Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Валочно-сучкорезно-расряжевочные машины (харвестеры)

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.5.2024

ЛАБОРАТОРНАя работа

Тема: Валочно-сучкорезно-расряжевочные машины (харвестеры)

Цель занятия: детальное изучение конструкций навесного технологического оборудования харвестерови правил их эксплуатации

Структура отчета:

1. Назначение, область применения харвестеров;

2. Устройство и принцип работы навесного технологического оборудования харвестеров;

3. Правила эксплуатации и техника безопасности при работе на валочно-сучкорезно-расряжевочных

Конструкции харвестеров

Конструкции современных харвестеров рассмотрим с учетом их классификации (раздел 1) на примерах харвестеров "Valmet-911" и "Timberjack-1270С".

Харвестер "Valmet-911" является одномодульной машиной. Может использоваться при проведении различных видов рубок. Конструкция харвестера включает в себя следующие основные узлы (рис. 6):

– дизельный силовой агрегат, приводящий в действие все системы харвестера;

– шарнирно-сочлененную раму на базе трехосного колесного шасси;

– качающуюся кабину оператора, установленную на поворотной платформе;

– комбинированный шарнирно-рычажно-телескопический манипулятор;

– харвестерную валочно-сучкорезно-раскряжевочную головку.

Рис. 6. Устройство харвестера: 1 – рама; 2 – двигатель; 3 – манипулятор; 4, 5 – передний и задний мосты; 6 – харвестерная головка; 7 – тандемы

Силовой агрегат харвестера представляет собой 6-цилиндровый дизель с непосредственным впрыском и турбонаддувом. К особенностям двигателя харвестера можно отнести устойчивую работу при изменении оборотов коленчатого вала от 780 до 2400 об/мин, достаточную мощность – 130 кВт, а также наличие турбокомпрессора, который состоит из газовой турбины и соосного компрессора. Турбина, раскручиваемая выхлопными газами, приводит в действие компрессор, подающий сжатый воздух под давлением в цилиндры (давление наддува). Увеличение количества воздуха в цилиндрах дает возможность увеличить количество впрыскиваемого топлива, которое интенсивно сгорает. В результате получается большая мощность при меньшем расходе топлива и более чистых выхлопных газах.

Рама харвестера состоит из двух частей: передней и задней, которые соединены вместе центральным шарниром. Гидроцилиндры управления поворотом машины установлены между передней и задней рамами и обеспечивают изменение угла между ними. На раме имеется механизм наклона кабины и манипулятора, который установлен между поворотной платформой и рамой. Гидроцилиндры наклона кабины позволяют не только изменять ее ориентацию при работе на склонах, но и уменьшают боковые колебания машины при движении по неровной дороге. Поворот кабины с манипулятором в горизонтальной плоскости во время работы осуществляется с помощью мотор-редуктора и зубчатой передачи. Максимальный угол поворота 315.

Перемещение харвестера по лесосеке осуществляется при помощи колесного движителя. Наиболее адаптированными к тяжелым условиям перемещения по лесным почвам с большим количеством препятствий оказались гидростатические трансмиссии. Конструкция гидростатической трансмиссии включает в себя аксиально-поршневой насос переменной производительности, гидромотор, установленный на раздаточной коробке, передающей крутящий момент на передний и задний мосты. Раздаточная коробка обеспечивает выбор медленного и быстрого диапазона скоростей, а также отключение и включение привода переднего моста. Реверс осуществляется за счет изменения направления потока масла из насоса. От раздаточной коробки крутящий момент к мостам передается с помощью карданных валов. Передний мост включает в себя дифференциал, тандемы привода колесных редукторов. Задний мост имеет шарнирное соединение с рамой и снабжен гидроцилиндрами, которые автоматически блокируются при включении манипулятора, обеспечивая устойчивое рабочее положение харвестера. Дифференциалы переднего и заднего мостов имеют механизмы блокировки, управляемые из кабины оператором. Управление трансмиссией осуществляется с помощью бортовой ЭВМ, программа которой согласует потребную для движения машины мощность с мощностью двигателя. Тандемный привод переднего моста обеспечивает харвестеру высокую проходимость, особенно при преодолении препятствий. Конструкция тандема  содержит закрытую цепную передачу, которая передает крутящий момент на колесные редукторы. Независимое подвижное соединение тандемов с передним мостом позволяет эффективно преодолевать препятствия (пни, валежник и пр.).

