Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
. Индуктивность контура. Самоиндукция. Э.Д.С. самоиндукции.
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара—Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре: Ф=LI, где коэффициент пропорциональности L называется индуктивностью контура. При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.
Из выражения определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн=1 Вб/А=1В•с/А.
Рассчитаем индуктивность бесконечно длинного соленоида. Полный магнитный поток через соленоид (потокосцепление) равен 0(N2I/l)S. Получим т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости вещества, из которого изготовлен сердечник соленоида.
Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды. Применяя к явлению самоиндукции закон Фарадея, получим, что э.д.с. самоиндукции
Если контур не деформируется и магнитная проницаемость среды не изменяется, то L=const и где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.
Если ток со временем возрастает, то dI/dt>0 и ξs<0, т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание. Если ток со временем убывает, то dI/dt<0 и ξs>0, т. е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.
53. Явление взаимной индукции. Принцип работы трансформатора.
Рассмотрим два неподвижных контура (1 к 2), расположенных достаточно близко друг от друга (рис. 184). Если в контуре 1 течет ток I1, то магнитный поток, создаваемый этим током, пропорционален I1. Обозначим через Ф21 ту часть потока, которая пронизывает контур 2. Тогда Ф21=L21/I1, где L21 — коэффициент пропорциональности.
Если ток I1 изменяется, то в контуре 2 индуцируется э.д.с. ξi2, которая по закону Фарадея равна и противоположна по знаку скорости изменения магнитного потока Ф21, созданного током в первом контуре и пронизывающего второй:
Аналогично, при протекании в контуре 2 тока I2 магнитный поток пронизывает первый контур. Если Ф12— часть этого потока, пронизывающего контур 1, то Ф12 =L12I2. Если ток I2 изменяется, то в контуре 1 индуцируется э.д.с. ξi1, которая равна и противоположна по знаку скорости изменения магнитного потока Ф12, созданного током во втором контуре и пронизывающего первый:
Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что l21 и L12 равны друг другу, т. е. LI2 = L2I.
Коэффициенты L12 и L21 зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единица взаимной индуктивности та же, что и для индуктивности,— генри (Гн).
Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 185). Магнитная индукция поля, создаваемого первой катушкой с числом витков N1, током I1 и магнитной проницаемостью , сердечника, B=0N1I1/l, где l — длина сердечника по средней линии. Магнитный поток через один виток второй катушки Ф2=BS=0(N1I1/l)S Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмотку, содержащую N2 витков,
Поток создается током I1, получаем
Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сердечник,