выбирает свое секретное число ci,  1<Ci<р-1, и вычисляет соответствующее ему открытое число di   по формуле di=gcimodp.

Пусть пользователь A выбрал для себя секретное число сA = 5 и вычислил соответствующее ему открытое число da = 55 mod 23 = 20. Также поступил и пользователь B, выбрав CB= 3 и вычислив db = 53 mod 23 = 10.

Передадим сообщение m = 10 от А к В. Возьмем р = 23, g = 5.

Пользователь А выбирает случайно число k, например k = 15, и  вычисляет:

r = gk mod p = 515 mod 23 = 19

е = m *dBk mod p = 10*1015 mod 23 = 4

Теперь A посылает к В зашифрованное сообщение в виде пары чисел (r, е).

В, получив (r,е), вычисляет m' = е rp-1-cB mod р = 41923-1-3 mod 23= 10. Мы видим, что В смог расшифровать переданное сообщение.

Билет №28

1RSA Наиболее известный алгоритм с открытым ключом — это алгоритм RSA, который был разработан Ривестом, Шамиром и Адлеманом в Мичиганском технологическом институте (MIT) и опубликован в 1978 году.

Шифрование и расшифрование. Схема RSAПредположим, сторона хочет послать стороне сообщение .Сообщением являются целые числа лежащие от до , т.е .



Алгоритм:

Взять открытый ключ стороны

Взять открытый текст

Передать шифрованное сообщение:

Алгоритм:

Принять зашифрованное сообщение

Применить свой секретный ключ для расшифровки сообщения:

Корректность схемы RSA

Уравнения и , на которых основана схема RSA, определяют взаимно обратные преобразования множества

Пример

2. Фильтрующий маршрутизатор представляет собой маршрутизатор или работающую на сервере программу, сконфигурированные таким образом, чтобы фильтровать входящее и исходящие пакеты. Фильтрация пакетов осуществляется на основе информации, содержащейся в TCP - и IP - заголовках пакетов .

Фильтрующие маршрутизаторы обычно может фильтровать IP -пакет на основе группы следующих полей заголовка пакета:

•  IP - адрес отправителя (адрес системы, которая послала пакет);

•  IP -адрес получателя (адрес системы которая принимает пакет);

•  Порт отправителя (порт соединения в системе отправителя );

•  Порт получателя (порт соединения в системе получателя );

Порт – это программное понятие, которое используется клиентом или сервером для посылки или приема сообщений; порт идентифицируется 16 – битовым числом.

В настоящее время не все фильтрующие маршрутизаторы фильтруют пакеты по TCP / Фильтрация может быть реализована различным образом для блокирования соединений с определенными хост-компьютерами или портами. Например, можно блокировать соединения, идущие от конкретных адресов тех хост-компьютеров и сетей. которые считаются враждебными или ненадежными.

Добавление фильтрации по портам TCP и UDP к фильтрации по IP-адресам обеспечивает большую гибкость. Известно, что такие серверы, как демон TELNET, обычно связаны с конкретными портами (например, порт 23 протокола TELNET ). Если межсетевой экран может блокировать соединения TCP или UDP с определенными портами или от них, то можно реализовать политику безопасности, при которой некоторые виды соединений устанавливаются только с конкретными хост-компьютерами.

Правила фильтрации пакетов формулируются сложно, и обычно нет средств для тестирования их корректности, кроме медленного ручного тестирования. У некоторых фильтрующих маршрутизаторов нет средств протоколирования, поэтому, если правила фильтрации пакетов все-таки позволят опасным пакетам пройти через маршрутизатор, такие пакеты не смогут быть выявлены до обнаружения последствий проникновения. Даже если администратору сети удастся создать эффективные правила фильтрации, их возможности остаются ограниченными. Например, администратор задает правило, в соответствии с которым маршрутизатор будет отбраковывать все пакеты с неизвестным адресом отправителя. Однако хакер может использовать в качестве адреса отправителя в своем "вредоносном" пакете реальный адрес доверенного (авторизированного) клиента. В этом случае фильтрующий маршрутизатор не сумеет отличить поддельный пакет от настоящего и пропустит его. Практика показывает, что подобный вид нападения, называемый подменой адреса, довольно широко распространен в сети Internet и часто оказывается эффективным.

