Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Исходный органический материал
орф
Бурый уголь
Каменный уголь
Антрацит
Графит
1
2
3
4
5
6
Содержание
Введение 3
1. Происхождение углей 4
2. Источники образования твёрдых горючих ископаемых 5
3. Стадии превращения органических веществ 7
4. Петрографическая характеристика углей 9
5. Классификация углей 11
6. Основные угольные бассейны страы 14
Литература 15
Практически невозможно установить точную дату, но десятки тысяч лет назад человек, впервые познакомился с углём, стал постоянно соприкасаться с ним. Так, археологами найдены доисторические разработки залежей углей. Известно, что с каменным углём люди были знакомы в период древней культуры, но факты об его использовании отсутствуют. Позже, в Риме, предпринимались пути использования его, но лишь во времена Аристотеля появилось описание некоторых других свойств угля, а в 315 г. до н. э. его ученик описывает уголь как горючий материал и называет его «антраксом» (позже появилось название «антрацит»).
наука о генезисе твёрдых горючих ископаемых на основании многочисленных фактов (обнаружение в угольных пластах отпечатков листьев, коры, стволов деревьев, спор и т. д., использование изотопного метода анализа) неоспоримо доказала и обосновала теорию об их органическом происхождении. Вместе с тем сложность природных процессов углеобразования и влияния на эти процессы таких факторов, как климат, условия среды отложения, температура, давление и др., привели к выделения химических, микробиологических и геологических аспектов теории генезиса. До сих пор нет единого мнения о том, какие компоненты органических веществ являются исходным материалом при образовании различных углей, нет единой схемы и его генетических преобразований. Предполагают, что общая схема имеет вид:
Высказывались соображения, что генезис твёрдых горючих ископаемых описывается:
Палеографические условия геологических эпох определяли возникновение органических веществ, их развитие, накопление и различные преобразования.
Известно, что в состав растений входит целлюлоза, гемицеллюлоза, лигнин, смолы, воски, жиры, белки, углеводы, пектиновые вещества. Вполне вероятно, что состав этих компонентов и их соотношение в древних растениях различного вида и в зависимости от палеографических условий геологических эпох претерпевал определённые изменения. Тем не менее, многочисленные исследования позволили установить, что роль различных частей современных растений и механизма их превращения в условиях углефикации существенно не отличается от роли растений ранних геологических эпох. В табл. 1 приведен элементный состав основных компонентов растений, участвующих в углеобразовании.
Таблица 1
Элементный состав углеобразующих компонентов растений (%)
Компонент |
С |
Н |
О |
Компонент |
С |
Н |
О |
Воски |
81 |
13,5 |
5,5 |
Белки* |
53 |
7 |
22 |
Смолы |
79 |
10 |
11 |
Целлюлоза |
44 |
6 |
50 |
Жиры |
76-79 |
11-13 |
10-12 |
Пектины |
43 |
5 |
52 |
Лигнин |
63 |
6 |
31 |
В состав восков помимо сложных эфиров высокомолекулярных жирных кислот и высших алифатических спиртов входят кислоты С24 С34, спирты С24 С34 и иногда углеводы. Растительные воски являются твёрдыми веществами, способными сохранять свой состав и свойства не подвергаться изменениям под действием микроорганизмов. Благодаря их высокой стойкости они встречаются в неизменном состоянии в составе бурых углей.
Смолы состоят из сложных эфиров кислот с одноатомными спиртами. Благодаря ненасыщенной полиизопреновой структуре они способны полимеризоваться и окисляться, что снижает их растворимость, повышает молекулярную массу, превращает в неплавкие соединения. Жиры сложные эфиры высокомолекулярных насыщенных и ненасыщенных кислот и глицерина. Интересно отметить, что наземные исходные соединения содержат ненасыщенные кислоты С18 С22 и насыщенную кислоту С16, тогда как среди морских источников углеобразования преобладают непредельные кислоты С16 С22. Жиры легко гидролизуются, изменяются под воздействием микроорганизмов, нагревания и др., а непредельные кислоты окисляются с образованием полимеров.
Белки являются высокомолекулярными веществами, обладающими коллоидными свойствами. Содержание их в бактериях, водорослях и древесных растениях достигает соответственно 80, 25, 1 10 %. Белки гидролизуются с выделением аминокислот, которые связываются с содержащимися в растениях моносахаридами.
Целлюлоза (С6Н10О5) относится к классу углеводов с регулярной линейной структурой, обладает сложным составом и молекулярной массой от десятков тысяч до нескольких миллионов. Будучи весьма стойкой к воздействию давлений и температуры, целлюлоза сравнительно легко подвергается воздействию ферментов. Гемицеллюлозы являются углеводными соединениями, которые легко подвергаются гидролизу и растворяются в кислотах и щелочах. Это гетерополисахариды, образующие при гидролизе в отличии от целлюлозы не глюкозу, а манозу, фруктозу, галактозу и уроновые кислоты.
