У вас вопросы?
У нас ответы:) SamZan.net

. Равномерное прямолинейное движение вдоль оси направленной по горизонтальной плоскости

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

Движение тела брошенного под углом к горизонту.

Пусть тело брошено с горизонтальной плоскости под углом к горизонту с некоторой начальной скоростью (сопротивлением среды пренебрегаем). При решении задач используем метод наложения движений:

1. Равномерное прямолинейное движение вдоль оси направленной по горизонтальной плоскости.

2. Равнозамедленное (равноускоренное) движение вдоль оси направленной перпендикулярно к плоскости.

Для получения ответов на вопросы задачи освоим несколько методов решения. Рассмотрим конкретный пример:

Пример 1. С какой скоростью должны вылететь мина из миномета в момент старта ракеты, вылетающей вертикально вверх с ускорением 3g без начальной скорости, чтобы поразить эту ракету? Расстояние от миномета до места старта ракеты 250 м, мина вылетает под углом 45° к горизонту.

Ось XOY направим так, как показано на рисунке.

Мина поразит ракету в точке A. По горизонтали она пролетит расстояние равное S = vxt = vocosα•t, (1)

где t −− время полета мины.

По вертикали мина пролетит расстояние равное высоте подъема ракеты (должна попасть в ракету). H = vyt − gt2/2 = vosinα•t − gt2/2. (2)

Высота подъема ракеты до точки A H = 3gt2/2. (3)

Приравняем (2) и (3) vosinα•t − gt2/2 = 3gt2/2.

Сократив на время, имеем уравнение vosinα − gt/2 = 3gt/2. (4)

Из уравнения (4) выразим время полета мины (ракеты) t = vosinα/(2g). (5)

Теперь подставим в уравнение (1) S = vxt = vocosα•vosinα/(2g).

Откуда выражаем искомую скорость мины vo = [2gS/(cosα•sinα)]1/2 = 2[gS/(sin2α)]1/2.

Вычислим скорость мины vo = 2[10•250/sin(2•45°)]1/2 = 100 м/с.

Вывод: для ответа на вопрос задачи мы решали три уравнения: S = vocosα•t, H = vosinα•tgt2/2, H = 3gt2/2.

В которых три неизвестных: высота, на которой произошло попадание, время попадания мины в ракету и начальная скорость мины (искомая). Три уравнения с тремя неизвестными дают решение.

Рассмотрим второй способ решения задачи. Изменим систему отсчета. Предлагаю «выключить гравитационное поле Земли». Земля действует на оба тела, отключив ее мы получим ситуацию равномерного движения мины и равноускоренного движения ракеты с ускорением 4g = 3g + g. Правда и Земля будет двигаться вверх с ускорением g, но она нас не интересует.

Итак, мина летит по прямой и пролетает расстояние равное L = S(2)1/2, так как мы имеем равнобедренный прямоугольный треугольник (смотри на рисунке).

Ракета до точки попадания мины пролетает расстояние S = 4gt2/2 = 2gt2.

Откуда время t = [S/(2g)]1/2.

Теперь определим скорость мины vo = L/t = S√2/√{S/(2g)} = 2√(gS).

Подставим численные значения vo = 2√(10•250) = 100 м/с.

Изменив систему отсчета, мы гораздо проще определили время полета мины и ракеты до попадания.

Рассмотрим еще один классический пример.

Пример 2. С высоты 1,5 м на наклонную плоскость вертикально падает шарик и абсолютно упруго отражается от нее. На каком расстоянии от места падения он снова ударится о туже плоскость? Угол наклона плоскости к горизонту 30°.

Выберем оси координат, так как показано на рисунке.

По вертикали, до точки удара о плоскость, тело пролетит расстояние H, уравнение координаты вдоль оси OY имеет вид 0 = H + vosinα•t − gt2/2. (1)

Дальность полета вдоль оси OX равна S = vocosα•t. (2)

Выразим из уравнения (2) время полета и подставим в (1) уравнение 0 = H + Stgα − (g/2)S2/(vocosα) 2. (3)

Из соотношения в прямоугольном треугольнике свяжем высоту и дальность полета по горизонтали с дальностью полета вдоль плоскости H = Lsinα, S = Lcosα.

