У вас вопросы?
У нас ответы:) SamZan.net

Регистрация биопотенциалов тканей и органов с диагностической целью получила название электрографии.

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 10.4.2025

30 Физические основы электрокардиографии

Живые ткани являются источником электрических потенциалов (биопотенциалов).

Регистрация биопотенциалов тканей и органов с диагностической целью получила название электрографии. Такой общий термин употребляется сравнительно редко, более распространены конкретные названия соответствующих диагностических методов: электрокардиография (ЭКГ)  – регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении, электромиография (ЭМГ)  – метод регистрации биоэлектрической активности мышц, электроэнцефалография (ЭЭГ)  – метод регистрации биоэлектрической активности головного мозга и др.

В большинстве случаев биопотенциалы снимаются электродами не непосредственно с органа (сердца, головного мозга), а с других, соседних тканей, в которых электрические поля этим органом создаются.

В клиническом отношении это существенно упрощает саму процедуру регистрации, делая ее безопасной и несложной. Физический подход к электрографии заключается в создании (выборе) модели электрического генератора, которая соответствует картине «снимательных» потенциалов.

Все сердце в электрическом отношении представляется как некоторый электрический генератор в виде реального устройства и как совокупность электрических источников в проводнике, имеющем форму человеческого тела. На поверхности проводника при функционировании эквивалентного электрического генератора будет электрическое напряжение, которое в процессе сердечной деятельности возникает на 34б поверхности тела человека. Моделировать электрическую деятельность сердца вполне допустимо, если использовать дипольный эквивалентный электрический генератор. Дипольное представление о сердце лежит в основе теории отведений Эйнтхове-на. Согласно ей сердце есть таковой диполь с диполь-ным моментом, который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла. В. Эйнтховен предложил снимать разности биопотенциалов сердца между вершинами равностороннего треугольника, которые приближенно расположены в правой и левой руке и левой ноге.

Эйнтховена теория (W. Einthoven) — теория формирования электрокардиограммы, согласно которой сердце рассматривается как бесконечно малый диполь, расположенный в центре треугольника Эйнтховена и непрерывно меняющий величину и направление вектора электродвижущей силы; проекции вектора на каждую из сторон треугольника определяют форму электрокардиограммы в трех стандартных отведениях (с учетом смещения третьего угла на дистальную часть левой голени.

По терминологии физиологов, разность биопотенциалов, регистрируемую между двумя точками тела, называют отведением.

1)  Стандартные отведения  (предложил Эйнтховен в 1913 году).
I-между левой рукой и правой рукой,
II-между левой ногой и правой рукой,
III - между левой ногой и левой рукой.

2)  Усиленные отведения от конечностей  (предложены Гольдбергером в 1942 году).
Используются те же самые электроды, что и для записи стандартных отведений, но каждый из электродов по очереди соединяет сразу 2 конечности, и получается объединенный электрод Гольдбергера. На практике запись этих отведений производится простым переключением рукоятки на одноканальном кардиографе (т.е. электроды переставлять не нужно).

aVR  - усиленное отведение от правой руки (сокращение от augmented voltage right — усиленный потенциал справа).
aVL  - усиленное отведение от левой руки (left - левый)
aVF  - усиленное отведение от левой ноги (foot - нога)

3)  Грудные отведения  (предложены Вильсоном в 1934 году) записываются между грудным электродом и объединенным электродом от всех 3 конечностей.
Точки расположения грудного электрода находятся последовательно по передне-боковой поверхности грудной клетки от средней линии тела к левой руке.


V1 - в IV межреберье по правому краю грудины.
V2
V3
V4 - на уровне верхушки сердца.
V5
V6 - по левой среднеподмышечной линии на уровне верхушки сердца.

Простейший  (одноканальный, т.е. в любой момент времени записывающий не более 1 отведения) кардиограф имеет 5 электродов:  красный(накладывается на правую руку),  желтый  (левая рука),  зеленый  (левая нога),  черный  (правая нога) и грудной (присоска). Если начать с правой руки и двигаться по кругу, можно сказать, что получился светофор. Черный электрод обозначает “землю” и нужен только в целях безопасности для заземления, чтобы человека не ударило током при возможной поломке электрокардиографа.