Пектиновые вещества повышают механическую прочность стенок растительных клеток, они состоят из остатков D-галактуроновой кислоты, способных легко гидролизоваться минеральными кислотами. Карбоксильные группы в этих остатках находятся в виде солей магния и кальция, а также в виде метиловых эфиров. Прочность клеток высших растений объясняется также присутствием в их составе лигнина, который в отличии от целлюлозы не подвергается гидролизу, стоек к воздействию химических реагентов, нерастворим в воде и органических растворителях. Лигнин является полимером нерегулярного строения, в состав которого входят ароматические и жирноароматические фрагменты. Кислород присутствует в виде карбоксильных и гидроксильных групп, ароматические ядра содержат метокси-группы и связаны между собой пропильными группами. Молекулярная масса лигнина колеблется от 700 до 6000, его высокая химическая стойкость обусловлена накоплением гуминовых кислот.
Таким образом, можно предполагать, что в результате процессов углеобразования появляются химически стойкие компоненты, а менее стойкие участвуют в этих процессах как полупродукты распада.
болота являются наиболее благоприятными местами для накопления и переработки органических продуктов в торф. Заболачивание водоёмов происходит различными путями, и зависит от рельефа дна и берегов, проточности воды и т. д. Как в тропической, так и в умеренных зонах болота делятся на верховые и низинные. Верховые образуются при условии превышения количества годовых атмосферных осадков над объёмом испарения и характеризуется недостатком питательных веществ для растений. Низинные болота имеют пологие берега, заросшие тростником и камышами, покрыты плавающими и подводными растениями. Их происхождение связано с понижением рельефа и они распространены в основном в северных областях. При умеренном климате годовой прирост торфа в низинных болотах составляет 0,5 1,0 мм, а на верховых 1 2 мм.
Угольные пласты характеризуются следующими основными характеристиками:
Превращение органических веществ в торф происходит в результате протекающих химических реакций и деятельности бактерий, поэтому называется биохимической углефикацией. Превращение торфа через стадию бурых углей в антрациты называется углефикацией. Степень углефикации характеризуется уплотнением (повышением плотности), изменением содержания С, О, Н и выхода летучих. Процесс углефикации ускоряется с ростом температуры и глубина его зависит от времени; давление замедляет химические реакции, протекающие при этом.
результаты петрографического исследования углей (от греческого petros камень, grapho пишу) позволяют установить природу исходных органических материалов, их генезис, классификацию ТГИ и выбор рационального использования в народном хозяйстве. В настоящее время петрографические исследования углей широко применяются при разведочных и поисковых работах, а петрографические характеристики являются обязательными при утверждении запасов. Так, в результате исследования углей установлено, что они не являются гомогенным веществом. Мецералы (macerare размягчать) не обладают кристаллическим строением, различаются по химическому составу и физическим свойствам. В углях обнаружены превращённые частицы растительного и животного происхождения (например, водоросли, пыльца, споры, кутикулы, смоленые тельца), которые получили название форменных элементов. Другие вещества, которые претерпели более глубокие изменения не могут быть отнесены к каким-либо определённым исходным веществам, называют основной массой, которая в тонких шлифах разделяется на прозрачную и непрозрачную (опакмассу).
Все мацералы делятся на три группы витринит, экзинит (липтинит) и инертинит, причём в основе объединения оп группам лежит присущий им химический состав, происхождение и свойства.
Чаще всего встречаются ассоциации мацералов, причём такие сочетания называются микролитотипами. Последние подразделяются на моно-, би- и тримацеральные; при их отнесении к той или иной группе действует «правило 5%»: примесь нетипичных мацералов не должна превышать 5 % на полированной поверхности 50×50 мкм. Разновидности литотипов углей можно различить невооруженным глазом. Витрен блестящий, кларен полублестящий, дюрен матовый и фюзен волокнистый уголь. Сапропелевые угли в отличии от гумусовых не содержат слоистостей, однородные по составу и более прочные. Они делятся на кеннельские угли и богхеды.
Витриниты являются основным компонентом типичных блестящих углей; они образуются из лиственных и древесных тканей в основном за счёт углефикации лигнина и целлюлозы. Широкое распространение витринита в твёрдых горючих ископаемых, однородность его состава, физических и химических характеристик обусловили широкое применение его для определения степени и возраста углефикации при сопоставлении различных отложений. По сравнению с группой экзинита витринит содержит меньше водорода и больше кислорода, в его структуру входят алифатические и ароматические фрагменты. Содержание ароматических структур с возрастом органической массы угля увеличивается от 25 до 65 %, доля летучих достигает 35 40 %, а смол полукоксования 12 14 %.