Комбинированный манипулятор, установленный на поворотном устройстве совместно с кабиной, предназначен для перемещения харвестерной головки в необходимое положение при выполнении технологических операций, обеспечивает максимальную досягаемость деревьев при минимальных перемещениях машины по лесосеке. Лесозаготовительные машины "Valmet" оснащаются манипуляторами "Kranab" и "Loglift" с максимальным вылетом стрелы 8…11 м и грузовым моментом 150…170 кНм. Применение таких манипуляторов позволяет харвестеру выполнять все виды рубок с минимальными повреждениями растущих деревьев. В харвестерах "Valmet" манипулятор располагается на поворотной платформе справа от кабины, что существенно увеличивает для оператора обзор в рабочей зоне харвестерной головки.

Важным фактором эффективной работы харвестера является высокий эргономический уровень рабочего места оператора – кабины. Удобное кресло-пульт на воздушной подушке с подогревом и ремнем безопасности располагается в герметичной кабине с кондиционированным воздухом. Уровень шума от двигателя в рабочем режиме не превышает 65 дБ. Все это позволяет оператору управлять технологическим оборудованием и при этом сохранять высокую работоспособность. Мощное остекление кабины из поликарбонатного стекла защищает рабочее место оператора без металлической обрешетки.

Харвестер "Valmet-911" оснащается валочно-сучкорезно-раскряжевочной головкой модели 960, которая позволяет успешно применять харвестер как на выборочных, так и на сплошных рубках. Им можно обрабатывать как уже поваленные, так и стоящие деревья. Головка шарнирно подвешивается к манипулятору. Конструкция харвестерной головки показана на рис.9. Для привода всех механизмов харвестерная головка имеет электрическую и гидравлическую системы.

Механизм поворота харвестерной головки позволяет расширить возможность захвата дерева, особенно при выборочных рубках, а в сочетании с гидроцилиндром наклона головки облегчает работу с наклонными деревьями, а также работу на ветровальных и буреломных участках лесосеки.

Подающие вальцы установлены на управляемых с помощью гидроцилиндров шарнирных рычагах. Для привода вальцов используются аксиально-поршневые гидромоторы, которые обеспечивают скорость подачи до 4 м/с с усилием 18 кН. Вальцы имеют специальное резиновое покрытие. Управление прижимом имеет два режима: нормальное и дополнительное сжатие. Для повышения силы сцепления вальцов с поверхностью ствола применяют съемные цепи.

Поваленное дерево очищается от сучьев пятью подвижными ножами. Четыре боковых ножа управляются гидроцилиндром. Причем торсионная подвеска передних ножей позволяет регулировать их прижим к обрабатываемой поверхности. При работе ножи копируют поверхность ствола и через установленные на них датчики формируют сигнал для измерения диаметра сортиментов.

Рис. 9. Харвестерная головка: 1 – шарнирная управляемая подвеска; 2 – протаскивающие вальцы с приводными гидродвигателями; 3 – пять подвижных сучкорезных ножей; 4 – пильный аппарат; 5 – система измерений и контроля на базе мини-ЭВМ MD 22A; 6 – механизм поворота (ротатор)

Пильный аппарат в харвестерной головке выполняет две операции: валку и раскряжевку. Он выполнен в виде консольной цепной пилы с приводом от гидромотора и системой надвигания, обеспечивающей максимальную скорость надвигания в зависимости от сил сопротивления, действующих при пилении. Пильный аппарат состоит из стальной каплеобразной шины длиной 560 мм и универсальной цепи "Сандвик" с шагом 10,3 мм. Для уменьшения сопротивления движению пилы в пропиле некоторые харвестерные агрегаты оснащаются системой "Экосмазчик". Ее назначение состоит в подаче в пропил специальной смазки, которая впоследствии подвергается биологическому разложению с получением безвредных для природной среды веществ.