 

31

Форма нормальной электрокардиограммы


Нормальная электрокардиограмма  отражает процесс распространения возбуждения по проводящей системе сердца (рис. 3) и сократительному миокарду после генерации импульса в синусно-предсердном узле, который в норме является водителем ритма сердца. На ЭКГ  в период диастолы (между зубцами Т и Р) регистрируется прямая горизонтальная линия, называемая изоэлектрической (изолинией). От импульса в синусно-предсердном узле возбуждение распространяется по миокарду предсердий, что формирует на ЭКГ предсердный зубец Р, и одновременно по межузловым путям быстрой проведения к предсердно-желудочковому узлу. Благодаря этому импульс попадает в предсердно-желудочковый узел еще до окончания возбуждения предсердий. По предсердно-желудочковому узлу импульс идет медленно, поэтому после зубца Р до начала зубцов, отражающих возбуждение желудочков, на ЭКГ регистрируется изоэлектрическая линия; за это время завершается механическая систола предсердий. Затем импульс быстро проводится по предсердно-желудочковому пучку (пучку Гиса), его стволу и ножкам (ветвям), разветвления которых через волокна Пуркинье передают возбуждение непосредственно волокнам сократительного миокарда желудочков. Возбуждение (деполяризация) миокарда желудочков отражается на ЭКГ появлением зубцов Q, R, S (комплекса QRS), а реполяризация в ранней фазе — сегментом RST (точнее, сегментом SТ либо RT, если зубец S отсутствует), почти совпадающим с изолинией, а в основной (быстрой) фазе — зубцом Т. Часто за зубцом Т следует небольшая волна U, происхождение которой связывают с реполяризацией в системе Гиса — Пуркинье. Первые 0,01—0,03  с  комплекса QRS приходятся на возбуждение межжелудочковой перегородки, которое в стандартных и левых грудных отведениях отражается зубцом Q, а в правых грудных отведениях — началом зубца R. Продолжительность зубца Q в норме не более 0,03  с. В следующие 0,015—0,07  с  возбуждается миокард верхушек правого и левого желудочков от субэндокардиальных к субэпикардиальным слоям, их передняя, задняя и боковая стенки, в последнюю очередь (0,06—0,09  с) возбуждение распространяется на основания правого и левого желудочков. Интегральный вектор сердца в период между 0,04 и 0,07  скомплекса ориентирован влево — к положительному полюсу отведений II и V
4, V5, а в период 0,08—0,09  с  — вверх и слегка вправо. Поэтому в указанных отведениях комплекс QRS представлен высоким зубцом R при неглубоких зубцах Q и S, а в правых грудных отведениях формируется глубокий зубец S. Соотношение величин зубцов R и S в каждом из стандартных и однополюсных отведении определяется пространственным положением интегрального вектора сердца электрической оси сердца), что в норме зависят от расположения сердца в грудной клетке.

Таким образом, на ЭКГ в норме выявляются предсердный зубец Р и желудочковый комплекс QRST, состоящий из отрицательных зубцов Q, S, положительного зубца R, а также зубца Т, положительного во всех отведениях, кроме VR, в котором он отрицателен, и V1—V2, где зубец Т может быть как положительным, так и отрицательным или мало выраженным. Предсердный зубец Р в отведении aVR в норме также всегда отрицательный, а в отведении V1  он обычно представлен двумя фазами: положительной — большей (возбуждение преимущественно правого предсердия), затем отрицательной — меньшей (возбуждение левого предсердия). В комплексе QRS могут отсутствовать зубцы Q или (и) S (формы RS, QR, R), а также регистрироваться два зубца R или S, при этом второй зубец обозначается R1  (формы RSR1  и RR1) или S1.

Временные промежутки между одноименными зубцами соседних циклов называют межцикловыми интервалами (например, интервалы Р—Р, R—R), а между разными зубцами одного цикла — внутрицикловыми интервалами (например, интервалы P—Q, О—Т). Отрезки ЭКГ между зубцами обозначают как сегменты, если описывается не их продолжительность, а смещение по отношению к изолинии или конфигурация (например, сегмент ST, или RT, отрезок протяженностью от окончания комплекса QRS до окончания зубца Т). В патологических условиях они могут смещаться вверх (элевация) или вниз (депрессия) по отношению к изолинии (например, смещение сегмента ST вверх при инфаркте миокарда, перикардите).

