Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Анатомия 30-40.
30) Спинномозговая жидкость, её функции. Ликворные пути.
Спинномозговая жидкость
цереброспинальная жидкость, ликвор (liquor cerebrospinalis), жидкая среда, циркулирующая в полостях желудочков головного мозга, спинномозгового канала и субарахноидальном (под паутинной оболочкой) пространстве головного и спинного мозга. В образовании С. ж. участвуют сосудистые сплетения, железистые клетки, эпендима и субэпендимальная ткань желудочков головного мозга, паутинная оболочка, глия и др. Отток осуществляется через венозные сплетения мозга, пазухи твёрдой мозговой оболочки, периневральные пространства черепно-мозговых и спинномозговых нервов. С. ж. своего рода «водяная подушка», предохраняющая от наружных воздействий головной и спинной мозг; она регулирует внутричерепное давление, обеспечивает постоянство внутренней среды; посредством С. ж. осуществляется тканевой обмен в центральной нервной системе. С. ж. здорового человека бесцветная, прозрачная; её количество у взрослого 100150 мл; удельный вес 1,0061,007; реакция слабощелочная. Давление С. ж. различно на разных уровнях центральной нервной системы и зависит от положения тела (в горизонтальном положении 100200 мм вод. cm.). По химическому составу С. ж. сходна с сывороткой крови. Содержит 05 клеток в 1мм3 и 0,220,33% белка.
С диагностической и лечебной целью производят пункцию (См. Пункция) спинномозгового канала, позволяющую определить величину давления С. ж. и извлечь ее для анализа. При поражениях центральной нервной системы давление и состав (в частности, соотношение содержания белка и клеток) С. ж. изменяются. Давление С. ж. повышается при нарушении её оттока (травмы черепа и позвоночника, опухоли мозга, кровоизлияния и т.д.). При менингите обнаруживаются бактерии. Коллоидные реакции помогают, например, в диагностике сифилиса; биохимические исследования С. ж. (определение сахара, хлоридов, свободных аминокислот, ферментов и др.) при распознавании нейроинфекций, эпилепсии и др.
Ликвор образуется в мозге: в эпендимальных клетках сосудистого сплетения (5070 %), и вокруг кровеносных сосудов и вдоль желудочковой стенки. Далее цереброспинальная жидкость циркулирует от боковых желудочков в отверстие Монро (межжелудочковое отверстия), затем вдоль третьего желудочка, проходит через Сильвиев водопровод. Затем проходит в четвертый желудочек, через отверстия Мажанди и Лушки выходит в субарахноидальное пространство головного и спинного мозга. Ликвор реабсорбируется в кровь венозных синусов и через грануляции паутинной оболочки.
31) Спинной мозг, форма, топография. Основные отделы спинного мозга. Шейное и пояснично-крестцовое утолщения спинного мозга. Сегменты спинного мозга.
Спинной мозг располагается в канале позвоночного столба от верхнего края I шейного позвонка до III поясничного позвонка. Средняя длина спинного мозга человека равна примерно 43 см, средний вес около 30 г. Спинной мозг покрыт тремя оболочками: твёрдой, паутинной и сосудистой.
Спинной мозг имеет форму цилиндра, несколько сплюснутого в передне-заднем направлении .В его шейном и поясничном отделах заметны два утолщения шейное утолщение и пояснично-крестцовое утолщение. Формирование этих утолщений обусловлено скоплением в этих участках спинного мозга большого количества нервных клеток и волокон, иннервирующих верхние и нижние конечности. Так как руки у человека могут выполнять большее число движений, шейное утолщение имеет большую площадь сечения, чем пояснично-крестцовое.
В своей верхней части спинной мозг нечётко граничит с продолговатым мозгом, а внизу постепенно суживается в виде мозгового конуса и переходит в концевую нить. Концевая нить, за исключением верхних участков, не содержит нервных клеток, а является соединительно-тканым образованием. В крестцовом канале концевая нить срастается с твёрдой мозговой оболочкой и прикрепляется к надкостнице II копчикового позвонка. За счёт этого спинной мозг фиксируется в позвоночном канале. Вместе с пояснично-крестцовыми спинномозговыми нервами, отходящими от мозгового конуса вертикально вниз, терминальная нить образует так называемый конский хвост .
На передней поверхности спинного мозга видна передняя срединная щель. По середине задней поверхности спинного мозга проходит задняя срединная борозда .Сагиттальная плоскость, проходящая через срединную щель и заднюю срединную борозду, делит спинной мозг на правую и левую симметричные половины.
Латеральнее передней срединной щели находится передняя латеральная борозда, являющаяся местом выхода из спинного мозга передних (двигательных) корешков.
Латеральнее задней срединной борозды находится задняя латеральная борозда, место вхождения в спинной мозг задних (чувствительных) корешков. Задние и передние корешки спинного мозга соединяются и дают начало спинномозговым нервам. У места соединения корешков видны утолщения спинальные ганглии (спинномозговые узлы), содержащие тела чувствительных псевдоуниполярных нейронов.
На всём протяжении спинного мозга от него отходит с каждой стороны по 31 паре корешков. Отрезок спинного мозга, соответствующий четырём корешкам (по одному переднему и одному заднему с каждой стороны), называют сегментом спинного мозга. Соответственно, всего спинной мозг состоит из 31 сегмента, среди них различают 8 шейных, 12 грудных, 5 поясничных и 5 крестцовых и 1 копчиковый сегмент.
Протяженность спинного мозга значительно меньше длины позвоночного столба, так как длина каждого сегмента около 1 см, а это намного меньше высоты тел позвонков. По этой причине порядковый номер сегмента спинного мозга и уровень их положения, начиная с нижнего шейного отдела, не соответствует порядковым номерам одноименных позвонков. Это же объясняет тот факт, что спинномозговые нервы, начиная с грудных, направляются к месту выхода из позвоночного канала всё более вертикально вниз, а от мозгового конуса (в составе конского хвоста) идут почти вертикально.
Спинной мозг построен из серого и белого вещества. Серое вещество в спинном мозге занимает центральное положение. Снаружи от серого вещества располагается белое вещество спинного мозга.
32) Внутренне строение спинного мозга. Серое вещество. Чувствительные и двигательные рога серого вещества спинного мозга. Ядра серого вещества спинного мозга. Белое вещество спинного мозга и его проводниковая функция.
В составе спинного мозга различают серое и белое вещество. Серое вещество располагается в центральных отделах спинного мозга, белое - на его периферии (рис.1).
Серое вещество спинного мозга
В сером веществе сверху вниз проходит узкий центральный канал. Вверху канал сообщается с четвертым желудочком головного мозга. Нижний конец канала расширяется и слепо заканчиваетсятерминальным желудочком (желудочек Краузе). У взрослого человека местами центральный канал зарастает, его незаросшие участки содержат спинномозговую жидкость. Стенки канала выстланы эпендимоцитами.
Серое вещество на протяжении спинного мозга с обеих сторон от центрального канала образует образует два неправильной формы вертикальных тяжа - правый и левый серые столбы. Тонкая пластинка серого вещества, соединяющая спереди от центрального канала оба серых столба, называется передней серой спайкой. Сзади от центрального канала правый и левый столбы серого вещества соединены задней серой спайкой. У каждого столба серого вещества выделяют переднюю часть (передний столб) и заднюю часть (задний столб). На уровне между восьмым шейным сегментом и вторым поясничным сегментом включительно с каждой стороны серое вещество образует также латеральное (боковое) выпячивание - боковой столб. Выше и ниже этого уровня боковые столбы отсутствуют. На поперечном срезе спинного мозга серое вещество выглядит в виде бабочки или буквы "Н", а три пары столбов образуют передний, задний и боковой рога серого вещества. Передний рогболее широкий, задний рог - узкий. Боковой рог топографически соответствует боковому столбу серого вещества.
Серое вещество спинного мозга образовано телами нейронов, безмиелиновыми и тонкими миелиновыми волокнами и нейроглией.
В передних рогах (столбах) расположены тела наиболее крупных нейронов спинного мозга (диаметром 100-140 мкм). Они образуют пять ядер (скоплений). Эти ядра являются моторными (двигательными) центрами спинного мозга. Аксоны этих клеток составляют основную массу волокон передних корешков спинномозговых нервов. В составе спинномозговых нервов они идут на периферию и образуют моторные (двигательные) окончания в мышцах туловища, конечностей и в диафрагме (мышечной пластине, разделяющей грудную и брюшную полости и играющей главную роль при вдохе).
Серое вещество задних рогов (столбов) неоднородно. В составе задних рогов помимо нейроглии имеется большое количество вставочных нейронов, с которыми контактируют часть аксонов, идущих от чувствительных нейронов в составе задних корешков. Они представляют собой мелкие мультиполярные, так называемые ассоциативные и комиссуральные клетки. Ассоциативные нейроны имеют аксоны, которые заканчиваются на разных уровнях в пределах серого вещества своей половины спинного мозга. Аксоны комиссуральных нейронов заканчиваются на противоположной стороне спинного мозга. Отростки нервных клеток заднего рога осуществляют связь с нейронами выше- и нижележащих соседних сегментов спинного мозга. Отростки этих нейронов заканчиваются также на нейронах, расположенных в передних рогах своего сегмента.
В середине заднего рога имеется так называемое собственное ядро. Оно образовано телами вставочных нейронов. Аксоны этих нервных клеток переходят в боковой канатик белого вещества (см. ниже) своей и противоположной половины спинного мозга и участвуют в формировании проводящих путей спинного мозга (переднего спинно-мозжечкового и спинно-таламического путей).
В основании заднего рога спинного мозга находится грудное ядро (столб Кларка). Оно состоит из крупных вставочных нейронов (клеток Штиллинга) с хорошо развитыми, сильно разветвленными дендритами. Аксоны клеток этого ядра входят в боковой канатик белого вещества своей стороны спинного мозга и также образуют проводящие пути (задний спинно-мозжечковый путь).
В боковых рогах спинного мозга находятся центры вегетативной нервной системы. На уровне С8-Th1 расположен симпатический центр расширения зрачка. В боковых рогах грудного и верхних сегментах поясничного отделов спинного мозга расположены спинальные центры симпатической нервной системы, иннервирующие сердце, сосуды, потовые железы, пищеварительный тракт. Именно здесь лежат нейроны, непосредственно связанные с периферическими симпатическими ганглиями. Аксоны этих нейронов, образующих вегетативное ядро в сегментах спинного мозга с восьмого шейного по второй поясничный, проходят через передний рог, выходят из спинного мозга в составе передних корешков спинномозговых нервов. В крестцовом отделе спинного мозга заложены парасимпатические центры, иннервирующие органы малого таза (рефлекторные центры мочеиспускания, дефекации, эрекции, эякуляции).