Измерение длины сортиментов в харвестерном агрегате производится с помощью перекатывающегося вдоль ствола зубчатого измерительного колеса. Датчик импульсов, кинематически связанный с ним, посылает сигналы на блок ЭВМ, которая выдает результат измерения на дисплей и при необходимости на принтер. С помощью бортового компьютера можно также производить раскряжевку по заданной программе.

Харвестер "Timberjack-1270С" представляет последнее поколение машин такого класса. Он имеет колесную формулу 6К6 и оснащен системой сбалансированных тандемных тележек, что позволяет достичь большого тягового усилия. Трансмиссия гидростатическая с двухдиапазонной раздаточной коробкой. Передний и задний ведущие мосты имеют блокировку дифференциала, приводимую в действие электрогидравлической системой. Передний мост с балансирными тандемными тележками, задний – одинарный. Харвестер оснащен дизельным двигателем "Cummins 6CT8.3" мощностью 165 кВт, который обеспечивает увеличенный крутящий момент и большую мощность при низких оборотах.

Управление поворотом шарнирно-сочлененных полурам осуществляется двумя гидроцилиндрами. Рабочий и вспомогательный тормоза многодисковые в масляной ванне, приводимые в действие гидравликой. Стояночный и аварийный тормоза приводятся в действие пружинами.

Харвестер имеет комбинированный шарнирно-рычажно-телескопический манипулятор параллельного действия с максимальным вылетом 10 м и грузовым моментом 178 кНм. Харвестерная головка оснащена шестью сучкорезными ножами. Из них две пары – подвижные, а одна стационарная. При этом один стационарный нож имеет верхнее расположение, а второй – нижнее. Подвижные ножи приводятся в движение посредством одного гидроцилиндра. Протаскивающий механизм представляет собой 4 вальца, поверхность которых резиновая, а при необходимости оснащается специальными цепями. Привод вальцов осуществляется аксиально-поршневыми гидродвигателями с повышенным крутящим моментом.

Кабина оператора имеет системы обогрева и кондиционирования воздуха, эргономичное сиденье и остеклена тонированными стеклами из ударопрочного материала (лексан).

Харвестер "Timberjack-1270С" оснащен системами управления двигателем, балансирными тележками, раскряжевкой ствола дерева и передачи информации потребителям лесоматериалов. Кроме того харвестер имеет систему нанесения цветной маркировки на торцы лесоматериалов и обработки пней химическими жидкостями.

Конструкции и технические характеристики наиболее распространенных в настоящее время харвестеров и харвестерных головок приведены в приложении.

Системы управления харвестерами

Системы управления современными харвестерами представляют собой сложные технические комплексы, реализующие одновременно несколько функций: управление базовой машиной, исполнительными органами технологического оборудования, принятие решений.

Операции перемещения машины, валки, очистки стволов от сучьев и раскряжевки требуют соблюдения ряда требований: технологии, ГОСТов, экономики, экологии, эргономики, охраны труда.

Важной составляющей систем управления харвестером является оператор. В его функции входит не только управление харвестером, но и принятие решений по оптимальной работе машины и раскряжевке хлыстов, что обеспечивает максимальную прибыль.

Система управления харвестером включает следующие подсистемы:

– управление базовой машиной;

– управление манипулятором;

– управление харвестерным процессором;

– управление системой отмера длин;

– управление в комплексе: харвестер (оценка лесосечного фонда отводимого в рубку и заготовка лесоматериалов), транспорт лесоматериалов и их переработка.