Синусовый ритм определяется по наличию в отведениях I, II, aVF, V6  положительного зубца Р, который в норме всегда предшествует комплексу QRS и отстоит от него (интервал Р—Q или Р—R, если отсутствует зубец Q) не менее чем на 0,12  с. При патологической локализации предсердного водителя ритма близко к атриовентрикулярному соединению или в нем самом зубец Р в этих отведениях бывает отрицательным, сближается с комплексом QRS, может совпадать с ним по времени и даже выявляться после него.

Регулярность ритма определяется равенством межцикловых интервалов (Р—Р или R— R). При синусовой аритмии интервалы Р—Р (R—R) различаются на 0,10  с  и более. Нормальная продолжительность возбуждения предсердий, измеряемая по ширине зубца Р, равна 0,08—0,10  с. Интервал Р—Q в норме составляет 0,12—0,20  с. Время распространения возбуждения по желудочкам, определяемое по ширине комплекса QRS, — 0,06—0,10  с. Продолжительность электрической систолы желудочков, т.е. интервал Q—Т, измеряемый от начала комплекса QRS до окончания зубца Т, в норме имеет должную величину, зависимую от частоты сердечных сокращений (должная продолжительность Q—Т), т.е. от длительности сердечного цикла (С), соответствующей интервалу R—R. По формуле Базетта должная продолжительность Q—Т равна k  , где k — коэффициент, составляющий 0,37 для мужчин и 0,39 для женщин и детей. Увеличение или уменьшение интервала Q—Т в сравнении с должной величиной более чем на 10% — признак патологии.

Амплитуда (вольтаж) зубцов нормальной ЭКГ в разных отведениях зависит от особенностей телосложения обследуемого, выраженности подкожной клетчатки, положения сердца в грудной клетке. У взрослых нормальный зубец Р обычно наиболее высок (до 2—2,5  мм) во II отведении; он имеет полуовальную форму. Зубцы PIII и PaVL — положительные низкие (редко неглубокие отрицательные). Комплекс QRS при нормальном расположении электрической оси сердца представлен в отведениях I, II, III, aVL, aVF, V4—V6  неглубоким (менее 3  мм) начальным зубцом Q, высоким зубцом R и маленьким конечным зубцом S. Наиболее высок зубец R в отведениях II, V4, V5, причем в отведении V4  амплитуда зубца R обычно больше, чем в отведении V6, но не превышает 25  мм  (2,5  mV). В отведении aVR основной зубец комплекса QRS (зубец S) и зубец Т — отрицательные. В отведении V, регистрируется комплекс rS (строчной буквой обозначают зубцы относительно малой амплитуды, когда необходимо специально подчеркнуть соотношение амплитуд), в отведениях V2  и V3  — комплекс RS или rS. Зубец R в грудных отведениях увеличивается справа налево (от V, к V4—V5) и далее несколько уменьшается к V6. Зубец S уменьшается справа налево (от V2  к V6). Равенство зубцов R и S в одном отведении определяет переходную зону — отведение в плоскости, перпендикулярной пространственному вектору комплекса QRS. В норме переходная зона комплекса находится между отведениями V2  и V4. Направление зубца Т обычно совпадает с направлением наибольшего по амплитуде зубца комплекса QRS. Он положительный, как правило, в отведениях I, II, Ill, aVL, aVF, V2—V6  и имеет большую амплитуду в тех отведениях, где выше зубец R; причем зубец Т в 2—4 раза меньше (за исключением отведений V2—V3, где зубец Т может быть равным или выше R).

Сегмент ST (RT) во всех отведениях от конечностей и в левых грудных отведениях регистрируется на уровне изоэлектрической линии. Небольшие горизонтальные смещения (вниз до 0,5  мм  или вверх до 1  мм) сегмента ST возможны у здоровых людей, особенно на фоне тахикардии или брадикардии, но во всех таких случаях необходимо исключать патологический характер подобных смещений путем динамического наблюдения, проведения функциональных проб или сопоставления с клиническими данными. В отведениях V1, V2, V3  сегмент RST расположен на изоэлектрической линии или смещен вверх на 1—2  мм.

Варианты нормальной ЭКГ, зависимые от расположения сердца в грудной клетке, определяют по соотношению зубцов R и S или форме комплекса QRS в разных отведениях; таким же образом выделяют патологические отклонения электрической оси сердца при гипертрофии желудочков сердца, блокадах ветвей пучка Гиса и т.д. Эти варианты рассматривают условно как повороты сердца вокруг трех осей: переднезадней (положение электрической оси сердца определяется как нормальное, горизонтальное, вертикальное или как отклонение ее влево, вправо), продольной (поворот по ходу и против хода часовой стрелки) и поперечной (поворот сердца верхушкой вперед или назад).