Экзинитная группа содержит остатки сине-зелёных водорослей (алгинт), спор и пыльцы (споринит), полимеризованные смолы или углеводороды, жиры, кутикулы листвы и растений (кутинит), воскообразный эпидермис. Полимеризованные продукты пропитывают древесные ткани или минералы, образуя резенит или диффузный полимеризованный битум. При разложении экзинита выделяется 60 90 % летучих веществ, 40 50 % смол полукоксования; он практически не растворим, молекулярная масса ≈ 3000, в основе структуры ассоциированные нафтеновые и ароматические гетероциклические системы.
Группа инертита включает фюзенит (древесный уголь после пожаров или обугливания), окисленные остатки, грибки, полимеризованные смолы или углеводороды. Элементный состав фюзенита разнороден; он содержит много гидроксильных групп и ароматических ядер, выделяет 8 20 % летучих, до 4 % смолы полукоксования.
Витринит при 380 450 0С «плавится» и затем образует вспученный кокс. Экзинит также обладает некоторыми коксующимися свойствами. Мацералы группы инертита обладают низкой химической активностью, которая незначительно меняется при метаморфизме. Отличаясь высоким выходом летучих, витринит определяет коксуемость углей, а экзенит характеризует пластические свойства углей. Подбирая состав шихт из отдельных мацералов в определённом соотношении, можно значительно расширить сырьевую базу для производства кокса.
Для изучения физических и химических свойств петрографических ингредиентов их необходимо выделить из угольной массы. Витрен, фюзен, дбрен и кларен можно разделить вручную, особенно в молодых углях; в зрелых каменных углях трудно отделить кларен от дюрена. Другой метод заключается в растирании угольного вещества. При этом наименее твёрдый дюрен переходит в мелкие классы. Концентраты ингредиентов можно получить разделением их в жидкостях с различной плотностью.
Рациональное использование твёрдых горючих ископаемых в народном хозяйстве возможно при наличии классификации, учитывающей весь комплекс физических, химических и технологических свойств. Однако, несмотря на многолетние работы в этой области, до сих пор не существует единой промышленно-генетической классификации.
В соответствии с американской классификацией угли разделяют на несколько классов, отличающихся содержанием влаги и летучих, а также теплотой сгорания. В основе классификации Грюнера лежит элементный состав, отношение О/Н, плотность, выход и состав кокса. Близкой к ней является классификация Брокмана, основанная на сопоставлении данных о естественной влажности, элементном составе, плотности, выходе и свойствах кокса. Немецкий палеоботаник Потонье создал первую генетическую классификацию твёрдых горючих ископаемых всех видов. В основе её было деление минералов, образованных из живых организмов. Минералы, названные биолитами, он разделил на негорючие акаустобиолиты и горючие каустобиолиты. Каустобиолиты были разделены на три подгруппы: гуммиты (из многоклеточных растений), сапропилиты (из водорослей и планктона) и липтобиолиты (из устойчивых частей растений). К сожалению, современные методы исследования твёрдых горючих ископаемых не позволяют чётко установить взаимосвязь между их происхождением, свойствами и направлением использования в народном хозяйстве. Это объясняется тем, что из одного исходного органического материала в зависимости от глубины и условий превращения могут образовываться топлива различных видов. Г. Л. Стадников в основу разработанной им естественной классификации положил взаимосвязь между происхождением, физико-химическими свойствами исходного материала и стадиями их превращения. Он пришёл к выводу, что помимо сапропилитовых и гумусовых углей существуют угли смешенных классов гумусо-сапропилитовые и сапропилито-гумусовые, а исходная органическая масса претерпевает три стадии физико-химических превращений: торф, бурый и каменные угли. Следует отметить, что классификация Г. Л. Стадникова не включает все твердые горючие ископаемые (например, липтобиолиты) и не может быть использована для их промышленной оценки.
По генетической классификации Ю. А. Жемчужникова угли подразделяются на две группы, каждая из которых состоит из двух классов:
Таблица 2
Генетическая классификация твёрдых горючих ископаемых по Ю. А. Жемчужникову
Первая группа. Гумолиты высшие растения |
Вторая группа. Сапропелиты низшие растения и животный планктон |
I класс гумиты (лигнино-целлюллозные, смолы, кутиковые элементы) |
III класс сапропилиты (сохранены водоросли и планктонные остатки) |
II класс липтобиолитовые (смолы, кутиковые элементы) |
IV класс сапроколлиты (водоросли превратились в бесструктурную массу) |
В классификации Жемчужникова, в отличии от классификации Потонье, рассматривается вероятность образования гумитов и липтобиолитов из одних исходных материалов, но при различных условиях. Позднее А. И. Гинзбург включил в классификацию условия превращения исходного органического материала. И. И. Аммосов в своей классификации показал связь процессов образования углей различных типов с исходными материалами. С. М. Григорьев предложил классификацию горючих ископаемых, основанную на содержании С, Н и О. Н. М. Караваев использовал данные об элементном составе (в атомных долях) в атомном отношении Н/С. Это позволило вывести закономерность в процессах превращения видов топлива. Более общая генетическая классификация, учитывающая происхождение и глубину химических превращений твёрдых горючих ископаемых, была разработана С. Г. Ароновым и Л. Л. Нестеренко.