Системы управления манипуляторами

Системы управления манипуляторами современных харвестеров базируются на идентичных принципах, практически независимо от фирмы изготовителя, типа и основных параметров манипулятора. В харвестерах в основном используются манипуляторы двух кинематических схем: шарнирно-рычажные и комбинированные (с телескопической вставкой). Принципиальная схема управления гидравликой манипулятора комбинированного типа представлена на рис. 10.

Сервоуправление гидравликой манипулятора выполняется с помощью системы сервоуправления "ЕНС-35", в которую входит регулировочный блок "IPS" для индивидуальной регулировки каждой рабочей операции манипулятора. Рычаги управления манипулятором расположены у сиденья. Предусмотренными в рычагах управления потенциометрами регулируется сила тока, идущего через регулировочный блок "IPS" на клапаны управления. Для обеспечения надежной работы системы "ЕНС" ее регулировочные вставки должны быть проверены уполномоченным специалистом через каждые 1000 моточасов или как минимум один раз в год. Кроме вышеуказанного, регулировка системы "ЕНС" необходима также в том случае, если манипулятор работает неудовлетворительно или гидросистема вырабатывает слишком много тепла.

Системы управления харвестерными процессорами

Применение дорогостоящих харвестеров в скандинавских странах стало высокорентабельным только с середины 80-х годов благодаря широкому применению на них бортовых компьютеров с соответствующим программным обеспечением. Это позволило автоматизировать выполнение элементарных операций управления без участия оператора; осуществить программную раскряжевку стволов с использованием оптимизационных программ раскроя; выполнять расчеты по обмеру и учету заготавливаемых лесоматериалов и выводить итоговую информацию на экран дисплея или принтера. Все пульты управления и микрокомпьютер расположены в кабине оператора. Здесь смонтированы: пульт управления двигателем; панель управления манипулятором, с помощью которой осуществляется управление поворотом, выносом и наводкой ЗСУ, включение пильного механизма; микрокомпьютер; панель автоматизированного управления раскряжевкой; руль для управления машиной. Работа осуществляется с помощью коммуникационной системы: датчики – бортовая ЭВМ – оператор. Система автоматизированного управления харвестера после наводки ЗСУ на дерево, при подаче одного управляющего воздействия, обеспечивает зажим дерева, срезание его, перевод в горизонтальное положение, протаскивание ствола через процессор, включение, надвигание пильной шины и отвод ее по окончании процесса пиления. При этом также обеспечивается автоматическая оптимальная раскряжевка хлыста либо в соответствии с характеристиками и породой деревьев, либо по заранее введенной программе. Например, микрокомпьютер типа "Дапт" имеет оперативную память 64 КБ.

На дисплее компьютера оператор видит параметры очередного дерева (длина и диаметр), в любой момент он может прервать автоматическую работу и осуществлять раскряжевку в автоматизированном режиме.

Рис. 11. Последовательность выполнения опреаций по определению длины сортиментов: а – начало обработки; б – оценка; в – вычисления; г – задание на раскряжевку

При выполнении операций в автоматическом режиме (рис. 11) фотоэлементом на ЗСУ фиксируется начало работы (по комлю дерева), включается начало протяжки и сучкорезное устройство. После прохождения около 4 м сортимента замеряют сбег, и компьютер автоматически рассчитывает оптимальные по цене последующие длины сортиментов.

В качестве датчика длины используют зубчатое колесо, связанное с круговым потенциометром (фирма "Линде-Лейне", Швеция) с точностью измерения 10 мм. Диаметр измеряют датчиками двух типов: линейным потенциометрическим, встроенным в гидроцилиндр (фирмы "Монси-Тисон", Швеция), или круговым потенциометрическим (фирмы "Дунхан-Электроникс", США) с точностью измерения 5 мм. На харвестере FMG Lokomo 990/746 харвестерная головка оснащена электронной системой для измерения диаметра дерева Lokomatic 90 (при помощи подающих вальцов) и длины ствола (посредством подпружиненных зубчатых катков). Точность отмера длин при раскряжевке 3 %. При большом количестве сучьев их обрезают в два приема, работой процессора управляет оператор. Применение данной электронной системы позволяет устанавливать связь между оператором харвестера и лесопильным предприятием, находящимся в 50 км от места лесозаготовок. Лесопильное предприятие имеет возможность следить за процессом заготовки древесины и постоянно располагает информацией об ее объеме количества деревьев, длине сортиментов. Выход до 97 %, теоретически максимальной стоимости сортиментов при раскряжевке хлыста, возможен при использовании автоматики.