Положение электрической оси определяется по величине угла α, построенного в системе координат и осей отведении от конечностей (см.  рис. 1, а и б) и вычисленного по алгебраической сумме амплитуд зубцов комплекса QRS в каждом из любых двух отведений от конечностей (обычно в I и III): нормальное положение — α от + 30 до 60°: горизонтальное — α от 0 до +29°; вертикальное α от +70 до +90°. отклонение влево — α от -1 до -90°; вправо — α от +91 до ±80°. При горизонтальном положении электрической оси сердца интегральный вектор параллелен оси Т отведения; зубец RI  высокий (выше, чем зубец RII); RIII  < SIII; RaVF  > SVF. При отклонении электрической оси влево RI  > RII  > RaVF  < SaVF  (RIII  < SIII). При вертикальном положении электрической оси и отклонении ее вправо RI  низкий, увеличиваются SI  и RIII.

При повороте сердца вокруг продольной оси по часовой стрелке желудочковый комплекс на ЭКГ имеет форму RS в отведениях I, V5,6  и форму qR в отведении III. При повороте против часовой стрелки желудочковый комплекс имеет форму qR в отведениях I, V5,6  и форму RS в отведении III и умеренно увеличенный R в отведениях V1—V2без смещения переходной зоны (в отведении V2  R < S). Поворот сердца верхушкой вперед отображается формой qR желудочкового комплекса, а верхушкой назад — формой RS во всех стандартных отведениях.

У детей нормальная ЭКГ имеет ряд особенностей, основными из которых являются: отклонение электрической оси сердца вправо (α составляет у новорожденных +90 — +180°, у детей в возрасте 2—7 лет — +40° — +100°); наличие в отведениях II, Ill, aVF глубокого зубца Q, амплитуда которого уменьшается с возрастом и становится близкой к таковой у взрослых к 10—12 годам; низкий вольтаж зубца Т во всех отведениях и наличие отрицательного зубца Т в отведениях III, V1—V2  (иногда и V3, V4), меньшая продолжительность зубцов Р и комплекса QRS — в среднем по 0,05  с  у новорожденных и по 0,07  с  у детей от 2 до 7 лет; более короткий интервал Р—Q (в среднем 0,11  с  у новорожденных и 0,13  с  у детей от 2 до 7 лет). К 15 годам перечисленные особенности ЭКГ в значительной мере утрачиваются, продолжительность зубца Р и комплекса QRS составляет в среднем по 0,08  с, интервала Р—Q — 11,14  с.

32

  ЭДС сердца — величина векторная. Из этого следует, что электрокардиограмма' есть проекция вектора ЭДС сердца на ось электрокардиографического отведения, представленная линейной графической формой и выражающая скалярные показатели величины зубцов и длительность фаз сердечного цикла. Таким образом, признавая векториальный характер ЭДС сердца, можно подвергнуть векторному анализу электрокардиограмму.  

Векторкардиография

метод исследования сердца, основанный, как и электрокардиография, на регистрации изменений за сердечный цикл суммарного вектора электродвижущих сил сердца, но в проекции его не на линию (ось отведения), а на плоскость. Регистрируют векторкардиограмму (ВКГ) с помощью специального прибора — векторкардиографа.

Ход электрического возбуждения по миокарду отображается на ВКГ в виде трех основных петель — Р, QRS и Т (рис.), обозначенных по их соответствию зубцам Р и Т и комплексу QRS электрокардиограммы .  Сопоставление ВКГ, записанных в трех и более взаимно непараллельных плоскостях, позволяет достоверно представить динамику суммарных векторов предсердий и желудочков сердца по времени в трехмерном пространстве. Для удобства анализа процесса возбуждения в предсердиях производят изолированную регистрацию петли Р с большим усилением (предсердная В.). Анализируют ВКГ по максимальной длине (максимальному вектору) и ширине петель, их форме, углам отклонения максимальных векторов от координатных осей плоскости регистрации и другим параметрам. Они существенно и определенным образом изменяются при гипертрофии предсердий и желудочков, блокадах сердца, инфаркте миокарда, гетеротопном ритме, что позволяет применять В. для диагностики этих форм патологии. Однако лишь в немногих случаях В. дает более ценную диагностическую информацию, чем электрокардиография. В широкой диагностической практике В. не используется. Ее применяют в основном в кардиологических отделениях для уточненной диагностики некоторых блокад и нарушений ритма сердца (при недостаточности данных электрокардиографии), гипертрофии и гиперфункции предсердий (с помощью предсердной В.), а также в научных исследованиях.