Подставим в уравнение (3) 0 = Lsinα + Lcosαtgα − (g/2)(Lcosα)2/(vocosα)2,

Или 0 = 2sinα − gL/(2vo2),

Выразим дальность полета вдоль наклонной плоскости L = 4vo2sinα/g.

Так как скорость тела перед падением на плоскость равна vo2 = 2gh (свободное падение), то L = 8hsinα,

После подстановки L = 8•1,5•sin30 = 6 м.

Решим задачу в системе координат, так как показано на рисунке, развернув ее на 30° по отношению к первоначальной по часовой стрелке.

В новой системе координат, тело брошено под углом к горизонту 90° − α = 60°. Обратим внимание на то, что в новой системе координат тело движется равноускоренно вдоль оси OX с ускорением gx = gsinα и дальность полета равна

L = vocos(90° − α)•t + gsinαt2/2, (1) где t – время полета, которое найдем из уравнения скорости вдоль оси OY. Учтем, что тело движется с ускорением gy = −gcosα в проекции на ось OY vy = vosin(90° − α) - gcosαt. В верхней точке траектории vy = 0, тогда

vosin(90° − α) − gcosαt1 = 0 и t1 = vo/g, а время полета t = 2t1 = 2vo/g.

Подставим время полета в уравнение (1)

L = vosinα•2vo/g + gsinα (2vo/g)2/2 = 4vosinα/g.

C учетом того, что скорость тела перед падением на плоскость равна vo2 = 2gh получим дальность полета

L = 8hsinα, Мы получили тот же результат, но, может быть чуть с более сложной математикой.

Третий способ решения.

«Выключим Землю», тогда тело будет двигаться прямолинейно и равномерно со скоростью vo, а горка придет в движение с ускорением g и придет в точку A одновременно с телом.

Проанализировав углы треугольника OAB видим, что все они равны 60°. Тогда OA = AB = OB = L.

Расстояние OA = vo•t, а AB = gt2/2. Приравняв правые части vo•t = gt2/2, найдем время полета тела t = 2vo/g.

Тогда дальность полета

L = OA = 2vo•vo/g = 2vo2/g. C учетом того, что скорость тела перед падением на плоскость равна vo2 = 2gh получим дальность полета L = 4h = 4•1,5 = 6 м.

Замечание: Третьим способом время полета определяется гораздо проще.

Если решать задачу в общем виде, то формула дальности полета будет такой же L = 8hsinα.




1. Место интуиции в философии
2. ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ Кафедра общественного здоровья и здравоохр
3. Школа в годы войн
4. приобрел Балтийское море на западе 2 прочно поставил русское влияние в Польше на югозападе 3 явился гр
5. підручник з найчудовішим вмістом може стати підставкою для чогось гарячого або банальним джерелом багаття т
6. Персидский язык
7. . Персональные компьютеры в cетях TCP-IP [2
8. Sounds. We my now define phonetics s the study of the phonic medium
9. КОНСПЕКТ ЛЕКЦИЙ Учебное пособие Под редакцией Н
10. статьях Особенной части УК РФ устанавливающих различные виды и размеры наказаний за конкретно совершённые п
11. О налоге на добавленную стоимость
12. Введение Одной из самых актуальных общественно ~ политических проблем нашего государства является наркоти
13. Стеклянные и керамические издели
14. кодекс чести который в разных формах сформулирован в медиаорганизациях и профсоюзах
15. ТЕМА 10.ВОЗБУЖДЕНИЕ УГОЛОВНОГО ДЕЛА 10
16. тема преступлений 4
17. Тема Організація виконання документів Мета- визначати виконавця документа; організовувати зберігання доку
18. Ладно я выскажусь
19. Методические рекомендации по написанию курсовой работы Методические рекомендации по написанию курсовой
20. Четыре провинции Ирландии- Коннахт