Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Вариант 12 Метаболизм дрожжей и молочнокислых бактерий в присутствии кислорода

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.5.2024

Вариант №12

  1.  Метаболизм дрожжей и молочнокислых бактерий в присутствии кислорода. Эффект Пастера.
  2.  Особенности метаболизма

Хотя дрожжи и не так разнообразны по своему метаболизму, как бактерии, различные виды дрожжей могут катаболизировать разные соединения углерода и азота и образовывать разные конечные продукты

1.5.1 Спиртовое брожение

Наиболее известное свойство многих дрожжей – способность к спиртовому брожению. Многие виды дрожжей могут переключаться с бродильного метаболизма на дыхательный и обратно в зависимости от условий: при наличии кислорода брожение ингибируется и дрожжи начинают дышать, в отсутствии кислорода включается механизм спиртового брожения. Так как кислородное дыхание – энергетически более выгодный процесс, чем брожение, то выход биомассы дрожжей в расчете на единицу используемого субстрата выше при выращивании их в аэробных условиях, чем в анаэробных. Это явление называется эффектом Пастера.

ГОМОФЕРМЕНТАТИВНЫЕ МОЛОЧНОКИСЛЫЕ БАКТЕРИИ

Гомоферментативное молочнокислое брожение, в основе которого лежит гликолитический путь разложения глюкозы, является единственным способом получения энергии для группы эубактерий, которые при сбраживании углеводов превращают в молочную кислоту от 85 до 90% сахара среды. Бактерии, входящие в данную группу, морфологически различны. Это кокки, относящиеся к родамStreptococcus и Pediococcus, а также длинные или короткие палочки из рода Lactobacillus. Последний подразделяется на три подрода. Бактерии, включенные в два из них (Thermobacterium, Streptobacterium), также осуществляют гомоферментативное молочнокислое брожение. Все бактерии этой группы положительно окрашиваются по Граму, не образуют спор, неподвижны. Группа весьма гетерогенна в отношении нуклеотидного состава ДНК: молярное содержание ГЦ-пар оснований колеблется от 32 до 51%. Значительные колебания по этому признаку характерны и для бактерий, объединенных в роды и даже подроды.

Лактатдегидрогеназа, катализирующая превращение пирувата в лактат, стереоспецифична. У разных видов она содержится в виде определенных оптических изомеров; в зависимости от этого бактерии продуцируют D- или L-форму молочной кислоты. Те из них, которые образуют смесь D- иL-форм. содержат или две формы фермента, различающиеся стереоспецифичностью, или лактатрацемазу. Некоторые признаки, характерные для эубактерий, осуществляющих гомоферментативное молочнокислое брожение, представлены в табл. 15.

Таблица 15. Характеристика таксономических групп гомоферментативных молочнокислых бактерий

Род и подрод бактерий

Морфология и особенности деления клеток

Молярное содержание ГЦ в ДНК, %

Конфигурация молочной кислоты

Наиболее распространенные виды

РодStreptococcus

сферические или овальные клетки; делятся в одной плоскости, в результате образуются пары или цепочки клеток

33—44

D

S. faecalis
S. lactis

РодPediococcus

кокки; делятся в двух плоскостях, в результате образуются тетрады клеток

33—44

DL

P. cerevisiae

РодLactobacillus 
 Подрод
Thermobacterium 
 Подрод
Streptobacterium*

палочки; делятся в одной плоскости, образуют пары или цепочки клеток

35—51
32—46

L
D
D
DL
DL
L

L. delbruckii
L. bulgaricus 
L. lactis 
L. jensenii 
L. plantarum 
L. casei

* Виды, относящиеся к этому подроду, расщепляют пентозы по окислительному пентозофосфатному пути, осуществляя гетероферментативное молочнокислое брожение. Поэтому они не являются облигатно гомоферментативными молочнокислыми бактериями.

У этой группы эубактерий молекулярный кислород не включается в энергетический метаболизм, но они способны расти в присутствии O2, т. е. являются аэротолерантными анаэробами44. В их клетках в значительном количестве содержатся флавиновыe ферменты, с помощью которых происходит восстановление молекулярного кислорода до H2O2. Из-за неспособности молочнокислых бактерий синтезировать гемовую группу у них отсутствует каталаза — фермент, катализирующий разложение перекиси водорода, поэтому последняя может накапливаться в клетке. Существующие механизмы защиты от молекулярного кислорода и его производных у этой группы эубактерий изложены в гл. 15.