Нервные центры спинного мозга являются сегментарными, или рабочими, центрами. Их нейроны непосредственно связаны с рецепторами и рабочими органами. Кроме спинного мозга, такие центры имеются в продолговатом и среднем мозге. Надсегментарные центры, например промежуточного мозга, коры больших полушарий, непосредственной связи с периферией не имеют. Они управляют ею посредством сегментарных центров.
Рефлекторная функция спинного мозга.
Серое вещество спинного мозга, задние и передние корешки спинномозговых нервов, собственные пучки белого вещества образует сегментарный аппарат спинного мозга. Он обеспечивает рефлекторную (сегментарную)функцию спинного мозга.
Нервная система функционирует по рефлекторным принципам. Рефлекс представляет собой ответную реакцию организма на внешнее или внутреннее воздействие и распространяется по рефлекторной дуге. Рефлекторные дуги - это цепи, состоящие из нервных клеток.
Рис. 3. Простейшая двухнейронная рефлекторная дуга. |
Простейшая рефлекторная дуга включает чувствительный и эффекторный нейроны, по которым нервный импульс движется от места возникновения (от рецептора) к рабочему органу (эффектору) (рис.3). Тело первого чувствительного (псевдоуниполярного) нейрона находится в спинномозговом узле. Дендрит начинается рецептором, воспринимающим внешнее или внутреннее раздражение (механическое, химическое и др) и преобразующим его в нервный импульс, который достигает тела нервной клетки. От тела нейрона по аксону нервный импульс через чувствительные корешки спинномозговых нервов направляется в спинной мозг, где образует синапсы с телами эффекторных нейронов. В каждом межнейронном синапсе с помощью биологически активных веществ (медиаторов) происходит передача импульса. Аксон эффекторного нейрона выходит из спинного мозга в составе передних корешков спинномозговых нервов (двигательных или секреторных нервных волокон) и направляется к рабочему органу, вызывая сокращение мышцы, усиление (торможение) секреции железы.
Более сложные рефлекторные дуги имеют один или несколько вставочных нейронов. Тело вставочного нейрона в трехнейронных рефлекторных дугах находится в сером веществе задних столбов (рогов) спинного мозга и контактирует с приходящим в составе задних (чувствительных) корешков спинномозговых нервов аксоном чувствительного нейрона. Аксоны вставочных нейронов направляются к передним столбам (рогам), где располагаются тела эффекторных клеток. Аксоны эффекторных клеток направляются к мышцам, железам, влияя на их функцию. В нервной системе много сложных многонейронных рефлекторных дуг, у которых имеется несколько вставочных нейронов, располагающихся в сером веществе спинного и головного мозга.
Примером простейшего рефлекса может служить коленный рефлекс, возникающий в ответ на кратковременное растяжение четырехглавой мышцы бедра легким ударом по ее сухожилию ниже коленной чашечки. После короткого латентного (скрытого) периода происходит сокращение четырехглавой мышцы, в результате которого приподнимается свободно висящая нижняя часть ноги. Коленный рефлекс относится к числу так называемых рефлексов растяжения мышцы, физиологическое значение которых состоит в регуляции длины мышцы, что особенно важно для поддержания позы. Например, когда человек стоит, каждое сгибание в коленном суставе, даже такое слабое, что его невозможно ни увидеть, ни почувствовать, сопровождается растяжением четырехглавой мышцы и соответствующим усилением активности расположенных в ней чувствительных окончаний (мышечных веретен). В результате происходит дополнительная активация мотонейронов четырехглавой мышцы ("коленный рефлекс"), и повышение ее тонуса, противодействующее сгибанию. И наоборот, слишком сильное сокращение мышцы ослабляет стимуляцию ее рецепторов растяжения. Частота их импульсации, возбуждающей мотонейроны, уменьшается, и мышечный тонус ослабевает.
Как правило, в движении участвует несколько мышц, которые по отношению друг к другу могут выступать как агонисты (действуют в одном направлении) либо антагонисты(действуют разнонаправленно). Рефлекторный акт возможен только при сопряженном, так называемом реципрокном торможении двигательных центров мышц-антагонистов. При ходьбе сгибание ноги сопровождается расслаблением разгибателей и, наоборот, при разгибании тормозятся мышцы-сгибатели. Если бы этого не происходило, то возникла бы механическая борьба мышц, судороги, а не приспособительные двигательные акты. При раздражении чувствительного нерва, вызывающего сгибательный рефлекс, импульсы направляются к центрам мышц-сгибателей и через специальные вставочные нейроны (тормозные клетки Реншоу) - к центрам мышц-разгибателей. В первых вызывают процесс возбуждения, а во вторых - торможения. В ответ возникает координированный, согласованный рефлекторный акт - сгибательный рефлекс.
Взаимодействие процессов возбуждения и торможения - универсальный принцип, лежащий в основе деятельности нервной системы. Конечно, он реализуется не только на уровне сегментов спинного мозга. Вышестоящие отделы нервной системы осуществляют свое регуляторное влияние, вызывая процессы возбуждения и торможения нейронов нижестоящих отделов. Важно отметить: чем выше уровень животного, тем сильнее власть самых высших отделов центральной нервной системы, "тем в большей степени высший отдел является распорядителем и распределителем деятельности организма" (И. П. Павлов). У человека таким "распорядителем и распределителем" является кора больших полушарий головного мозга.
Каждый спинальный рефлекс имеет свое рецептивное поле и свою локализацию (место нахождения), свой уровень. Так, например, центр коленного рефлекса находится во II - IV поясничном сегменте; ахиллова - в V поясничном и I - II крестцовых сегментах; подошвенного - в I - II крестцовом, центр брюшных мышц - в VIII - XII грудных сегментах. Важнейшим жизненно важным центром спинного мозга является двигательный центр диафрагмы, расположенный в III - IV шейных сегментах. Повреждение его ведет к смерти вследствие остановки дыхания.
Кроме двигательных рефлекторных дуг на уровне спинного мозга замыкаются вегетативные рефлекторные дуги, осуществляющие контроль за деятельностью внутренних органов.
Межсегментарные рефлекторные связи. В спинном мозге помимо описанных выше рефлекторных дуг, ограниченных пределами одного или нескольких сегментов, действуют восходящие и нисходящие межсегментарные рефлекторные пути. Вставочными нейронами в них служат так называемые проприоспинальные нейроны, тела которых находятся в сером веществе спинного мозга, а аксоны поднимаются или спускаются на различные расстояния в составе проприоспинальных трактов белого вещества, никогда не покидая спинной мозг. Опыты с дегенерацией нервных структур (в которых полностью изолируются отдельные части спинного мозга) показали, что к проприоспинальным нейронам относится большинство его нервных клеток. Некоторые из них образуют независимые функциональные группы, ответственные за выполнение автоматических движений (автоматических программ спинного мозга). Межсегментарные рефлексы и эти программы способствуют координации движений, запускаемых на разных уровнях спинного мозга, в частности передних и задних конечностей, конечностей и шеи.
Благодаря этим рефлексам и автоматическим программам спинной мозг способен обеспечивать сложные согласованные движения в ответ на соответствующий сигнал с периферии или от вышележащих отделов центральной нервной системы. Здесь можно говорить о его интегративной (объединяющей) функции спинного мозга, хотя следует иметь в виду, что у высших позвоночных (в частности, у млекопитающих) возрастает регуляция спинальных функций высшими отделами центральной нервной системы (процесс энцефализации).
Спинальная локомоция. Обнаружено, что основные характеристики локомоции, т. е. перемещения человека или животного в окружающей среде при помощи координированных движений конечностей, запрограммированы на уровне спинного мозга. Болевое раздражение какой-либо конечности спинального животного вызывает рефлекторные движения всех четырех; если же такая стимуляция продолжается достаточно долго, могут возникнуть ритмичные сгибательные и разгибательные движения не подвергающихся раздражению конечностей. Если такое животное поставить на тредмилл (бегущую дорожку), то при некоторых условиях оно будет совершать координированные шагательные движения, весьма сходные с естественными.
У спинального животного, анестезированного и парализованного кураре, в определенных условиях можно зарегистрировать ритмично чередующиеся залпы импульсов мотонейронов разгибателей и сгибателей, примерно соответствующие наблюдаемым при естественной ходьбе. Поскольку такая импульсация не сопровождается движениями, ее называют ложной локомоцией. Она обеспечивается пока еще не идентифицированными локомоторными центрами спинного мозга. По-видимому, для каждой конечности существует один такой центр. Активность центров координируется проприоспинальными системами и трактами, пересекающими спинной мозг в пределах отдельных ссгменгов.
Предполагают, что у человека тоже есть спинальные локомоторные центры. По-видимому, их активация при раздражении кожи проявляется в виде шагательного рефлекса новорожденного. Однако по мере созревания центральной нервной системы вышестоящие отделы, очевидно, настолько подчиняют себе такие центры. что у взрослого человека они утрачивают способность к самостоятельной активности. Тем не менее, активизация локомоторных центров путем интенсивной тренировки лежит в основе различных методик восстановления ходьбы у больных с повреждением спинного мозга .
Таким образом, даже на уровне спинного мозга обеспечиваются запрограммированные (автоматические) двигательные акты. Подобные независимые от внешней стимуляции двигательные программы шире представлены в высших двигательных центрах. Некоторые из них (например, дыхание) врожденные, другие же (например, езда на велосипеде) приобретаются в процессе научения.
Белое вещество спинного мозга. Проводниковая функция спинного мозга.
Белое вещество спинного мозга образовано совокупностью продольно ориентированных нервных волокон, идущих в восходящем или нисходящем направлении. Белое вещество окружает со всех сторон серое и разделяется, как уже упомянуто было выше, на три канатика: передний, задний, боковой. Кроме этого в нем выделяют переднюю белую спайку. Она располагается кзади от передней срединной щели и соединяет передние канатики правой и левой сторон.
Пучки нервных волокон (совокупность отростков) в канатиках спинного мозга составляют проводящие пути спинного мозга. Различают три системы пучков:
В белом веществе передних канатиков проходят в основном нисходящие проводящие пути, в боковых канатиках - восходящие и нисходящие, в задних канатиках - восходящие проводящие пути.