33

Блок-схемы электрокардиографа  

 

  АЦП-аналого-цифровойпреобразователь; 
МК - микроконтроллер; ПК - персональный компьютер 

Классы   электрокардиографов.   Электрокардиограф   –   прибор   для   регистрации   электрокардиограммы.   Согласно ГОСТ 19687–74 «Электрокардиографы. Общие технические условия», они делятся в зависимости от точности воспроиз- ведения формы сигнала на 3 класса.

К классу 1 относятся наиболее точные приборы, предназначенные для комплексных исследований сердечно- сосудистой системы. Они имеют четыре или шесть каналов, используемых также для записи звуков сердца (фонокардио- графия), пульсовых колебаний сосудов (сфигмография), незначительных перемещений тела, возникающих в результате сокращения сердца и движения крови в крупных сосудах (баллистокардиография) и др. Соответственно приборы класса 1 должны регистрировать без искажений колебания с частотой до 800…1000 Гц, иметь большой набор скорости движения бумажной ленты и другие повышенные характеристики.

Приборы класса 2 имеют обычно один или два канала и предназначены для регистрации электрокардиограммы в хо- де диагностического процесса. Наибольшая частота регистрируемых колебаний у этих приборов составляет 70…100 Гц, что позволяет без искажений воспроизводить все характерные особенности биопотенциалов сердца.

Электрокардиографы класса 3 представляют собой портативные одноканальные приборы, предназначенные, в ос- новном, для использования на дому, в условиях скорой и неотложной помощи для быстрого установления состояния больного. Наибольшая частота записываемых колебаний для этих приборов составляет 60…70 Гц. Приборы класса 3 имеют только автономный источник питания либо допускают также питание и от сети переменного тока. Основное тре- бование к этим приборам – малые габариты и масса.

34

Классификация методов физиотерапии

Современная физиотера пия располагает большим набором рахжч-ных но виду используемой энергии, физио логическому и лечебному действию мето дов, что требует их классификации. Наибо лее распространенной является классифика ция, основанная на учете физической приро ды действующего в методе фактора. В соот ветствии с этим выделяют обычно десять групп физиотерапевтических методов, каж дая из которых включает по несколько от дельных методов или даже групп методов.

1. Методы, основанные на использовании электрических токов различных параметров (постоянный,  переменный  импульсный):

гальванизация, лекарственный электрофорез, электросон, трансцеребральная и корот-коимпульсная электроанальгезия, диадина-мотерапия, амплипульстерапия, интерфе-ренитерапия. электростимуляция, флюктуоризация, местная дарсонвализация, ультра-тонотерания).

2.Методы основанные на действии электромагнитного поля.

Использование магнитного поля

Индуктотермия, лечебное применение высокочастотного магнитного поля, индуцируемого в тканях значительное количество тепла.

Низкочастотная магнитотерапия  применяется с лечебной целью переменных или прерывистых постоянных магнитных полей низкой частоты. Наиболее широкое применение магнитных полей получили переменные и импульсирующие с частотой 50 Гц при индуктивности у полюсов 40 мТВ, хотя имеются аппараты, генерирующие магнитные поля с частотами 700--1000 Гц. При таких частотах магнитные поля представляют собой слабо действующие физические факторы, не вызывающие побочных эффектов.

Использование электрического поля

ФРАНКЛИНИЗАЦИЯ  -- лечебное применение воздействий постоянным электрическим полем высокого напряжения. При общем воздействии напряжение постоянного электрического поля достигает 50 кВ, при местном -- 15--20 кВ.

Ультравысокочастотная терапия  -- применение с лечебной целью воздействий на определенные участки тела непрерывным или импульсным электрическим полем ультравысокой частоты (э. п. УВЧ). 