44 Некоторые авторы представителей рода Lactobacillus относят к микроаэрофилам (см. сноску на с. 127).

Особенностями конструктивного метаболизма гомоферментативных молочнокислых бактерий являются слабо развитые биосинтетические способности, что выражается в большой зависимости их роста от наличия в питательной среде готовых органических веществ (аминокислоты, витамины группы В, пурины, пиримидины). В качестве источника углерода молочнокислые бактерии используют лактозу (молочный сахар) или мальтозу (растительный сахар, образующийся при гидролизе крахмала). Могут они также использовать некоторые пентозы, сахароспирты и органические кислоты. Из всех известных непатогенных прокариот молочнокислые бактерии отличаются наибольшей требовательностью к субстрату. Зависимость этих бактерий от наличия готовых органических веществ среды указывает на примитивность в целом их конструктивного метаболизма.

Молочнокислые бактерии распространены там, где они могут обеспечить свои высокие потребности в питательных веществах и где имеются большие количества углеводов, переработка которых дает им необходимую для роста энергию. Их много в молоке и молочных продуктах, на поверхности растений и в местах разложения растительных остатков; обнаружены они в пищеварительном тракте и на слизистых оболочках животных и человека.

Молочнокислым бактериям принадлежит главная роль в осуществлении ряда процессов, используемых с давних времен для получения различных кисломолочных продуктов, в процессах соления и квашения овощей, силосования кормов. Кефир — продукт совместной деятельности молочнокислых бактерий и дрожжей. Известно много национальных кисломолочных продуктов (кумыс, йогурт и др.), для приготовления которых используют кобылье, верблюжье, овечье, козье молоко, а в качестве закваски — естественно возникшие и сохраняемые комплексы молочнокислых бактерий и дрожжей. Молочнокислые бактерии играют также большую роль в процессе приготовления сыров и сливочного масла. Первый этап производства сыров (створаживание белков молока) осуществляется молочнокислыми бактериями.

Скисание сливок, необходимое для получения сливочного масла, также вызывают бактерии родаStreptococcus. Помимо молочной кислоты некоторые из них образуют ацетоин и диацетил, придающие сливочному маслу характерный запах и вкус Субстратом служит лимонная кислота, содержание которой в молоке может достигать 1 г/л. Реакции, ведущие к образованию этих веществ, начинаются с расщепления лимонной кислоты:

лимонная кислота ® уксусная кислота + щавелевоуксусная кислота

Уксусная кислота выделяется в среду, а щавелевоуксусная кислота (ЩУК) декарбоксилируется, что приводит к образованию пирувата:

ЩУК ® пировиноградная кислота + CO2   (1).

Дальнейшее метаболизирование пирувата осуществляется по трем различным путям: часть молекул восстанавливается до молочной кислоты; другая часть подвергается декарбоксилированию, приводящему к возникновению разных C2-интермедиатов (ацетил-КоА и "активный" ацетальдегид) и взаимодействию между ними, заканчивающемуся синтезом молекулы диацетила. Восстановление последнего приводит к образованию ацетоина:

CH3-CO-CO-CH3

+

НАД-H2

®

CH3-CHOH-CO-CH3

+

НАД+

  (2).

диацетил

ацетоин

Эта последовательность реакций не связана с получением клеткой энергии. Смысл ее, возможно, в дополнительном своеобразном решении "акцепторной проблемы", так как, во-первых, образование пирувата в реакции 1 не сопровождается синтезом НАД-H2, и, во-вторых, синтез ацетоина из диацетила (реакция 2) требует дополнительных молекул НАД-H2.

Использующие мальтозу молочнокислые бактерии участвуют в квашении овощей. В мелко нарезанные овощи добавляют 2 — 3% соли и создают условия, исключающие свободный доступ воздуха. Начинается спонтанное молочнокислое брожение. Аналогичный процесс протекает при силосовании кормов. Предназначенная для силосования растительная масса плотно загружается в силосные башни или ямы. Чтобы повысить питательные свойства среды, добавляют мелассу, а с целью создания более благоприятных условий для молочнокислых бактерий растительную массу подкисляют. В этих условиях также протекает спонтанное молочнокислое брожение.