Чувствительные (восходящие) пути. Спинной мозг проводит четыре вида чувствительности: тактильную (чувство прикосновения и давления), температурную, болевую и проприоцептивную (от рецепторов мышц и сухожилий, так называемое суставно-мышечное чувство, чувство положения и движения тела и конечностей).
Основная масса восходящих путей проводит проприоцептивную чувствительность. Это говорит о важности контроля движений, так называемой обратной связи, для двигательной функции организма. Пути проприоцептивной чувствительности направляются к коре полушарий большого мозга и в мозжечок, который участвует в координации движений. Проприоцептивный путь к коре больших полушарий представлен двумя пучками: тонким и клиновидным.Тонкий пучок (пучок Голля) проводит импульсы от проприорецепторов нижних конечностей и нижней половины тела и прилежит к задней срединной борозде в заднем канатике. Клиновидный пучок (пучок Бурдаха) примыкает к нему снаружи и несет импульсы от верхней половины туловища и от верхних конечностей. К мозжечку идут два спинно-мозжечковых пути - передний (Флексига) и задний (Говерса). Они располагаются в составе боковых канатиков. Передний спинно-мозжечковый путь служит для контроля положения конечностей и равновесия всего тела во время движения и позы. Задний спинно-мозжечковый путь специализирован для быстрой регуляции тонких движений верхних и нижних конечностей. Благодаря поступлению импульсов от проприоцепторов мозжечок участвует в автоматической рефлекторной координации движений. Особенно отчетливо это проявляется при внезапных нарушениях равновесия во время ходьбы, когда в ответ на изменение положения тела возникает целый комплекс непроизвольных движений, направленный на поддержание равновесия.
Импульсы болевой и температурной чувствительности проводит латеральный (боковой) спинно-таламический путь. Первым нейроном этого пути являются чувствительные клетки спинномозговых узлов. Их периферические отростки (дендриты) приходят в составе спинномозговых нервов. Центральные отростки образуют задние корешки и идут в спинной мозг, оканчиваясь на вставочных нейронах задних рогов (2-й нейрон). Отростки вторых нейронов через переднюю белую спайку переходят на противоположную сторону (образуют перекрест) и поднимаются в составе бокового канатика спинного мозга в головной мозг. В результате того, что волокна по пути перекрещиваются, импульсы от левой половины туловища и конечностей передаются в правое полушарие, а от правой половины - в левое.
Тактильную чувствительность (чувство осязания, прикосновения, давления) проводит передний спинно-таламический путь, идущий в составе переднего канатика спинного мозга.
Двигательные пути представлены двумя группами:
1. Передний и боковой (латеральный) пирамидные (кортико-спинальные) пути, проводящие импульсы от коры к двигательным клеткам спинного мозга, являющиеся путями произвольных (осознанных) движений. Они представлены аксонами гигантских пирамидных клеток (клеток Беца), залегающих в коре предцентральной извилины полушарий большого мозга. На границе со спинным мозгом большая часть волокон общего пирамидного пути переходит на противоположную сторону (образует перекрест) и образует боковой пирамидный путь, который спускается в боковом канатике спинного мозга, заканчиваясь на мотонейронах переднего рога. Меньшая часть волокон не перекрещивается и идет в переднем канатике, образуя передний пирамидный путь. Однако и эти волокна также постепенно переходят через переднюю белую спайку на противоположную сторону (образуют посегментный перекрест) и заканчиваются на двигательных клетках переднего рога. Отростки клеток переднего рога образуют передний (двигательный) корешок и заканчиваются в мышце двигательным окончанием. Таким образом, оба пирамидных пути являются перекрещенными. Поэтому при одностороннем повреждении головного или спинного мозга возникают двигательные нарушения ниже места повреждения на противоположной стороне тела. Пирамидные пути - двухнейронные (центральный нейрон - пирамидная клетка коры, периферический нейрон - мотонейрон переднего рога спинного мозга). При повреждении тела или аксона центрального нейрона наступает центральный (спастический) паралич, а при повреждении тела или аксона периферического нейрона - периферический (вялый) паралич.
2. Экстрапирамидные, рефлекторные двигательные пути. К ним относятся:
- красноядерно-спинномозговой (руброспинальный) путь - идет в составе боковых канатиков от клеток красного ядра среднего мозга к передним рогам спинного мозга, несет импульсы подсознательного управления движениями и тонусом скелетных мышц;
- текто-спинальный (покрышечно-спинальный) путь - идет в переднем канатике, связывает верхние холмики покрышки среднего мозга (подкорковые центры зрения) и нижние холмики (центры слуха) с двигательными ядрами передних рогов спинного мозга, функция его заключается в обеспечении координированных движений глаз, головы и верхних конечностей на неожиданные световые и звуковые воздействия;
- вестибуло-спинальный (предверно-спинальный) путь - направляется от преддверных (вестибулярных) ядер (8-й пары черепных нервов) к двигательным клеткам передних рогов спинного мозга, оказывает возбуждающее влияние на двигательные ядра мышц-разгибателей (антигравитационная мускулатура), причем преимущественно на осевые мышцы (мышцы позвоночного столба) и на мышцы поясов верхних и нижних конечностей. На сгибательную мускулатуру вестибуло-спинальный тракт оказывает тормозящее влияние.
33) Эволюция нервной системы. Три филогенетических этапа формирования нервной системы: сетевидная, узловая и трубчатая.
Предполагают, что исходной формой нервной системы всех животных была диффузная. Из этой формы в ходе эволюции вторичноротых сформировалась «спинная» трубчатая нервная система спинной и головной мозг, а в ходе эволюции первичноротых, например, насекомых, узловая - - брюшная нервная Цепочка с окологлоточными ганглиями (головным мозгом этих животных).
Основными направлениями эволюционного развития всех нервых систем, видимо, были централизация элементов, цефсишзация (развитие головного мозга, головных ганглиев) и общее увеличение числа нейронов и их синаптических связей.
По-видимому, параллельно с такой эволюцией структуры нервной системы шла дифференциация самих нервных элементов - формирование униполярных и мультиполярных нейронов из «недифференцированных» веретенообразных нервных клеток (сформировавшихся ранее из миоэпителиальных элементов).
Важное направление в эволюции нервных элементов миелинизация нервных волокон у позвоночных и формирование гигантских нервных проводников у некоторых беспозвоночных (например головоногих моллюсков). Эти изменения (особенно миелинизация) существенно повысили скорость нервной сигнализации. Вместе с тем молекулярные механизмы нервной системы ионные каналы, медиаторы и их рецепторы, как сейчас считают, были сформированы на каких-то более ранних стадиях филогенеза (возможно, на «донервных» стадиях), так как они практически не различаются у животных разного уровня развития.
В онтогенезе у позвоночных их нервная система развивается из эктодермы (из дорсальной мозговой пластинки, формирующей далее нервную трубку). В онтогенезе у беспозвоночных нервная система развивается из эктодермы иэнтодермы. Клетки-предшественники нейронов называются нейробластами. Их созревание связано с ростом отростков и установлением синаптичсских связей. При этом отростки находят соответствующие мишени путем хемотаксиса с помощью специальных вытянутых глиальных клеток, играющих роль направляющих структур.
Клетки-предшественники глии (глионов) называются спонгиобластами. Сформированные (зрелые) нейроны утрачивают способность к размножению; у большинства же глионов, напротив, эта способность остается. В нервной системе стареющих животных и человека наблюдаются как гибель части нейронов, так и усиленное размножение глиальных элементов. Однако неясно, является ли это нарушение нейроглиального соотношения компенсаторным процессом или вариантом патологии.
Многоклеточные животные воспринимают воздействия внешней среды различными способами, в зависимости от своего строения:
1. с помощью эктодермальных клеток (рефлекторных и рецепторных), которые диффузно располагаются по всему телу, образуя примитивную диффузную, или сетевидную, нервную систему (гидра, амеба). При раздражении одной клетки в процесс ответа на раздражение вовлекаются другие, глубоко лежащие, клетки. Это происходит потому, что все воспринимающие клетки этих животных связаны между собой длинными отростками, образуя тем самым сетевидную нервную сеть.
2. с помощью групп нервных клеток (нервных узлов) и отходящих от них нервных стволов. Такая нервная система называется узловой и позволяет вовлекать в процесс ответа на раздражение большое количество клеток (кольчатые черви).
3. с помощью нервного тяжа с полостью внутри (нервной трубки) и отходящих от него нервных волокон. Такая нервная система называется трубчатой (от ланцетника до млекопитающих). Постепенно нервная трубка утолщается в головном отделе и в результате появляется головной мозг, который развивается путем усложнения строения. Туловищный отдел трубки формирует спинной мозг. Как от спинного, так и от головного мозга отходят нервы.
Следует отметить, что с усложнением структуры нервной системы предыдущие образования не исчезают. В нервной системе высших организмов остаются и сетевидная, и узловая, и трубчатая структуры, характерные для предыдущих ступеней развития.
По мере усложнения строения нервной системы усложняется и поведение животных. Если у одноклеточных и простейших многоклеточных общей реакцией организма на внешнее раздражение является таксис, то с усложнением нервной системы появляются рефлексы. В ходе эволюции в формировании поведения животных приобретают значение не только внешние сигналы, но и внутренние факторы в форме различных потребностей и мотиваций. Наряду с врожденными формами поведения существенную роль начинает играть научение, что в конечном итоге приводит к формированию рассудочной деятельности.
34) Мозговой ствол, его внутреннее строение, сходство со спинным мозгом и различия.
К мозговому стволу (truncus encephalicus) относят продолговатый мозг (medulla oblongata), мост (pons) и ножки мозга (ре-dunculi cerebri). На разрезах мозгового ствола различают переднюю (базилярную) и заднюю (дорсальную) части.
Передняя часть (pars ventralis), или основание (basis), состоит из пирамид (pyramis)продолговатого мозга, передней части моста (pars ventralis pontis), оснований ножек мозга (basis pedunculi cerebrialis), где проходят корково-спинномозговые (fibrae cortico-spinales) и корково-ядерные волокна (fibrae corticonucleares), входящие в состав пирамидного пучка (fasc. pyramidalis).