3.Методы.основанные на действии электромагнитных волн

Использование электромагнитных колебаний сверхвысокой частоты (СВЧ)

Сантиметроволновая терапия  -- применение с лечебной целью воздействий электромагнитными колебаниями сверхвысокой частоты 2375 МГц (длина волны 12,6 см). В связи с высокой частотой свойства СВЧ приближаются к световому излучению. Из-за больших потерь СВЧ-колебания не могут передаваться по проводам. Для их передачи используют коаксильный кабель, в котором одним из проводников является центральный провод, покрытый изоляционным материалом, а вторым -- металлическая оплетка вокруг изоляции. Для подведения СМВ к телу используют излучатель с отражателем, напоминающий лампу с рефлектором. При направлении СМВ-излучения на тело энергия колебаний частично поглощается, частично отражается от поверхности тела.

Использование электромагнитных колебаний оптического диапазона

ИНФРАКРАСНЫЕ ЛУЧИ  -- облучение тела лучами с длиной волны 3--4 тыс. нм кванты излучения -- ускоряют движение электронов по орбитам и вызывают тепловой эффект. Проникают по 2--3 см в глубину тканей. Под их влиянием усиливается тканевой обмен, повышается фагоцитарная активность лейкоцитов, проявляется транквилизирующее и болеутоляющее действие, что способствует обратному развитию воспалительных процессов. Дозируется по ощущению тепла и продолжительности облучения.

УЛЬТРАФИОЛЕТОВЫЕ ЛУЧИ  -- облучение тела дозированным количеством невидимых ультрафиолетовых лучей в диапазоне длин волн 400--180 нм 

35

Биофизические основы действия непрерывного тока на биообъекты

1. Понятие об электрическом поле. Силовая и энергетическая характеристики электрического поля

Электрическое  поле  – это вид материи, образующийся вокруг заряженных тел, посредством которого они взаимодействуют друг с другом.
 
Сила взаимодействия двух точечных зарядов определяется законом Кулона: F = k·q1·q2/r
2. При этом если заряженные тела имеют одинаковые заряды, то они отталкиваются друг от друга, а разноимённые – притягиваются. Заряженные тела взаимодействуют друг с другом посредством их электрических полей.
 
Выделяют следующие характеристики электрического поля:
 
1.  силовая характеристика – напряжённость  электрического поля – это сила, которая действует на единицу заряда, помещённого в данное электрическое поле: E = F/q . Измеряется в [В/м]

2.  энергетическая характеристика электрического поля – потенциал.


В каждой точке электрического поля на внесённый в это поле заряд действует определённая сила. При перемещении заряда в электрическом поле будет совершаться работа. При этом каждая точка электрического поля будет характеризоваться потенциалом.
 
Потенциал поля в данной точке    – это потенциальная энергия электрического поля в этой точке, приходящаяся на единицу помещённого в эту точку заряда: φ = Wp/q [В] Потенциал поля характеризует возможную работу, которую совершает электрическое поле или которая совершается над электрическим полем при перемещении этого заряда в точку с другим потенциалом:  Δφ = A/q.
 
Поскольку работа будет совершаться только при перемещении заряда между точками, обладающими неодинаковыми потенциалами, то физический смысл имеет лишь разность потенциалов, или  напряжение  между двумя точками электрического поля. Поэтому, когда употребляют термин ″потенциал″, имеют в виду разность потенциалов между данной точкой, потенциал которой измеряют, и бесконечно удалённой точкой пространства, потенциал которой можно считать равным 0. При этом потенциал в данной точке поля, созданного точечным зарядом  Q, равен: φ = Q/(4πε0εγ) и , если потенциал создается большим числом зарядов, то  φ =  ∑
φ.
 
Только разность потенциалов можно измерить с помощью вольтметра. Считают, что напряженность электрического поля – отрицательный градиент потенциала.

2. Действие электрического поля на вещества

Действие электрического поля на различные вещества неодинаково и зависит от их внутреннего строения. По этому действию все вещества делят на:
-проводники электрического тока
- полупроводники
-изоляторы, или диэлектрики.
 
Проводники характеризуются тем, что в них под действием электрического поля образуется электрический ток – направленное движение заряженных частиц. Это происходит благодаря тому, что в проводниках имеются свободные заряды. Существуют проводники 1 рода (металлы, в которых есть свободные электроны) и 2 рода (растворы электролитов, в которых свободными зарядами являются положительно заряженные ионы – катионы и отрицательно заряженные ионы – анионы).
 
Полупроводники при обычной температуре имеют мало свободных зарядов. Причём когда электроны в полупроводниках становятся свободными, то на их месте образуется дырка – избыток положительного заряда. Поэтому носителями заряда в полупроводниках являются электроны и дырки.
 
