У вас вопросы?
У нас ответы:) SamZan.net

тематические методы нахождения наилучшего оптимального решения из множества возможных объединены названи

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 7.6.2025

Одним из наиболее практически важных вопросов экономики является построение хозяйственного плана на разных уровнях экономической системы. Качество построенного плана существенным образом зависит от тех решений, которые заложены в его основу. При удачном выборе этих решений при тех же затратах может быть получен больший экономический эффект.

Математические методы нахождения наилучшего (оптимального) решения из множества возможных объединены названием математическое программирование.

Задачи, в которых отыскивается максимум или минимум некоторой функции при наличии ограничений на переменные, объединяются общим названием - задачи математического программирования.

2.   Примеры математических моделей задач планирования и управления. Задача об оптимальном плане выпуска продукции.

Пусть номенклатура выпускаемой предприятием продукции состоит из п наименований. Для производства продукции используется т - видов ресурсов.

Обозначим через aij затраты i-го вида ресурса {1=1,2, ...,т) на производство j-го вида продукции (j= 1,2,...,п), через ai0 - полные объемы имеющихся ресурсов (i=1,2,...,т), с-

- прибыль, получаемую предприятием при изготовлении и реализации единицы j-го вида продукции, а bj, Вj - соответственно, наперед задаваемые нижнюю и верхнюю границы

по объему производства j -го вида продукции

Требуется найти такой план производства, который был бы технологически осуществим по имеющимся ресурсам всех видов, удовлетворял бы задаваемым ограничениям на выпуски продукции каждого вида и в то же время приносил бы наибольшую общую прибыль предприятию.

Обозначим через xj - искомый объем производства j-й продукции.

Математическая модель задачи состоит в следующем: найти такой план выпуска продукции х=(х1, x2, ...,хп), чтобы достигался максимум функции

                                                                                                             (1)

при этом выполнялись неравенства

                           i = l,2,...,m

             bj<=xj<=Bj,  j = l,...,n           (2)

                                 xj>=0




1. Тематические беседы в классе Организационная и подготовительная работа Э
2. 2011г Городская Общественная Зоозащитная Организация ГОЗО в лице
3. где уже отбили штукатурку со стен и добрались до крепкого красного кирпича.html
4. профессия вечной молодости
5. Мысли на миллион Участник УО Вопрос Итого
6. Варіант1 Варіант2 Варіант3 1
7. по теме- РАЗВИТИЕ УМЕНИЙ АУДИРОВАНИЯ КАК ЦЕЛЬ И СРЕДСТВО ФОРМИРОВАНИЯ КОММУНИКАТИВНОЙ КУЛЬТУРЫ
8. АНКЕТА Участника III Открытого Конкурса Песни и Поэзии Владимира Высоцкого Tropmi Wysockiego ~ pie~ni nrowisterdquo; 26
9. Решение задач по дисциплине страхование
10. Статья- О проблемах идентичности