Задняя часть (pars dorsalis), или покрышка (tegmentum), располагается между основанием и крышей среднего мозга (tectum mesencephali). Здесь находятся волокна, образующие медиальную петлю (lemnicus medialis), задний продольный пучок (fasc. longitudinalis posterior), покрышечно-спинномозговой путь (tr. tec-tospinalis), ретикулярная формация (formatio reticularis) и ядра черепных нервов.
Верхней границей продолговатого мозга является нижний край моста, нижней уровень выхода корешков первого шейного сегмента. В верхнем его отделе образуется расширение в виде луковицы (bulbus). Продолговатый мозг является как бы продолжением спинного мозга и сохраняет основные черты его строения.
На передней поверхности имеется передняя срединная щель (fissura mediana anterior),которая является продолжением одноименной щели спинного мозга. По сторонам ее располагаются пирамиды (pyramides), напоминающие передние канатики спинного мозга. Большая часть нервных волокон, образующих пирамиды, делает перекрест(decussatio pyramidum) в глубине передней срединной щели. Латерально от пирамиды находится нижнее оливарное ядро (nucl. olivaris caudalis [interiores]), отделенное от нее передней латеральной бороздой (sulcus lateralis anterior), из которой выходят передние корешки первого шейного сегмента и корешки подъязычного нерва (п.hypoglossus). Из задней латеральной борозды (sul. lateralis posterior) выходят корешки блуждающего (п. vagus) и добавочного (п. accessorius) нервов.
На дорсальной стороне в верхней части расположен нижний треугольник ромбовидной ямки (fossa rhomboidea), основание которого образует границу с мостом в виде мозговых полосок IV желудочка (striae medullares ventriculi quarti). Вершина нижнего треугольника переходит в центральный канал спинного мозга и носит название писчего пера (calamus scriptorius). Ниже писчего пера располагаются бугорки тонкого и клиновидного ядер (tu-berculi nuclei gracilis et cuneati), в которых заканчиваются одноименные пучки, образующие задние канатики. Верхний треугольник ромбовидной ямки находится в пределах моста.
Срединная борозда (sulcus medianus) разделяет ромбовидную ямку, являющуюся дном IV желудочка, на две симметричные половины. В нижней части каждой из них медиальное возвышение (eminentia medialis) имеет треугольную форму и носит название треугольника подъязычного нерва (trigonum n. hypoglossi) место расположения ядра этого нерва. Выше медиальное возвышение переходит в лицевой бугорок (colliculus facialis), образованный ядром отводящего (п. abducens) и окружающим его коленом лицевого нерва. Кнаружи от trigonum n. hypoglossi лежит треугольник блуждающего нерва (trigonum n. vagi), где располагается дорсальное ядро блуждающего нерва (nucl. dorsalis. n, vagi), иннервирующее неисчерченную мускулатуру внутренних органов и двойное (обоюдное) ядро (nucl. ambiguus),иннервирующее исчерченную мускулатуру гортани и глотки. Глубоко под этими ядрами лежит чувствительное ядро блуждающего нерва (nucl. sensorius n. vagi), которое обеспечивает чувствительными волокнами органы грудной и брюшной полостей, мозговые оболочки и кожу наружного слухового прохода. В латеральной части ромбовидной ямки располагается вестибулярное поле (area vesti-bularis),соответствующее расположению ядер преддверно-улит-кового нерва (n. vestibulocochlearis).
Кнаружи от лицевого бугорка находится голубоватое место (locus ceruleus), которое некоторые авторы относят к парасимпатическому ядру тройничного нерва.
В белом веществе продолговатого мозга располагаются следующие проводящие пути, являющиеся продолжением нисходящих и восходящих систем спинного мозга:
нисходящие пирамидный пучок, красноядерно-спинномозго-вой, покрышечно-спинномозговой, преддверно-спинномозговой пути, задний продольный пучок и передний ретикулярно-спинномоз-говой;
восходящиепередний спинно-мозжечковый (Говерса), задний спинно-мозжечковый (Флексига), латеральный спинно-таламиче-ский, тонкий и клиновидный пучки.
Особое место занимает ретикулярная формация (formatio reticularis), расположенная в покрышке всего мозгового ствола, распространяясь краниально в неспецифические ядра та-ламуса и каудально вдоль задних рогов спинного мозга. Она имеет характерную картину расположения клеток между пучками нервных волокон, идущих в различных направлениях и образующих как бы сеточку.
Помимо участия в регуляции ряда жизненно важных функций и влияния на рефлекторную деятельность спинного мозга, ретикулярная формация участвует в механизмах сна и бодрствования, способна оказывать генерализованное как активирующее, так и деактивирующее действие на кору большого мозга.
Постоянная деятельность ее как восходящих, так и нисходящих систем поддерживается импульсами, поступающими по кол-латералям от различных специфических проходящих рядом афферентных путей. Таким образом, ретикулярная формация действует как неспецифическая сенсорная система параллельно специфической сенсорной. На активность ретикулярной формации оказывают влияние и некоторые гуморальные вещества (углекислота, адреналин и др.). Поэтому ретикулярная формация не только принимает участие в регуляции ряда вегетативных функций, например кровообращения и дыхания, но и изменяет свое функциональное состояние под влиянием различных медикаментозных средств, что используется в клинике при некоторых заболеваниях нервной системы (миастения, неврастения, болевые синдромы и др.).
Мост (pons) делится на переднюю (базилярную) (pars ventra-lis) и заднюю (pars dorsalis) части. Вентральная часть содержит продольные и поперечные волокна, а также ядра моста (nucll. pontis). Продольные волокна моста, идущие от коры, входят в состав корково-спинномозговых и корково-ядерных волокон, разделяемых поперечно идущими проводниками на мелкие пучки (. 12). Поэтому пирамидные пути в пределах моста нередко поражаются лишь частично. Если пирамидные пути идут через мост и продолговатый мозг в спинной мозг, то корково-мостовые пути, сделав перекрест, оканчиваются в ядрах моста. Аксоны клеток последних в составе средних мозжечковых ножек вступают
в его кору. Этот перекрест обеспечивает гетеролате-ральную связь коры большого мозга с корой моз-жечла.
Через дорсальную часть проходят чувствительные пути в составе медиальной петли(lemniscus medialis), которая образуется в результате слияния в пределах моста спинно-та-ламических (trr. spinotha-lamicus ventralis et latera-lis) и бульботаламического (tr. bulbothalamicus) путей. Бульботаламический путь после перекреста в меж-оливном слое ложится меди-альнее спинно-таламическо-
го. К медиальной петле поединяются волокна от ядер черепных нервов (V, VIII, IX и Х пар). Волокна слухового пути расположены кнаружи от медиальной петли и носят название латеральной петли (lemniscus lateralis). Еще более латерально поднимается кверху передний спинно-мозжечковый путь, который переходит здесь на противоположную сторону, перекрещиваясь в области переднего мозгового паруса (первый перекрест этот путь совершает посегментно в области передней белой спайки спинного мозга), и, пройдя через верхнюю мозжечковую ножку, оканчивается в vermis cerebelli. Самое медиальное положение занимает fasc. longitudinalis posterior. В дорсальной части моста находятся клетки и волокна formatio reticularis.
На дорсальной поверхности моста располагается верхний треугольник дна ромбовидной ямки, под которым располагаются ядра черепных нервов (V, VI и VIII пары). Ядро лицевого нерва (VII пара) лежит в вентральной части моста.
Мост как по своему строению, так и по функции является сложным образованием, так как через него проходят пути двигательных, чувствительных и координационных систем. Ретикулярная формация обеспечивает их синхронную деятельность. При участии образований моста выполняются сложные двигательные акты (жевание, глотание, дыхание, чихание и др.).
Ножки мозга (pedunculi cerebri) являются вентральной частью среднего мозга, тогда как его дорсальную часть составляет покрышка (tegmentum nesencephali). Крыша среднего мозга (tectum mesencephali) состоит из пластинки крыши (lam. tecti), на которой имеются два верхних холмика (colliculus cranialis superior) подкоркового центра зрения и два нижних холмика (colliculus caudalis inferior) подкоркового центра слуха. Под крышей находится водопровод среднего мозга (aqueductus mesencephali cerebri), соединяющий IV и III желудочки большого мозга. Под его дном заложены ядра глазодвигательного нерва (nucll. n. oculomotorii) на уровне передних холмиков и ядро блокового нерва (nucl. n. trochlearis) • на уровне задних холмиков.
Нервные волокна клеток ядер глазодвигательных нервов идут вниз, пронизываютsubstantia perforata posterior и попадают в fossa interpeduncularis, где в виде стволиков, прилегающих в медиальной поверхности ножек мозга, выходят на основание мозга (. 13).
От ядер блокового нерва нервные волокна направляются в верхний мозговой парус(velum medullare superius), где над водопроводом среднего мозга делают перекрест. Затем по наружной поверхности ножки каждый нерв спускается вниз и ложится на нижней поверхности полушарий.
Обе пары холмиков имеют связь с промежуточным мозгом при помощи ручек верхних холмиков (brachium colliculi cranialis), соединяющихся с боковыми коленчатыми телами (corpus geniculatum laterale), и ручек нижних холмиков (brachium colliculi cau-dalis), переходящих в медиальные коленчатые тела (corpus geniculatum mediale).
Между ножками находится межножковая ямка (fossa interpeduncularis), дном которой является заднее продырявленное вещество (substantia perforata interpeduncularic posterior), относящееся к ножке среднего мозга. Из наружных краев заднего продырявленного вещества выходят корешки глазодвигательных нервов, прилегающих к медиальным поверхностям ножек мозга.
Между покрышкой и основанием ножки находится черное вещество (substantia nigra),нервные клетки которого содержат пигмент меланин. Филогенетически черное вещество является древним образованием, относящимся к экстрапирамидной системе.
Через основание ножек проходят нисходящие проводники от коры большого мозга к мосту, продолговатому и спинному мозгу
35) Продолговатый мозг и мост. Положение, функции, внешнее и внутреннее строение.
Ствол мозга
Ствол мозга включает продолговатый мозг, мост, средний мозг, промежуточный мозг и мозжечок. Ствол мозга выполняет следующие функции:
1) организует рефлексы, обеспечивающие подготовку и реализацию различных форм поведения; 2)осуществляет проводниковую функцию: через ствол мозга проходят в восходящем и нисходящем направлении пути, связывающие между собой структуры ЦНС; 3) при организации поведения обеспечивает взаимодействие своих структур между собой, со спинным мозгом, базальными ганглиями и корой большого мозга, т. е. обеспечивает ассоциативную функцию.