Таблица 3
Классификация углей по Аронову и Нестеренко
Класс угля |
Стадии химической зрелости |
||||
торфяная |
буроугольная |
каменноугольная |
антрацитовая |
||
I |
Гуммиты (преимущественно из высших растений) |
Торф |
Бурые угли землистые Плотные (блестящие, матовые, полосчатые) Лигниты |
Каменные угли однородные (блестящие, осажистые) Неоднородные (полублестящие, матовые) Полосчатые |
Антрациты |
II |
Липтобиолиты: из восков и смол высших растений из других форменных элементов высших растений |
Фахтелит (восковой) Копалы (смоляные) Фимменит (пыльцевой) |
Пирописсит (восковой) Янтарь (смоляной) Подмосковные (споровые) Тасманит (споровый) «Бумажный» подмосковный уголь (кутикуловый) Барзасский листовой |
Рабдописсит (смоляной). Ткибульский смоляной уголь. Конкреции смол в каменных углях. Кутикулит иркутский. Липтобиолиты среди кизеловских (лысвенских) каменных углей (споровые) Кеннели Лопинит (споровый) |
|
III |
Сапропилиты (из низших растений и животного планктона): собственно сопропилиты (отруктурные) сапропелиты (бесструктурные) |
Сапропель Балхашит Куронгит Сапроколлы |
Богхеды Торбанит Марагунит Касьянит Черемхит Хахарейский Матаганский |
Уголь из Люгау Кеннели Богхеды среди донецких углей |
|
IV |
Особые твёрдые горючие ископаемые |
|
Барзасские угли Гагаты Горючие сланцы |
|
|
Указанные выше научные классификации дают возможность выявить зависимость между природой исходного органического материала, условиями его превращения и видом образовавшегося топлива. Между тем возникает необходимость в разработке единой промышленно-генетической классификации, позволяющей квалифицированно определять возможность промышленного использования твердого топлива всех типов. Первые технические классификации были основаны на учёте выхода летучих веществ и внешнего вида остатка коксового королька.
В настоящее время приняты бассейновые классификации, основанные на 17 действующих стандартах, причём основными являются следующие: Vdaf выход летучих веществ в расчете на сухую беззольную массу, %; Y толщина пластического слоя для каменных углей, мм; Wr содержание рабочей влаги в бурых углях, % (масс.). В некоторых классификациях каменных углей учитывается индекс Pora RI, а для бурых углей выход смолы полукоксования в расчёте на сухую беззольную массу Tskdaf (%) и высшая теплота сгорания сухого беззольного топлива (кДж/кг).
Петрографический состав углей формируется в зависимости от условий углеобразования и состава растительности. Девонские угли представлены кутикуловыми липтобиолитами (Барзасское месторождение), нижнекарбоновые угли в значительной степени состоят из оболочек микро- и макроспор (Кизеловский и Подмосковный бассейны), угли Вестфальской провинции образованы из лигнино-целлюлозных остатков и содержат более 75 -80 % витринита и до 10 12 % фюзенита (Донецкий бассейн). Угли Тунгуской провинции содержат до 30 40 % фюзенита (Кузнецкий и Тунгусский бассейны). Нижнепермские угли этих же бассейнов образовались главным образом из древесины в условиях фюзинизации тканей (содержание фюзенита 50 60 %). В отличие от Нижнепермских, в углях Верхнепермского месторождения, образованных из лиственных тканей, преобладают витриниты. Среднеазиатские угли содержат до 60 70 % фюзенита, тогда как в углях Канско-Ачинского и Иркутского бассейнов их содержание не превышает 10 %.
Витринитовые угли в СССр составляли 65 % от суммарных запасов, фюзенитовые и микринитовые 32 %, лейптинитовые и сапропелитовые 3 %.
Таблица 4
Каменные угли СССР
Бассейн |
Месторождение |
Львовско-Волынский |
Волынское Межреченское |
Карангадинский |
Карангадинское |
Экибастузский |
То же |
Донецкий |
|
Кузнецкий |
Кузнецкий Горловинский |
Печорский |
|
Кизеловский |
Таблица 5
Бурые угли СССР
Бассейн |
Месторождение |
Канско-Ачинский |
Ирша-Бородинский Итатский Назаровсий Березовсий |
Подмосковный |
Многочисленные месторождения углей расположены в районах Дальнего Востока.