На харвестерах фирмы "Валмет" безрелейная микропроцессорная система управления всеми функциями харвестерного процессора предусматривает:

– постоянное измерение длины сортимента при помощи зубчатого измерительного колеса и цифрового датчика импульсов;

– постоянное измерение диаметра лесоматериала на уровне передних сучкорезных ножей двумя датчиками, производящими измерение во взаимно перпендикулярных плоскостях;

– реализацию программы раскряжевки, предусматривающую раскряжевку в автоматическом режиме около 150 возможных длин при производстве пиловочника, балансов и спецсортиментов;

– информацию о произведенной продукции;

– реализацию программы диагностики неисправностей.

Новая модель харвестера "Валмет-921", серийное производство которой начато в 1998г., имеет новую систему управления VMM-1000 на базе программы "Макси-контроль", которая реализует так называемый стоимостной метод раскряжевки, когда заказ на сортименты формируется на основе ценников рынка круглых лесоматериалов. Таким образом, машина будет производить сортименты, пользующиеся наибольшим спросом на рынке, а значит, наиболее дорогостоящие. Данная программа предусматривает информационную увязку с таксационными характеристиками лесов. Наличие на харвестерах таких информационных комплексов позволяет каждому из них быть ячейкой в логистической системе управления лесным хозяйством на региональном уровне. Пример принципиальной схемы управления харвестерным процессором приведен на рис. 12.

Наличие зубчатого измерительного комплекса длины выпиливаемых сортиментов харвестеров имеет ряд недостатков. Измерение ведется когда колесо, опираясь на ствол дерева, копирует его движение в момент протяжки относительно сучкорезных ножей и импульсный датчик передает импульсы в измерительный прибор. Стандартные значения длины сортиментов устанавливаются с помощью кнопки рычага управления. Светодиод индикатора показывает, какая длина сортимента выбрана. Ускоренный выбор длины осуществляется отдельной управляющей кнопкой, причем увеличение либо уменьшение длины сортимента выполняется постепенно.

Зубья измерительного колеса должны быть заточены для хорошего сцепления со стволом дерева. Со временем это вызывает уменьшение диаметра измерительного колеса (датчика) и, следовательно, погрешность в измерении. Если колесо не будет своевременно заменено на новое с соответствующим номинальным диаметром, длины выпиливаемых сортиментов не будут соответствовать ГОСТ.

Другие погрешности измерений длин выпиливаемых сортиментов следующие. Возникает люфт в механической трансмиссии датчика. Необходимо проверять крепление импульсного датчика и его присоединение к измерительному колесу. При этом следует иметь ввиду, что импульсный датчик не выдерживает никаких осевых либо радиальных усилий. Следует разделять точность измерения (длина выводимая на индикаторе) и точность раскряжевки (длина полученная с помощью автоматики систем харвестерной головки). На точность раскряжевки влияют диаметр и наличие сучков на стволе дерева, число оборотов двигателя, температура рабочей жидкости в гидросистеме. Например, при скорости подачи 2 м/с изменение длины тормозного пути составляет 2 см на 0,01 с.

Длина тормозного пути зависит от скорости подачи, параметров ствола, температуры рабочей жидкости, времени регулирования клапана управления, при соблюдении всех остальных требований к системе управления.