Продолговатый мозг
Особенности функциональной организации. Продолговатый мозг (medulla oblongata) у человека имеет длину около 25 мм. Он является продолжением спинного мозга. Структурно по разнообразию и строению ядер продолговатый мозг сложнее, чем спинной. В отличие от спинного мозга он не имеет метамерного, повторяемого строения, серое вещество в нем расположено не в центре, а ядрами к периферии.
В продолговатом мозге находятся оливы, связанные со спинным мозгом, экстрапирамидной системой и мозжечком это тонкое и клиновидное ядра проприоцептивной чувствительности (ядра Голля и Бурдаха). Здесь же находятся перекресты нисходящих пирамидных путей и восходящих путей, образованных тонким и клиновидным пучками (Голля и Бурдаха), ретикулярная формация.
Продолговатый мозг за счет своих ядерных образований и ретикулярной формации участвует в реализации вегетативных, соматических, вкусовых, слуховых, вестибулярных рефлексов. Особенностью продолговатого мозга является то, что его ядра, возбуждаясь последовательно, обеспечивают выполнение сложных рефлексов, требующих последовательного включения разных мышечных групп, что наблюдается, например, при глотании.
В продолговатом мозге расположены ядра следующих черепных нервов:
пара VIII черепных нервов преддверно-улитковый нерв состоит из улитковой и преддверной частей. Улитковое ядро лежит в продолговатом мозге;
пара IX языкоглоточный нерв (п. glossopharyngeus); его ядро образовано 3 частями двигательной, чувствительной и вегетативной. Двигательная часть участвует в иннервации мышц глотки и полости рта, чувствительная получает информацию от рецепторов вкуса задней трети языка; вегетативная иннервирует слюнные железы;
пара X блуждающий нерв (n.vagus) имеет 3 ядра: вегетативное иннервирует гортань, пищевод, сердце, желудок, кишечник, пищеварительные железы; чувствительное получает информацию от рецепторов альвеол легких и других внутренних органов и двигательное (так называемое обоюдное) обеспечивает последовательность сокращения мышц глотки, гортани при глотании;
пара XI добавочный нерв (n.accessorius); его ядро частично расположено в продолговатом мозге;
пара XII подъязычный нерв (n.hypoglossus) является двигательным нервом языка, его ядро большей частью расположено в продолговатом мозге.
Сенсорные функции. Продолговатый мозг регулирует ряд сенсорных функций: рецепцию кожной чувствительности лица в сенсорном ядре тройничного нерва; первичный анализ рецепции вкуса в ядре языкоглоточного нерва; рецепцию слуховых раздражений в ядре улиткового нерва; рецепцию вестибулярных раздражений в верхнем вестибулярном ядре. В задневерхних отделах продолговатого мозга проходят пути кожной, глубокой, висцеральной чувствительности, часть из которых переключается здесь на второй нейрон (тонкое и клиновидное ядра). На уровне продолготоватого мозга перечисленные сенсорные функции реализуют первичный анализ силы и качества раздражения, далее обработанная информация передается в подкорковые структуры для определения биологической значимости данного раздражения.
Проводниковые функции. Через продолготоватый мозг проходят все восходящие и нисходящие пути спинного мозга: спинно-таламический, кортикоспинальный, руброспинальный. В нем берут начало вестибулоспинальный, оливоспинальный и ретикулоспинальный тракты, обеспечивающие тонус и координацию мышечных реакций. В продолговатом мозге заканчиваются пути из коры большого мозга корковоретикулярные пути. Здесь заканчиваются восходящие пути проприоцептивной чувствительности из спинного мозга: тонкого и клиновидного. Такие образования головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус и кора большого мозга, имеют двусторонние связи с продолговатым мозгом. Наличие этих связей свидетельствует об участии продолговатого мозга в регуляции тонуса скелетной мускулатуры, вегетативных и высших интегративных функций, анализе сенсорных раздражений.
Рефлекторные функции. Многочисленные рефлексы продолговатого мозга делят на жизненно важные и нежизненно важные, однако такое представление достаточно условно. Дыхательные и сосудодвигательные центры продолговатого мозга можно отнести к жизненно важным центрам, так как в них замыкается ряд сердечных и дыхательных рефлексов.
Продолговатый мозг организует и реализует ряд защитных рефлексов: рвоты, чиханья, кашля, слезоотделения, смыкания век. Эти рефлексы реализуются благодаря тому, что информация о раздражении рецепторов слизистой оболочки глаза, полости рта, гортани, носоглотки через чувствительные ветви тройничного и языкоглоточного нервов попадает в ядра продолговатого мозга, отсюда идет команда к двигательным ядрам тройничного, блуждающего, лицевого, языкоглоточного, добавочного или подъязычного нервов, в результате реализуется тот или иной защитный рефлекс. Точно так же за счет последовательного включения мышечных групп головы, шеи, грудной клетки и диафрагмы организуются рефлексы пищевого поведения: сосания, жевания, глотания.
Кроме того, продолговатый мозг организует рефлексы поддержания позы. Эти рефлексы формируются за счет афферентации от рецепторов преддверия улитки и полукружных каналов в верхнее вестибулярное ядро; отсюда переработанная информация оценки необходимости изменения позы посылается к латеральному и медиальному вестибулярным ядрам. Эти ядра участвуют в определении того, какие мышечные системы, сегменты спинного мозга должны принять участие в изменении позы, поэтому от нейронов медиального и латерального ядра по вестибулоспинальному пути сигнал поступает к передним рогам соответствующих сегментов спинного мозга, иннервирующих мышцы, участие которых в изменении позы в данный момент необходимо.
Изменение позы осуществляется за счет статических и статокинетических рефлексов. Статические рефлексы регулируют тонус скелетных мышц с целью удержания определенного положения тела. Статокинетические рефлексы продолговатого мозга обеспечивают перераспределение тонуса мышц туловища для организации позы, соответствующей моменту прямолинейного или вращательного движения.
Большая часть автономных рефлексов продолговатого мозга реализуется через расположенные в нем ядра блуждающего нерва, которые получают информацию о состоянии деятельности сердца, сосудов, пищеварительного тракта, легких, пищеварительных желез и др. В ответ на эту информацию ядра организуют двигательную и секреторную реакции названных органов.
Возбуждение ядер блуждающего нерва вызывает усиление сокращения гладких мышц желудка, кишечника, желчного пузыря и одновременно расслабление сфинктеров этих органов. При этом замедляется и ослабляется работа сердца, сужается просвет бронхов.
Деятельность ядер блуждающего нерва проявляется также в усилении секреции бронхиальных, желудочных, кишечных желез, в возбуждении поджелудочной железы, секреторных клеток печени.
В продолговатом мозге локализуется центр слюноотделения, парасимпатическая часть которого обеспечивает усиление общей секреции, а симпатическая белковой секреции слюнных желез.
В структуре ретикулярной формации продолговатого мозга расположены дыхательный и сосудодвигательный центры. Особенность этих центров в том, что их нейроны способны возбуждаться рефлекторно и под действием химических раздражителей.
Дыхательный центр локализуется в медиальной части ретикулярной формации каждой симметричной половины продолговатого мозга и разделен на две части, вдоха и выдоха.
В ретикулярной формации продолговатого мозга представлен другой жизненно важный центр сосудодвигательный центр (регуляции сосудистого тонуса). Он функционирует совместно с вышележащими структурами мозга и прежде всего с гипоталамусом. Возбуждение сосудодвигательного центра всегда изменяет ритм дыхания, тонус бронхов, мышц кишечника, мочевого пузыря, цилиарной мышцы и др. Это обусловлено тем, что ретикулярная формация продолговатого мозга имеет синаптические связи с гипоталамусом и другими центрами.
В средних отделах ретикулярной формации находятся нейроны, образующие ретикулоспинальный путь, оказывающий тормозное влияние на мотонейроны спинного мозга. На дне IV желудочка расположены нейроны «голубого пятна». Их медиатором является норадреналин. Эти нейроны вызывают активацию ретикулоспинального пути в фазу «быстрого» сна, что приводит к торможению спинальных рефлексов и снижению мышечного тонуса.
Симптомы повреждения. Повреждение левой или правой половины продолговато мозга выше перекреста восходящих путей проприоцептивной чувствительности вызывает на стороне повреждения нарушения чувствительности и работы мышц лица и головы. В то же время на противоположной стороне относительно стороны повреждения наблюдаются нарушения кожной чувствительности и двигательные параличи туловища и конечностей. Это объясняется тем, что восходящие и нисходящие проводящие пути из спинного мозга и в спинной мозг перекрещиваются, а ядра черепных нервов иннервируют свою половину головы, т. е. черепные нервы не перекрещиваются.
Мост
Мост (pons cerebri, pons Varolii) располагается выше продолговатого мозга и выполняет сенсорные, проводниковые, двигательные, интегративные рефлекторные функции.
В состав моста входят ядра лицевого, тройничного, отводящего, преддверно-улиткового нерва (вестибулярные и улитковые ядра), ядра преддверной части преддверно-улиткового нерва (вестибулярного нерва): латеральное (Дейтерса) и верхнее (Бехтерева). Ретикулярная формация моста тесно связана с ретикулярной формацией среднего и продолговатого мозга.
Важной структурой моста является средняя ножка мозжечка. Именно она обеспечивает функциональные компенсаторные и морфологические связи коры большого мозга с полушариями мозжечка.
Сенсорные функции моста обеспечиваются ядрами преддверно-улиткового, тройничного нервов. Улитковая часть преддверно-улиткового нерва заканчивается в мозге в улитковых ядрах; преддверная часть преддверно-улиткового нерва в треугольном ядре, ядре Дейтерса, ядре Бехтерева. Здесь происходит первичный анализ вестибулярных раздражений их силы и направленности.
Чувствительное ядро тройничного нерва получает сигналы от рецепторов кожи лица, передних отделов волосистой части головы, слизистой оболочки носа и рта, зубов и конъюнктивы глазного яблока. Лицевой нерв (п. facialis) иннервирует все мимические мышцы лица. Отводящий нерв (п. abducens) иннервирует прямую латеральную мышцу, отводящую глазное яблоко кнаружи.
Двигательная порция ядра тройничного нерва (п. trigeminus) иннервирует жевательные мышцы, мышцу, натягивающую барабанную перепонку, и мышцу, натягивающую небную занавеску.