СПИРТОВОЕ БРОЖЕНИЕ

Выше мы разобрали наиболее простой способ решения донор-акцепторной проблемы, который реализуется в виде молочнокислого брожения у группы гомоферментативных молочнокислых бактерий. Дальнейшие поиски на путях эволюции привели к формированию других метаболических возможностей для решения этой проблемы. Одна из них заключается в том, что из пировиноградной кислоты в результате ее окислительного декарбоксилирования образуется, ацетальдегид, который становится конечным акцептором водорода. В итоге из 1 молекулы гексозы образуются 2 молекулы этилового спирта и 2 молекулы углекислоты. Процесс получил название спиртового брожения. Спиртовое брожение распространено среди прокариотных (различные облигатно и факультативно анаэробные эубактерии) и эукариотных (дрожжи) форм. В анаэробных условиях у высших растений также отмечено накопление этилового спирта.

Процесс спиртового брожения, осуществляемый дрожжами, до последней реакции идет по тому же пути, что и описанный выше процесс молочнокислого брожения, но последняя реакция заменена двумя другими ферментативными реакциями. Сначала пируват с помощью пируватдекарбоксилазы, ключевого фермента спиртового брожения, декарбоксилируется до ацетальдегида и CO2:

CH3-CO-COOH ® CH3-COH + CO2 .

Особенность реакции заключается в ее полной необратимости. Образовавшийся ацетальдегид восстанавливается до этанола с участием НАД+-зависимой алкогольдегидрогеназы:

CH3-COH + НАД-H2 ® CH3-CH2OH + НАД+

Донором водорода служат 3-ФГА (как и в случае молочнокислого брожения).

Процесс спиртового брожения суммарно можно выразить следующим уравнением:

C6H12O6 + 2ФН + 2АДФ ® 2CH3-CH2OH + 2CO2 + 2АТФ +2H2O.

Как видно из уравнения, с точки зрения энергетического выхода оба процесса (гомоферментативное молочнокислое и спиртовое брожение) одинаковы. В обоих случаях сбраживание 1 молекулы глюкозы приводит к образованию 2 молекул АТФ. Процессы различаются природой конечных акцепторов электронов. Кроме того, если при гомоферментативном молочнокислом брожении образовавшаяся молочная кислота в целом по степени окисленности-восстановленности не отличается от молекулы гексозы (имеет место лишь внутримолекулярное перераспределение окисленности и восстановленности отдельных углеродных атомов, входящих в ее молекулу), то в случае спиртового брожения происходит межмолекулярное размежевание на восстановленные (этиловый спирт) и окисленные (CO2) молекулы.

Спиртовое брожение, осуществляемое дрожжами, интересно тем, что на нем впервые были сделаны открытия, имеющие принципиальное значение. Именно при изучении спиртового брожения Л. Пастер доказал, что оно является процессом, связанным с жизнедеятельностью определенных микроорганизмов — дрожжей. Л. Пастер открыл, что в условиях свободного доступа кислорода воздуха процесс спиртового брожения ингибируется и активируется дыхание. Это явление получило название "эффекта Пастера". "Эффект Пастера" есть результат определенного взаимодействия между различными энергетическими путями, существующими у дрожжей. Одним из проявлений такого взаимодействия является конкуренция за АДФ и неорганический фосфат между процессами субстратного фосфорилирования гликолитического пути и окислительного фосфорилирования в дыхательной цепи.

  1.  Приготовление ржаного и пшеничного теста ускоренным способом на КМКЗ. Разводочный и производственный цикл. Микрофлора закваски.

Ускоренный способ приготовления теста на концентрированной молочнокислой закваске

Концентрированная молочнокислая закваска (КМКЗ) представляет собой полуфабрикат влажностью 63-66% с конечной кислотностью 14-18 град. Введение КМКЗ при замесе теста обеспечивает повышение кислотности теста до уровня, способствующего быстрому протеканию коллоидных и биохимических процессов, а также активации жизнедеятельности дрожжей. Наличие предшественников вкуса и аромата в закваске позволяет получить хлеб высокого качества при сокращенной продолжительности брожения теста. Высокая кислотность концентрированной молочнокислой закваски обеспечивает ее самоконсервирование на время перерывов в работе на 16 - 24 ч, а также способствует предотвращению заболевания пшеничного хлеба картофельной болезнью. Разрешено увеличивать на 1 град кислотность хлеба при выработке его ускоренным способом на концентрированной молочнокислой закваске.

Приготовление теста ускоренным способом с применением кисломолочной закваски целесообразно осуществлять в агрегате Ш2-ХТД-О1, в комплект которого входит оборудование для приготовления и созревания закваски, для замеса и брожения теста, а также на линиях с использованием тестомесильной машины Ш2-ХТ2-И в сочетании с серийно выпускаемым или нестандартизированным оборудованием. Параметры логического процесса приготовления теста приведены в таблице.