Межсетевой экран с фильтрацией пакетов, работающий только на сетевом уровне эталонной модели взаимодействия открытых систем OSI - ISO , обычно проверяет информацию, содержащуюся только в IP-заголовках пакетов. Поэтому обмануть его несложно: хакер создает заголовок, который удовлетворяет разрешающим правилам фильтрации. Кроме заголовка пакета, никакая другая содержащаяся в нем информация межсетевыми экранами данной категории не проверяется.

К положительным качествам фильтрующих маршрутизаторов следует отнести:

•  сравнительно невысокую стоимость;

•  гибкость в определении правил фильтрации;

•  небольшую задержку при прохождении пакетов.

Недостатками фильтрующих маршрутизаторов являются:

•  внутренняя сеть видна (маршрутизируется) из сети Internet ;

•  правила фильтрации пакетов трудны в описании и требуют очень хороших знаний технологий TCP и UDP ;

•  при нарушении работоспособности межсетевого экрана с фильтрацией пакетов все компьютеры за ним становятся полностью незащищенными либо недоступными;

•  аутентификацию с использованием IP-адреса можно обмануть путем подмены IP-адреса (атакующая система выдает себя за другую, используя ее IP-адрес);

•  отсутствует аутентификация на пользовательском уровне.

Задача

Для шифра Эль-Гамаля с заданными параметрами p,g,Cb,K  найти недостающие параметры и описать процесс передачи сообщения m пользователю B. Дано p=19,g=2,CB=11,K=4,m=10

p=19 g=2 Cb=11 k=4 m=10

Решение

А и В выбирают p и g.

В: генерирует секретный и открытый ключи, Св закрытый ключ, находим открытый ключ dв.

Dв=gCbmod p =211mod19=15

В передает свой открытый ключ dв

Далее А выбирает число К=10

Вычисляет числа

r=gkmod p = 24mod 19 = 16

e=m*dвK mod p =10*15 4 mod 19=14

А передает В пару чисел (r, e) = (16,14)

В получив (r, e) = (16, 14) вычисляет

m'= e*rp-1-Cвmod p= 14*1619-1-11 mod 19= 14*167mod 19=10

Сообщение предано




1. Варианты усовершенствования алгоритмов сортировки
2. Контрольная работа- Должностное лицо
3. Практикум по Психологии управления Архетипы личности Распределите 12 баллов в каждом блоке утверждений к
4. Особенности аудита в туризме
5. Subject nd the predicte re omitted
6. Вариант 1 1.1. Как изменяется давление идеального газа в ходе процесса 12 на приведенной ниже VT д
7. .1. Поняття договору найму оренди 1
8. реферат дисертації на здобуття наукового ступеня кандидата медичних наук Вінниц
9. І П Педагогічну практику проходила у 115й школі м
10. тема Психологическая защита личности
11. Российский государственный профессиональнопедагогический университет Институт лингвистики Кафедра
12. О федеральном бюджете на 2011 год и на плановый период 2012 и 2013 годов
13. Розвиток німецьких антропонімів в історичному та мовно-географічному аспектах
14. Реферат- Электронный документооборот
15. ТЕМА ДЛЯ ПЕДИАТР. 1
16. 4 г
17. KOLOTOK ~кілі гормон болатын реттеуші ж~йе- -- Эндокриндік-- ж~йке-- Иммунды~-- Аутокриндік-- паракр
18. темах Рассмотрено Утверждаю на заседании кафедры Зам
19. Введение Необходимым условием качественного обновления общества является умножение его интеллектуально
20. Тема моей выпускной квалификационной работы Аудит операций с денежными средствами