Проводящая функция моста. Обеспечивается продольно и поперечно расположенными волокнами. Поперечно расположенные волокна образуют верхний и нижний слои, а между ними проходят идущие из коры большого мозга пирамидные пути. Между поперечными волокнами расположены нейронные скопления ядра моста. От их нейронов начинаются поперечные волокна, которые идут на противоположную сторону моста, образуя среднюю ножку мозжечка и заканчиваясь в его коре.
В покрышке моста располагаются продольно идущие пучки волокон медиальной петли (lemniscus medialis). Они пересекаются поперечно идущими волокнами трапециевидного тела (corpus trapezoideum), представляющие собой аксоны улитковой части преддверно-улиткового нерва противоположной стороны, которые заканчиваются в ядре верхней оливы (oliva superior). От этого ядра идут пути боковой петли (lemniscus lateralis), которые направляются в заднее четверохолмие среднего мозга и в медиальные коленчатые тела промежуточного мозга.
В покрышке мозга локализуются переднее и заднее ядра трапециевидного тела и латеральной петли. Эти ядра вместе с верхней оливой обеспечивают первичный анализ информации от органа слуха и затем передают информацию в задние бугры четверохолмий.
В покрышке также расположены длинный медиальный и тектоспинальный пути.
Собственные нейроны структуры моста образуют его ретикулярную формацию, ядра лицевого, отводящего нервов, двигательной порции ядра и среднее сенсорное ядро тройничного нерва.
Ретикулярная формация моста является продолжением ретикулярной формации продолговатого мозга и началом этой же системы среднего мозга. Аксоны нейронов ретикулярной формации моста идут в мозжечок, в спинной мозг (ретикулоспинальный путь). Последние активируют нейроны спинного мозга.
Ретикулярная формация моста влияет на кору большого мозга, вызывая ее пробуждение или сонное состояние. В ретикулярной формации моста находятся две группы ядер, которые относятся к общему дыхательному центру. Один центр активирует центр вдоха продолговатого мозга, другой центр выдоха. Нейроны дыхательного центра, расположенные в мосте, адаптируют работу дыхательных клеток продолговатого мозга в соответствии с меняющимся состоянием организма.
36) Мозжечок, морфология, функции и внутреннее строение - червь и полушария, ядра, ножки мозжечка, дольки коры. Структура коры мозжечка.
В мозжечке различают два полушария и непарную срединную филогенически старую часть - червь. Все афферентные связи мозжечка можно разделить на три категории:
1. пути от вестибулярных нервов и их ядер.
2. соматосенсорные пути, идущие главным образом от спинного мозга. Примерно половина всех этих путей входят в мозжечок в виде мшистых волокон , остальные представляют собой спиннооливарные тракты, переключающиеся на нейроны, посылающие лиановидные волокна к коре мозжечка.
3. нисходящие пути, идущие в основном от коры головного мозга . Сигналы от двигательных зон коры головного мозга поступают главным образом в промежуточную часть мозжечка, а импульсы от остальных корковых участков - к его полушариям.
Афферентные и эфферентные волокна, связывающие мозжечок с другими отделами, образуют три пары мозжечковых ножек: нижние направляются к продолговатому мозгу, средние - к мосту, верхние- к четверохолмию. Поверхности полушарий и червя разделяют поперечные параллельные борозды, между которыми расположены узкие длинные листки мозжечка. Благодаря наличию листков (извилин) его поверхность у взрослого человека составляет в среднем 850 см2. . В мозжечке различают переднюю, заднюю и клочково - узелковую доли, отделенные более глубокими щелями. Группы листков, отделенных более глубокими сплошными бороздами, образуют дольки мозжечка. Борозды мозжечка сплошные и переходят с червя на полушария, поэтому каждая долька червя связана с правой и левой дольками полушарий. Парный клочок является наиболее изолированной и филогенетически старой долькой полушария. Клочок с каждой стороны прилежит к вентральной поверхности средней мозжечковой ножки и связан с узелком червя ножкой клочка, переходящей в нижний мозговой парус. Подобно коре полушарий большого мозга, в мозжечке различают следующие отделы в связи с их происхождением в филогенезе: архицеребеллум древний мозжечок, включающий клочок и узелок; палеоцеребеллум старый мозжечок, в состав которого входят участки червя, соответствующие передней доле, пирамиды, язычок и область возле клочка; неоцеребеллум самый обширный новый мозжечок, к которому относятся полушария и задние участки червя. Мозжечок состоит из серого и белого вещества. Белое вещество, проникая между серым, как бы ветвится, образуя белые полоски, напоминая на срединном разрезе фигуру ветвящегося дерева - "дерево жизни" мозжечка.
Кора мозжечка состоит из серого вещества толщиной 1 2,5 мм. Кроме того, в толще белого вещества имеются скопления серого парные ядра. Самое крупное, наиболее новое зубчатое ядро расположено латерально в пределах полушария мозжечка; медиальнее его- пробковидное, еще медиальнее - шаровидное, наиболее медиально находится ядро шатра.
Каждый листок (извилина) мозжечка представляет собой тонкую прослойку белого вещества, покрытого корой (серым веществом) толщиной 1 2,5 мм. В коре различают три слоя: наружный - молекулярный, средний - слой грушевидных нейронов (ганглионарный), внутренний зернистый. В молекулярном и зернистом слоях залегают в основном мелкие нейроны. Среди них различают мелкие зерновидные нейроны, расположенные в зернистом слое, их количество у человека достигает 1010 - 1111. Аксоны зерновидных нейронов направляются в молекулярный слой, где они разделяются Т - образно. Каждая из ветвей длиной 1-2 мм проходит параллельно в молекулярном слое, образуя синапсы с дендритами всех типов клеток мозжечка. В зернистом слое расположены также большие звездчатые нейроны (клетки Гольджи), аксоны которых образуют синапсы с клетками - зернами в этом же слое, а дендриты направляются в молекулярный слой.
Крупные грушевидные нейроны (клетки Пуркинье) размерами до 40 мкм, расположенные в среднем слое в один ряд, это эфферентные нейроны коры мозжечка. Количество их у человека достигает 14 15 млн. Грушевидные нейроны уплощены, их обильно ветвящиеся, снабженные многочисленными шипиками дендриты расположены в молекулярном слое в плоскости, перпендикулярной поверхности листка мозжечка. Поэтому их форма в плоскости, через которую проходят дендриты, грушевидная, в перпендикулярной плоскости веретенообразная. Каждая клетка своими ветвящимися дендритами как бы формирует один слой. Аксоны грушевидных нейронов направляются через белое вещество к ядрам мозжечка, образуя синапсы с их нейронами, а также к вестибулярным ядрам. Остальные нейроны коры мозжечка являются вставочными, ассоциативными, которые передают нервные импульсы грушевидным нейронам. Таким образом, все нервные импульсы, поступающие в кору мозжечка, достигают грушевидных нейронов.
В молекулярном слое залегают три типа клеток: корзинчатые, аксоны которых охватывают тела клеток Пуркинье, звездчатые, аксоны которых образуют синапсы с дендритами клеток Пуркинье, и, наконец, клетки Лугаро, функция которых неизвестна.
В кору мозжечка вступают лиановидные (лазящие) восходящие двигательные волокна - отростки нейронов ядер нижних олив, которые, минуя два нижних слоя, проникают в молекулярный. Каждое волокно отдает по одному отростку к 1015 грушевидным волокнам. Каждый отросток образует многочисленные возбуждающие синапсы с дендритами одной клетки Пуркинье. Другой тип волокон - моховидные волокна. Они образуют множество возбуждающих синапсов с большим количеством клеток зерен, параллельные волокна которых, в свою очередь, образуют синапсы с остальными клетками. Синаптические клубки округлой или овоидной формы диаметром около 20 мкм образованы концевыми разветвлениями моховидных волокон, разветвлениями дендритов клеток-зерен, синаптическими разветвлениями аксонов клеток Гольджи. Соотношение между количеством клубочков и клеток-зерен составляет 1:5. Все синапсы в клубочке аксодендри-тические. Подобно коре больших полушарий, кора мозжечка также устроена по типу вертикальных колонок диаметром около 1 мм, содержащих около 500 грушевидных нейронов, 600 корзинчатых, 50 больших звездчатых, около 3 млн клеток - зерен и около 600 тыс синаптических клубков.
Мозжечок получает из коры полушарий большого мозга, ствола и спинного мозга информацию, которая интегрируется клетками Пуркинье.
2. ФУНКЦИИ МОЗЖЕЧКА
Мозжечок не имеет прямой связи с рецепторами организма. Многочисленными путями он связан со всеми отделами центральной нервной системы. К нему направляются афферентные (чувствительные) проводящие пути, несущие импульсы от проприорецепторов мышц, сухожилий, связок, вестибулярных ядер продолговатого мозга, подкорковых ядер и коры больших полушарий. В свою очередь мозжечок посылает импульсы ко всем отделам центральной нервной системы. Функции мозжечка исследуют путем его раздражения, частичного или полного удаления и изучения биоэлектрических явлений. Последствия удаления мозжечка и выпадения его функции итальянский физиолог Лючиани охарактеризовал знаменитой триадой А - астазия, атония и астения. Последующие исследователи добавили еще один симптом - атаксия. Наблюдения велись на собаках. Безмозжечковая собака стоит на широко расставленных лапах, совершая непрерывные качательные движения (астазия). У нее нарушено правильное распределение тонуса мышц сгибателей и разгибателей (атония). Движения плохо координированы размашисты, несоразмерны, резки. При ходьбе лапы забрасываются за среднюю линию (атаксия), чего не бывает у нормальных животных. Атаксия объясняется тем, что нарушается контроль движений. Выпадает и анализ сигналов от проприорецепторов мышц и сухожилий. Собака не может попасть мордой в миску с едой. Наклон головы вниз или в сторону вызывает сильное противоположное движение. Движения очень утомляют, животное, пройдя несколько шагов, ложится и отдыхает. Этот симптом называется астенией.
С течением времени двигательные расстройства у безмозжечковой собаки сглаживаются. Она самостоятельно ест, походка ее почти нормальна. Только предвзятое наблюдение выявляет некоторые нарушения (фаза компенсации).Как показал Э.А. Асратян, компенсация функций происходит за счет коры головного мозга. Если у такой собаки удалить кору, то все нарушения выявляются снова и уже никогда не компенсируются. Мозжечок участвует в. регуляции движений, делая их плавными, точными, соразмерными.