Таблица 4.

Рецептура и режим приготовления теста ускоренным способом на молочнокислой закваске

Наименование сырья, полуфабрикатов и показателей процесса

Расход сырья и параметры процесса при выработке булочных изделий

Мука пшеничная хлебопекарная, кг

95—97

Дрожжи хлебопекарные прессованные, кг

по рецептуре + (0,5—1,0)

Соль поваренная пищевая, кг

по рецептуре

Вода, кг

по расчету

Дополнительное сырье, кг

по рецептуре

КМКЗ, кг*

7,5—12,5

Влажность, %, не более

Wхл + (03—1,0)

Продолжительность замеса, мин

3-4

Температура начальная, °С

30-34

Кислотность КМКЗ, град

14-18

продолжительность брожения теста, мин

40-90

кислотность теста конечная, град, не более

Кхл + 1,0

Аппаратурная схема приготовления теста ускоренным способом с использованием КМКЗ на агрегате Ш2-ХТД-01

Рис. 2. Аппаратурная схема приготовления теста из пшеничной муки ускоренным способом с использованием КМКЗ в агрегате Ш2-ХТД-01

1 - смеситель винтовой Ш2-ХВ2-Б; 2 - аппарат для выбраживания КМКЗ Ш2-ХТД-01.01; 3 - насос шестеренчатый Ш2-ХДН; 4 - расходная емкость Ш2-ХТД-01.02; 5 - дозатор жидких компонентов Ш2-ХД2-Б; 6- дозатор сыпучих компонентов Ш2-ХД2-А; 7- тестомесильная машина Ш2-ХТ2-И; 8 - конвейер для брожения теста Ш-ХБВ.

В винтовой смеситель Ш2-ХВ2-Б, предназначенный для приготовления питательной смеси, дозируют воду и муку. Полученную гомогенную смесь насосом подают в емкость Ш-ХТД-01.01, предназначенную для брожения КМКЗ, в которой находится выброженная закваска разводочного цикла. После поступления в емкость заданного количества питательной смеси закваску перемешивают и оставляют для созревания. Во время созревания закваску периодически перемешивают мешалкой, которой оснащена емкость.

Готовую закваску в количестве, необходимом для работы в течение смены, перекачивают насосом Ш2-ХДН в расходную емкость Ш-ХТД-Ш.02, а в оставшуюся закваску снова подают питательную смесь.

Из расходной емкости насосом Ш2-ХДН закваску перекачивают в дозатор жидких компонентов Щ-ХДБ. Этим же дозатором последовательно набирают дозы всех жидких компонентов (воду, жир, дрожжи, соль, сахар). Смесь жидких компонентов сливают в месильную емкость тестомесильной машины Щ2-ХГ2-И, после чего через дозатор сыпучих компонентов И2-ХШ-А подают муку и в течение 3—4 мин замешивают тесто.

Из тестомесильной машины замешенное тесто выгружают в дежи кольцевого конвейера для брожения Ш-ХБВ или емкость конвейера Ш-ХББ, где оно бродит 40-90 минут




1.  COMPNY STRUCTURES Key Concepts shreholders people who own shres in compny or provide the cpitl
2. реферат дисертації на здобуття наукового ступеня кандидата медичних наук Харків
3. Что такое свобода личности и в чем смысл жизни
4. Виды информационных знаков, применяемых при маркировке пищевых продуктов
5. Статья- Рациональное и образное в учебном познании
6. Определение энергетического потенциала РЛ ИП
7. Общие сведения об остеологии Скелет skeleton ~ совокупность всех костей человеческого организма
8. .Туника из ангоры артикул 5529 Куда бы Вы не собрались- в гости к друзьям на прогулку с любимым или на рабочее
9. Мир русской усадьбы
10. проблема рост товарзвезда зрелость товар дойная корова и спад товарсобака]]
11. Минеральный состав глауконитовых сферолитов в верхнемеловых и палеогеновых отложениях воронежской антеклизы
12. Естонія Таллінн Парламентська республіка Лютерани православні
13. Вариант 2 Понятие организационной культуры
14. Проект открытия кадрового агентства по подбору персонала
15. тема естетичного виховання
16. Тема 2Население мира
17. на тему- Студента ки курсу гру
18. рефератдисертації на здобуття наукового ступеня кандидата економічних наук
19. Аргентина
20. Підземні води