В диэлектриках нет свободных носителей зарядов, поэтому под действием электрического поля в них не возникает электрического тока, но возникает явление, называемоеполяризацией диэлектрика  – приобретение диэлектриком полярности за счёт разделения в нём положительных и отрицательных зарядов под действием электрического поля. Поляризация существует в 3 вариантах: ориентационная, электронная и ионная.

3. Электрический ток

Основной характеристикой электрического тока является  сила тока  – количество заряда, пересекающее поперечное сечение проводника за единицу времени.   Iср  = Δq/Δt  Единицей измерения силы тока является ампер (A).
  Различают:
- Постоянный ток  – электрический ток, параметры которого (сила и направление) не изменяются во времени. Источниками постоянного тока являются генераторы, которые поддерживают постоянную разность потенциалов на концах проводника.
 
- Переменный ток –  электрический ток, параметры которого изменяются во времени по закону синуса или косинуса. Электрический ток, передаваемый в потребительской электросети, представляет собой синусоидальное колебание частотой 50  Гц: I = Imax·cos(ωt + φ0).
 
Основным законом, описывающим постоянный электрический ток, является закон Ома:  сила тока в проводнике прямо пропорциональна разности потенциалов между его концами, или  электрическому напряжению  (U):I=U/R.
 
Величина  R  называется  электрическим сопротивлением. Сопротивление является свойством проводников препятствовать прохождению через него электрического тока, при этом электрическая энергия превращается в тепловую энергию. Сопротивление возникает из-за столкновения заряженных частиц (носителей тока) с внутренними структурами проводника – атомами и молекулами. Единицей измерения сопротивления является  Ом. Обратная величина сопротивлению называется  электрической электропроводностью  (D).
 
Для многих веществ сопротивление является постоянной величиной, независимой от силы тока. Сопротивление проводника является функцией его размера, формы, строения и температуры. Величина сопротивления провода: R =  ρ(1/S) (5)
 
, где  l  – длина проводника,  S  - площадь поперечного сечения проводника. Константа прямой пропорциональности  ρ   называется  удельным сопротивлением [ом·м]  . Она зависит только от свойств вещества и температуры. Обратной величиной удельному сопротивлению является  удельная электропроводность  (γ)  [ом
-1·м-1]    .
 
На основе удельной электропроводности характеризуют свойство веществ проводить электрический ток. Хорошие проводники тока имеют высокую удельную электропроводность. Изоляторы, или диэлектрики, имеют низкую удельную электропроводность. Полупроводники имеют промежуточную удельную электропроводность. Используя удельную электропроводность, как характеристику вещества, можно представить закон Ома в другой форме: J =  γE.
 
Из формулы следует, что плотность тока в проводнике прямо пропорциональна напряженности электрического поля  (Е), создающего этот ток, и удельной электропроводности вещества проводника (γ).

Удельная электропроводность электролитов и биологических тканей

Плотность тока в растворе электролитов определяется электрическим зарядом положительных и отрицательных ионов, их концентрациями и скоростями движения в электрическом поле: J = q+n+v+  + q-n-v.
 
Если принять, что концентрация и величина электрического заряда положительных и отрицательных ионов равны, тоJ=qn(v+  +v-)
 
Скорость v ионов   пропорциональна напряженности электрического поля  E  и зависит от подвижности ионов  u, которая, в свою очередь, является функцией размера, степени гидратации ионов, вязкости растворителя:
v=uE
Тогда  J=qn(u+  +u-)·E  
 
Это выражение является    законом Ома для растворов электролитов.
Хотя сопротивление биологических тканей постоянному электрическому току велико, и по удельной электропроводности биологические ткани близки к диэлектрикам, для объяснения различий в электропроводности различных тканей, их рассматривают как проводники 2 рода, носителями заряда в которых служат ионы.
Биологические ткани не различаются существенно по их ионному составу, но отличаются условиями ионного перемещения. Поэтому ткани разнородны с точки зрения их электрических свойств. Мембраны клеток препятствуют перемещению ионов. Их электрическое сопротивление является наибольшим. Кровь, лимфа, цереброспинальная жидкость характеризуются низким сопротивлением электрическому току. Внутренние органы, содержащие много воды (мышцы, печень, почки, и т.п.), также имеют сравнительно низкое сопротивление. Но сопротивление таких тканей, как кожа и кости, очень высокое. Постоянный электрический ток плохо проникает через сухую кожу. Он распространяется в теле человека, главным образом, вдоль кровеносных и лимфатических сосудов и через мышцы.
 