Как показали исследования Л. А. Орбели, у безмозжечковых собак нарушаются вегетативные функции. Константы крови, сосудистый тонус, работа пищеварительного тракта и другие вегетативные функции становится очень неустойчивыми, легко сдвигаются под влиянием тех или иных причин (приём пищи, мышечная работа, изменение температуры и др.). При удалении половины мозжечка нарушения двигательных функций наступают на стороне операции. Это объясняется тем, что проводящие пути мозжечка либо не прекращаются вовсе, либо прекращаются два раза.
Основное значение мозжечка состоит в дополнении и коррекции деятельности остальных двигательных центров. Каждая из трех продольных зон мозжечка имеет свои функции. Червь мозжечка управляет позой, тонусом, поддерживающими движениями и равновесием тела. Промежуточный отдел мозжечка участвует во взаимной координации позных и целенаправленных движений и в коррекции выполняющихся движений. К полушариям мозжечка, в отличие от остальных его частей, сигналы поступают не непосредственно от периферических органов, а от ассоциативных зон коры головного мозга. Информация о замысле движения, передающаяся по афферентным путям к двигательным системам, превращается в полушариях мозжечка и его зубчатом ядре в программу движения, которая посылается к двигательным областям коры преимущественно через ядра таламуса . После этого становится возможным осуществление движения. Таким образом осуществляются очень быстрые движения, которыми невозможно управлять через соматосенсорные обратные связи.
ЗАКЛЮЧЕНИЕ
Таким образом мозжечок - это крупный отдел головного мозга, входящий в состав головного мозга. Состоит из поверхностно расположенной коры мозжечка и залегающих в глубине ядер. Кора мозжечка разделена бороздами на доли, ее поверхность равна половине поверхности коры большого мозга. Информация, приходящая в мозжечок, вначале адресуется клеткам коры, оттуда передается на ядра мозжечка и только затем - к другим отделам мозга. Функциональное значение мозжечка заключается в обеспечении соответствия движений приходящей сенсорной информации. Играет ведущую роль в поддержании равновесия тела и координации движений. Согласно исследованиям последних лет, выполненных с помощью инвазивных методов мозжечок участвует в когнитивных процессах.
Поражения мозжечка приводят к нарушению тонуса мышц, равновесия, неспособности к выполнению сложных и тонких движений, изменению речи и почерка.
37) Развитие заднего мозга в связи с регуляцией вегетативных функций, равновесия, слуха.
38) Средний мозг. Мозговой водопровод. Эволюция среднего мозга.
Средний мозг, mesencephalon, развивается в процессе филогенеза под преимущественным влиянием зрительного рецептора, поэтому важнейшие его образования имеют отношение к иннервации глаза. Здесь же образовались центры слуха, которые вместе с центрами зрения в дальнейшем разрослись в виде четырех холмиков крыши среднего мозга.
С появлением у высших животных и человека коркового конца слухового и зрительного анализаторов в коре переднего мозга слуховые и зрительные центры среднего мозга сами попали в подчиненное положение и стали промежуточными, подкорковыми. С развитием у высших млекопитающих и человека переднего мозга через средний мозг стали проходить проводящие пути, связывающие кору конечного мозга со спинным (ножки мозга). В результате в среднем мозге человека имеются:
Соответственно этому средний мозг, являющийся у человека наименьшим и наиболее просто устроенным отделом головного мозга, имеет две основные части: крышу, где располагаются подкорковые центры слуха и зрения, и ножки мозга, где преимущественно проходят проводящие пути.
На поперечном разрезе среднего мозга различают три основные части:
Соответственно развитию среднего мозга под влиянием зрительного рецептора в нем заложены различные ядра, имеющие отношение к иннервации глаза. У низших позвоночных верхнее двухолмие служит главным местом окончания зрительного нерва и является главным зрительным центром. У млекопитающих и у человека с переносом зрительных центров в передний мозг остающаяся связь зрительного нерва с верхним холмиком имеет значение только для рефлексов. В ядре нижнего холмика, а также в медиальном коленчатом теле оканчиваются волокна слуховой петли (lemniscus lateralis). Крыша среднего мозга имеет двустороннюю связь со спинным мозгом - tractus spinotectalis и tractus tectobulbaris et tectospinalis. Последние после перекреста в покрышке идут к мышечным ядрам в продолговатом и спинном мозге. Это так называемый зрительно-звуковой рефлекторный путь, о котором говорилось при описании спинного мозга.
Таким образом, пластинку крыши среднего мозга можно рассматривать как рефлекторный центр для различного рода движений, возникающих главным образом под влиянием зрительных и слуховых раздражений.
Водопровод мозга окружен центральным серым веществом, имеющим по своей функции отношение к вегетативной системе. В нем, под вентральной стенкой водопровода, в покрышке ножки мозга заложены ядра двух двигательных черепных нервов - n. oculomotorius (III пара) на уровне верхнего двухолмия и n. trochlearis (IV пара) на уровне нижнего двухолмия.
Ядро глазодвигательного нерва состоит из нескольких отделов соответственно иннервации нескольких мышц глазного яблока. Медиально и кзади от него помещается еще небольшое, тоже парное, вегетативное добавочное ядро, nucleus accessories, и непарное срединное ядро.
Добавочное ядро и непарное срединное ядро иннервируют непроизвольные мышцы глаза, m. ciliaris и m. sphincter pupillae. Эта часть глазодвигательного нерва относится к парасимпатической системе. Выше (ростральнее) ядра глазодвигательного нерва в покрышке ножки мозга располагается ядро медиального продольного пучка. Латерально от водопровода мозга находитсяядро среднемозгового тракта тройничного нерва, nucleus mesencephalicus n. trigemini.
Ножки мозга делятся на вентральную часть, или основание ножки мозга, basis pedunculi cerebralis, и покрышку, tegmentum. Границей между ними служит черное вещество, substantia nigra, обязанное своим цветом содержащемуся в составляющих его нервных клетках черному пигменту - меланину. Покрышка среднего мозга, tegmentum mesencephali, - часть среднего мозга, расположенная между его крышей и черным веществом (substantia nigra) ножек мозга. От нее отходит tractus tegmentalis centralis - центральный покрышечный путь - проекционный нисходящий нервный путь, расположенный в центральной части покрышки среднего мозга. Он содержит волокна, идущие от таламуса, бледного шара, красного ядра и ретикулярной формации среднего мозга к ретикулярной формации и оливе продолговатого мозга; относится к экстрапирамидной системе.
Substantia nigra простирается на всем протяжении ножки мозга от моста до промежуточного мозга; по своей функции относится к экстрапирамидной системе. Расположенное вентрально от substantia nigra основание ножки мозга содержит продольные нервные волокна, спускающиеся от коры полушария большого мозга ко всем нижележащим отделам центральной нервной системы (tractus corticopontinus, corticonuclearis, corticospinalis и дp.). Tegmentum, находящаяся дорсально от substantia nigra, содержит преимущественно восходящие волокна, в том числе медиальную и латеральную петли. В составе этих петель восходят к большому мозгу все чувствительные пути, за исключением зрительного и обонятельного.
Среди ядер серого вещества самое значительное - красное ядро, nucleus ruber.Это удлиненное колбасовидное образование простирается в покрышке ножки мозга от гипоталамуса промежуточного мозга до нижнего двухолмия, где от него начинается важный нисходящий тракт, tractus rubrospinal, соединяющий красное ядро с передними рогами спинного мозга. Пучок этот после выхода из красного ядра перекрещивается с аналогичным пучком противоположной стороны в вентральной части срединного шва - вентральный перекрест покрышки.
Nucleus ruber является весьма важным координационным центром экстрапирамидной системы, связанным с остальными ее частями. К нему проходят волокна от мозжечка в составе верхних ножек последнего после их перекреста под крышей среднего мозга, вентрально от aqueductus cerebri, а также от pallidum - самого нижнего и самого древнего из подкорковых узлов головного мозга, входящих в состав экстрапирамидной системы. Благодаря этим связям мозжечок и экстрапирамидная система через посредство красного ядра и отходящего от него tractus rubrospinal оказывают влияние на всю скелетную мускулатуру в смысле регуляции бессознательных автоматических движений. В покрышку среднего мозга продолжаются также ретикулярная формация, formatio reticularis, и fasciculus longitudindlis medialis. Последний берет начало в различных местах. Одна из его частей начинается из вестибулярных ядер, проходит на той и другой стороне по бокам средней линии, непосредственно под серым веществом дна водопровода и IV желудочка, и состоит из восходящих и нисходящих волокон, идущих к ядрам III, IV, VI и XI черепных нервов. Медиальный продольный пучок является важным ассоциативным путем, связующим различные ядра нервов глазных мышц между собой, чем обусловливаются сочетанные движения глаз при отклонении их в ту или другую сторону. Функция его связана также с движениями глаз и головы, возникающими при раздражении аппарата равновесия.
39)Эпифиз, его строение и функции.
1. Строение и расположение эпифиза
Эпифиз - (шишковидная, или пинеальная, железа), небольшое образование, расположенное у позвоночных под кожей головы или в глубине мозга; функционирует либо в качестве воспринимающего свет органа либо как железа внутренней секреции, активность которой зависит от освещенности. У некоторых видов позвоночных обе функции совмещены. У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название (греч. epiphysis шишка, нарост). Эпифизу придают шишковидную форму импульсный рост и васкуляризация капиллярной сети, которая врастает в эпифизарные сегменты по мере роста этого эндокринного образования. Эпифиз выпячивается в каудальном направлении в область среднего мозга и располагается в бороздке между верхними холмиками крыши среднего мозга. Форма эпифиза чаще овоидная, реже шаровидная или коническая. Масса эпифиза у взрослого человека около 0,2 г, длина 8-15 мм, ширина 6-10 мм.
По строению и функции эпифиз относится к железам внутренней секреции. Эндокринная роль шишковидного тела состоит в том, что его клетки выделяют вещества, тормозящие деятельность гипофиза до момента полового созревания, а также участвующие в тонкой регуляции почти всех видов обмена веществ. Эпифизарная недостаточность в детском возрасте влечет за собой быстрый рост скелета с преждевременным и преувеличенным развитием половых желез и преждевременным и преувеличенным развитием вторичных половых признаков. Эпифиз также является регулятором циркодианных ритмов, поскольку опосредованно связан со зрительной системой. Под влиянием солнечного света в дневное время в эпифизе вырабатывается серотонин, а в ночное время - мелатонин. Оба гормона сцеплены между собой, поскольку серотонин является предшественником мелатонина.