Перспективные системы управления харвестерами

Информационная система харвестеров позволяет устанавливать связь между оператором харвестера и лесопильным предприятием либо потребителем. Лесопильное предприятие имеет возможность следить за процессом заготовки древесины и постоянно располагать информацией об ее объеме, количестве деревьев, длине сортиментов. Вновь разрабатываемые в Скандинавских странах системы, использующие спутниковую связь и выход в Интернет (рис. 13), на основе геоинформационных технологий позволяют: выполнять оценочный прогноз на будущую рубку; планировать лесозаготовительные работы в зависимости от спроса, корректировать и оптимизировать их проведение в рамках системы "лес – харвестер – потребитель", включая маршрутизацию перевозок сортиментов; обмениваться встречной информацией между операторами харвестеров, форвардеров и водителями сортиментовозов; также основываясь на данные, полученные ЭВМ харвестера во время рубки, моделировать возобновление нового поколения леса.

С харвестером, как источником многих данных о производимой продукции и с лучшими сведениями о растущем лесе, в базисе составляются банки данных о древесине, которые позволяют осуществлять полный количественный контроль над складируемой древесиной. Этот контроль охватывает всю цепь от леса к промышленности и обратно к заказчику. С помощью новой системы управления можно получать отчет о поставках древесины, выбирать вид рубки, средства, продолжительность (от 2 до 10 лет). Кроме того, можно производить детальную годовую и месячную планировку мероприятий по рубке древостоев.

Рис. 13. Информационная система харвестера: 1 – спутник; 2 – харвестер; 3 – сервер; 4 – лесопильный завод; 5 – форвардер

Рис. 14. Система дистанционного управления заготовки древесины харвестером

В Шведской фирме EU-PRQJEKTES PROMOTE разработана программа "SkogForsk" для персонального компьютера по поставкам отходов из леса, подбору подходящего вида рубки, а также прогнозу месячной поставки древесины. Данная система представлена на рис. 14.

Система "ProLog" определяет объемы образующихся на лесопильном заводе сортиментов и другой готовой продукции, а также все заказы на пиломатериалы в районе. Заказы пересчитываются в круглые лесоматериалы. С помощью "ProLog" лесопильный завод узнает, кроме того, какие лесосеки выбраны для рубки. На основании всей информации дается заказ на круглые лесоматериалы, определяются длина и диаметр сортиментов, их количество. В лесу подбираются насаждения, которые лучше всего подходят для рубки. Для харвестера устанавливается очередность вырубки насаждений. Затем прогноз ожидаемых качественных и количественных характеристик сортиментов предстоящего периода поставок передается на лесопильный завод. Достоверный прогноз размера поставки на следующий месяц как минимум в два раза увеличивает горизонт планирования работы лесопильного завода и значительно облегчает управление заказами покупателей.

С полными сведениями о составе и положении древесины, а также с бортовыми компьютерами в лесовозных транспортных средствах, которые имеют GPS-доступ (интернет-доступ), появляется возможность оптимизации транспортных перевозок. Это означает уменьшение холостых пробегов и более лучшее использование автопарка.

Ориентированная на нужды потребителей и движимая изменениями рыночных тенденций, торговля круглыми лесоматериалами предъявляет повышенные требования к точности измерительного оборудования и передаче компьютеризированных данных при работе харвестеров.

Чтобы достичь желаемой производительности и рентабельности, оператор харвестера должен принимать быстрые решения по качеству и оптимальному использованию каждого заготавливаемого дерева. В используемых в настоящее время харвестерах применяются системы измерения и управления, которые осуществляют автоматическую оценку ствола, во время того, как происходит очистка ствола от сучьев и выбирают оптимальные места для распила, тем самым позволяя оператору сконцентрироваться на контроле за качеством древесины. С помощью таких систем быстро и эффективно может задаваться множество требуемых параметров процесса заготовки древесины. Возможен также большой набор автоматических функций: автоматизация управления подачи пильной шины; регулирование прижима сучкорезных ножей и протяжных вальцов либо гусениц; поднятие харвестерного процессора после завершения раскряжевки. Системы обладают функциями диагностики, которые позволяют оператору определить неисправности не покидая кабины.