Причиной высокого сопротивления биологических тканей постоянному электрическому току – наличие статической ёмкости вследствие изоляционных свойств мембран и явления поляризации, происходящие в клетках, в результате которых возникает встречная эдс, препятствующая прохождению через ткань тока. Причём при малых значениях силы тока он не проходит через ткань вследствие влияния этой ЭДС, а при больших – происходит дезинтеграция (разрушение) клеточных структур, в результате чего сопротивление падает, однако дальнейшие исследования не имеют смысла.
 
Поляризация – разделение положительных и отрицательных зарядов. многие полагают, что явление поляризации связано с наличием полупроницаемых мембран. Под действием электрического поля ионы начинают перемещаться, но не могут проникнуть через мембрану, в результате у внутренней поверхности мембраны возникает разделение зарядов. Внутри клетки образуется поляризационное поле. Как только его напряженность компенсирует внешнее поле перемещение ионов прекращается. Соответственно этому на внешней стороне мембраны концентрируются противоположно заряженные частицы.
Постоянный ток используют в медицинской практике, для реализации двух методов – гальванизации и лекарственного электрофореза.

Гальванизация

Гальванизация – метод терапии, основанный на применении постоянного электрического тока. Метод назван в честь итальянского врача и ученого Луиджи Гальвани – основоположника изучения электрических токов, генерируемых биологическими тканями.
 
Метод гальванизации состоит в пропускании постоянного тока через определенные области тела человека. Величина напряжения должна составлять не более 50-80 Вольт. Под электроды, изготовленные из металла, помещают увлажненные фланелевые прокладки. Величина силы тока может составлять от нескольких миллиампер до 50 миллиампер. Но плотность тока не должна превышать 0,1 миллиампер на квадратный сантиметр. Ток не должен беспокоить пациента.
 
Неорганические ионы и ионы воды перемещаются под действием электрической поля. Подвижность органических ионов значительно меньше, чем неорганических ионов. Наибольшие изменения при гальванизации происходят в мембранах клеток. Они состоят в осуществлении электрохимических процессов, которые изменяют поляризацию мембраны и влияют на проницаемость мембраны и величину трансмембранного потенциала. Эти процессы стимулируют рецепторы, вызывают различные физиологические реакции и изменения метаболизма. Гальванизация используется по большей части для лечения системных болезней нервной системы.

Лекарственный электрофорез

Гальванизация обычно сопровождается лекарственным электрофорезом. В этом методе постоянный электрический ток используют для введения лекарств в ткани тела с терапевтическими целями. Большое число лекарственных препаратов способны диссоциировать в водных растворах на положительные и отрицательные ионы. Среди таких лекарств: соли, антибиотики, местные анестетики, алкалоиды и много другие. Электрическое поле заставляет их перемещаться: положительные ионы (катионы) к отрицательному электроду (катоду) и наоборот. Под влиянием электрического поля лекарства могут проникать через неповрежденную кожу. Основными путями ионов, проникающих через кожу, являются каналы потовых желез. Наибольшая часть ионов проникает через межклеточное пространство, меньшая - через клетки. Лекарства концентрируются, главным образом, в коже и подкожной ткани и формируют депо. Локальная концентрация лекарств в таком депо может быть сравнительно высокой. Оттуда лекарства медленно поглощаются в кровь, что способствует продлению лечебного эффекта.




1. класс для сценаристов писателей и не только РОБЕРТ МАККИ Перевод с английского MERCTOR GROUP внешний вид
2. Программалау теориясында кез келген к~рделі программаны 3 т~рлі ~~рылымнан ~~растыру~а болатыны д~лелденг
3. Общая теория государства и права
4. Физическая культура профиль- Спортивный менеджмент в 2013 году Заочная форма обучения Всего- 53 во
5. Программно-аппаратный комплекс для тестирования интегральных микросхем 155 серии
6. 2001 гг. самоопределился как экстерриториальный ІSIC 9900 ~ КВЭД 99
7.  Підприємства України не мали закінченого технологічного циклу
8. пособие по ознакомлению детей с основами цветоведения
9. тема та повноваження органів управління зовнішньополітичною діяльністю.
10. лекциях по работе в системе 1С-Предприятие 8