Эпифиз, или верхний мозговой придаток, или шишковидная железа (epiphisis cerebri , glandula pinealis),- эндокринный орган, расположенный между передними буграми четверохолмия над третьим мозговым желудочком. Эпифиз располагается в бороздке между верхними холмиками четверохолмия и прикреплен поводками к обоим зрительным буграм. Эпифиз округлой формы, масса его у взрослого человека не превышает 0,2 г. Эпифиз покрыт снаружи соединительнотканной капсулой, от которой внутрь железы отходят соединительнотканные трабекулы, разделяющие ее на дольки, состоящие из клеток двух типов: железистых пинеалоцитов и глиальных. Функция пинеалоцитов имеет четкий суточный ритм: ночью синтезируется мелатонин, днем - серотонин. Этот ритм связан с освещенностью, при этом свет вызывает угнетение синтеза мелатонина. Воздействие осуществляется при участии гипоталамуса. В настоящее время считают, что эпифиз регулирует функцию половых желез, в первую очередь половое созревание, а также выполняет роль "биологических часов", которые регулируют циркадианные ритмы.
2. Гормоны эпифиза
Эпифиз вырабатывает следующие гормоны: серотонин и мелатонин они регулируют "биологические часы" организма. Гормоны являются производными аминокислоты триптофана. Вначале из триптофана синтезируется серотонин, а из последнего образуется мелатонин. Он является антагонистом меланоцитостимулирующего гормона гипофиза, продуцируется в ночное время, тормозит секрецию гонадолиберина, тиреоидных гормонов, гормонов надпочечников, гормона роста, настраивает организм на отдых. У мальчиков содержание мелатонина снижается при половом созревании. У женщин наибольший уровень мелатонина определяется в менструацию, наименьший - при овуляции. Продукция серотонина существенно преобладает в дневное время. При этом солнечный свет переключает эпифиз с образования мелатонина на синтез серотонина, что ведет к пробуждению и бодрствованию организма (серотонин является активатором многих биологических процессов).
Около 40 гормонов пептидной природы, из которых наиболее изучены:
· гормон, регулирующий обмен кальция;
· гормон аргинин-вазотоцин, регулирующий тонус артерий и угнетающий секрецию гипофизом фолликулостимулирующего гормона и лютеинизирующего гормона.
Показано, что гормоны эпифиза подавляют развитие злокачественных опухолей. Свет составляет функцию эпифиза, а темнота стимулирует его. Выявлен нейронный путь: сетчатка глаза - ретиногипоталамический тракт - спинной мозг - симпатические ганглии - эпифиз.
Кроме мелатонина ингибирующее влияние на половые функции обусловливается и другими гормонами эпифиза - другими гормонами эпифиза - аргинин-вазотоцином, антигонадотропином.
Адреногломерулотропин эпифиза стимулирует образование альдостерона в надпочечниках.
Пинеалоциты продуцируют несколько десятков регуляторных пептидов. Из них наиболее важны аргинин-вазотоцин, тиролиберин, люлиберин и даже тиротропин.
Образование олигопептидных гормонов совместно с нейроаминами (серотонин и мелатонин) демонстрирует принадлежность пинеалоцитов эпифиза к APUD-системе.
Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный и успокаивающий эффект.
3. Функции эпифиза
Функции этой железы оставались непонятными многие-многие годы. Кое-кто расценивал железу как рудиментарный глаз, ранее предназначавшийся для того, чтобы человек мог оберегать себя сверху. Но структурным аналогом глаза такую железу - эпифиз можно признать лишь у миног, у пресмыкающихся, а не у нас. В мистической литературе периодически встречалось утверждение о контакте именно этой железы с таинственной нематериальной нитью, связывающей голову с парящим над каждым эфирным телом.
Из сочинения в сочинение перекочевывало описание этого органа, способного якобы восстанавливать образы и опыт прошлой жизни, регулировать поток мысли и баланс интеллекта, осуществлять телепатическое общение. Французский философ Р. Декарт (XVII век) считал, что железа выполняет посреднические функции между духами, то есть впечатлениями, поступающими от парных органов - глаз, ушей, рук. Здесь, в эпифизе, под влиянием "паров крови" формируются гнев, радость, страх, печаль. Фантазия великого француза наделила желёзку возможностью не только двигаться, но и направлять "животные духи" через поры мозга по нервам к мышцам. Это потом уже выяснили, что двигаться эпифиз не в состоянии.
Доказательством исключительности эпифиза ряд лет служило и то, что сердце тоже не имеет пары, а лежит "посреди". Да и существует старинных русских медицинских руководствах железа эта называлась "душевной". шишковидная железа, как Декарт ошибочно предполагал, только у человека.
В двадцатых годах прошлого века многие специалисты пришли к заключению, что и говорить-то об этой железе не следует, ибо какой-либо значимой функции у предполагаемого рудиментарным органа нет. Появлялись сомнения в том, что эпифиз массой в двести миллиграммов и величиной с горошину функционирует не только в эмбриогенезе, а и после рождения. Все это привело к тому, что на ряд десятилетий из поля зрения исследователей этот "третий глаз" выпал. Правда, были и объективные причины. Среди них сложность изучения, требовавшая новых методов, и топографическое неудобство - уж очень трудно извлечь этот орган. Теософы, в свою очередь, не сомневались, что эпифиз пока большинству не очень нужен, а вот в будущем окажется необходимым для передачи мыслей от одного человека к другому.
Эпифиз развивается в эмбриогенезе из свода (эпиталамуса) задней части (диэнцефалона) переднего мозга. У низших позвоночных, например у миног, могут развиваться две аналогичных структуры. Одна, располагающаяся с правой стороны мозга, носит название пинеальной, а вторая, слева, парапинеальной железы. Пинеальная железа присутствует у всех позвоночных, за исключением крокодилов и некоторых млекопитающих, например муравьедов и броненосцев. Парапинеальная железа в виде зрелой структуры имеется лишь у отдельных групп позвоночных, таких, как миноги, ящерицы и лягушки.
Там, где пинеальная и парапинеальная железы функционируют в качестве органа, воспринимающего свет, или «третьего глаза», они способны различать лишь разную степень освещенности, а не зрительные образы. В этом качестве они могут определять некоторые формы поведения, например вертикальную миграцию глубоководных рыб в зависимости от смены дня и ночи.
У земноводных пинеальная железа выполняет секреторную функцию: она вырабатывает гормон мелатонин, который осветляет кожу этих животных, уменьшая занимаемую пигментом площадь в меланофорах (пигментных клетках). Мелатонин обнаружен также у птиц и млекопитающих; считается, что у них он обычно оказывает тормозящий эффект, в частности снижает секрецию гормонов гипофиза. У птиц и млекопитающих эпифиз играет роль нейроэндокринного преобразователя, отвечающего на нервные импульсы выработкой гормонов. Так, попадающий в глаза свет стимулирует сетчатку, импульсы от которой по зрительным нервам поступают в симпатическую нервную систему и эпифиз; эти нервные сигналы вызывают угнетение активности эпифизарного фермента, необходимого для синтеза мелатонина; в результате продукция последнего прекращается. Наоборот, в темноте мелатонин снова начинает вырабатываться. Таким образом, циклы света и темноты, или дня и ночи, влияют на секрецию мелатонина. Возникающие ритмические изменения его уровня высокий ночью и низкий в течение дня определяют суточный, или циркадианный, биологический ритм у животных, включающий периодичность сна и колебания температуры тела. Кроме того, отвечая на изменения продолжительности ночи изменением количества секретируемого мелатонина, эпифиз, вероятно, влияет на сезонные реакции, такие как зимняя спячка, миграция, линька и размножение.
У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и, вероятно, «зимние депрессии».
40) Промежуточный мозг. Таламический мозг (таламус, эпиталамус и метаталамус).
Промежу́точный мозг (лат. diencephalon) отдел головного мозга. Промежуточный мозг расположен выше среднего мозга, под мозолистым телом.
В эмбриогенезе промежуточный мозг образуется на задней части первого мозгового пузыря. Спереди и сверху промежуточный мозг граничит с передним, а снизу и сзади со средним мозгом.
Структуры промежуточного мозга окружают третий желудочек.
Промежуточный мозг подразделяется на:
Таламический мозг (лат. thalamencephalon)
Подталамическую область или гипоталамус (лат. hypothalamus)
Третий желудочек, который является полостью промежуточного мозга
Таламический мозг
Таламический мозг включает три части:
Зрительный бугор (Таламус)
Надталамическую область (Эпиталамус)
Заталамическую область (Метаталамус)
Таламус
Таламус или зрительный бугор (лат. thalamus) парное образование яйцевидной формы состоит в основном из серого вещества. Медиальная и верхняя поверхности свободны, а латерально-нижней поверхностью он сообщается с другими отделами мозга. Таламус является подкорковым центром всех видов чувствительности (болевой, температурной, тактильной, проприоцептивной). Таламус является местом переключения всех чувствительных проводящих путей, идущих от экстеро-, проприо- и интерорецепторов.
Эпиталамус
Эпиталамус или надталамическую область (лат. epithalamus) располагается в верхнезадней части таламуса. Эпиталамус образует шишковидное тело (эпифиз), которое посредством поводков крепится к таламусу. Шишковидное тело представляет собой железу внутренней секреции, которая отвечает за синхронизацию биоритмов организма с ритмами окружающей среды.
Метаталамус
Метаталамус или заталамическую область (лат. metathalamus) образован парными медиальным и латеральным коленчатыми телами, лежащими позади таламуса. Медиальное коленчатое тело находится позади подушки таламуса. Оно является подкорковым центром слуха. Латеральное коленчатое тело расположено книзу от подушки. Оно является подкорковым центром зрения.
Гипоталамус
Гипоталамус или подталамическую область расположен под таламусом. Гипоталамус включает в себя сосцевидные тела, являющиеся подкорковыми центрами обоняния, гипофиз, зрительный перекрест, II пары черепных нервов, серый бугор, представляющий собой вегетативный центр обмена веществ и терморегуляции. В гипоталамусе содержатся ядра, контролирующие эндокринные и вегетативные процессы.
Гипоталамус подразделяется на четыре части:
Передняя гипоталамическая часть
Промежуточная гипоталамическая часть
Задняя гипоталамическая часть
Дорсо-латеральная гипоталамическая часть