Наряду с этим оператору предоставляется ряд возможностей – доступ к электронной почте, глобальной навигационной системе GPS, интегрированному программному обеспечению, комплексной системе управления харвестером. Информация по всем перечисленным аспектам представляется на одном дисплее.

Так система "Тимберматик 300" полностью компьютеризирована и использует оперативную систему Windows 2000, простой графический интерфейс и два уровня меню. При использовании системы "Тимберматик 300" не нужны отдельный ноутбук и отдельный дисплей для комплексной системы управления харвестером. Оператор может использовать любые программные обеспечения и системы, такие как e-mail, карты, программы глобальной навигационной системы GPS, доступные пользователю PC. Для управления системой "Тимберматик 300" могут использоваться клавиатура, мышь, панель управления либо джойстик. Это упрощает ряд операций, особенно процесс ввода письменной информации.

Ведущие фирмы, выпускающие харвестеры, работают над созданием мультимедийной системы "помощь" (help), которая помимо прочего объединит в себе инструкции, гидравлические и электрические схемы, фотографии и другой визуальный материал для оказания помощи оператору при любых обстоятельствах.

Принципы работы харвестеров

Харвестер во время работы перемещается задним ходом. С любой стоянки он валит и обрабатывает деревья, растущие в рабочей зоне гидроманипулятора. Перед захватом очередного дерева технологическое оборудование поворачивают в вертикальное положение (рис. 22, а) и направляют на дерево, которое захватывают по возможности ниже с противоположной стороны от направления валки (рис. 20, б) и спиливают.

Рукоятью гидроманипулятора осуществляется толчок и дерево падает на растущий лес, что гасит скорость падения и предотвращает резкие динамические усилия на грейфер и гидроманипулятор. Далее дерево обрабатывают аналогично как процессором в горизонтальном положении с очисткой ствола от сучьев и раскряжевкой на сортименты (рис. 20, в, г, д). При глубоком снеге дерево захватывают на высоте 0,5…1 м и включением протаскивающего механизма грейфер опускают по стволу (рис. 20, е).

Рис. 20. Технология работы харвестера: а – поворот грейфера в вертикальное положение; б – захват и спиливание дерева; в – подтаскивание дерева в зону обработки; г – процесс обработки; д – перенос сучьев на волок для его укрепления; е – опускание грейфера по дереву




1. Современное мировое хозяйство
2. на тему; Конструирование фундаментов для пром
3. ЛАБОРАТОРНА РОБОТА 4
4. ВСТУП Однією із структур яка покликана забезпечити надходження коштів до дохідної частини бюджету є Де
5. В основном состоянии атом фосфора имеет структуру внешнего электронного слоя 3s23p3 и трёхвалентен
6. ОХМАТДИТ Киев Украина Практическая деятельность врача направлена на раннюю диагностику своевремен
7. а Хлорамин Rp- Sol
8. Преподавание сонета в школьном курсе литературы
9. тема РФ 11 Понятие и признаки банковской системы
10. ВСТУПЛЕНИЕ Русский язык в школе является одним из основных предметов учебной программы
11. это такое коммуникативное качество речи которое предполагает соответствие ее смысловой стороны плана сод
12. тема интеллектуальных стратегий приемов навыков и операций к которым личность предрасположена в силу свои
13. На протяжении своего существования Земля прошла длинный ряд изменений причем эти изменения происходят неп
14. Государственная Дума Российской империи
15. Три революции в России
16. тематичні моделі прогнозування динамічних рядів у дилінгових інформаційних системах Спеціальність 0
17.  Теоретические и методические аспекты форме фонда заработной платы7 1
18. Машина Атвуда для изучения прямолинейного движения1
19. тема оплаты труда Сущность сдельной формы заработной платы состоит в том что ее размер зависит от количес
20. гендерное разделение; 2