У вас вопросы?
У нас ответы:) SamZan.net

Аппараты электросна

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 29.12.2024

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

РЕФЕРАТ

На тему:

«Аппараты электросна. Физиологическое обоснование применения электрического воздействия при лечении болевых синдромов»

МИНСК, 2008

Аппараты электросна

Рисунок 1 – Структурная схема аппарата электосон

При электросне воздействие на головной мозг осуществляется через электроды, наложенные на закрытые глаза и сосцевидные отростки височных костей, импульсным током прямоугольной формы при длительности импульсов порядка О,2-0,5 мс и частоте повторения, регулируемой в пределах от 1-5 до 80-100 имп/с. Частота импульсов подбирается для каждого больного индивидуально, а ток устанавливается таким, чтобы ощущение от его прохождения (постукивание, вибрация или легкое давление в глубине глазницы) не достигало беспокоящей больного интенсивности.

На рис. 1 представлена структурная схема аппарата. Генератор импульсов представляет собой мультивибратор. С выхода мультивибратора прямоугольные импульсы после дифференцирования поступают на вход ограничителя - формирователя. С помощью этого каскада из отрицательных пиков, снимаемых с выхода дифференцирующей цепочки, создаются практически прямоугольные импульсы длительностью 0,5 мс. Прямоугольные импульсы усиливаются выходным усилителем. С нагрузки выходного усилителя- на импульсное напряжение через разделительный конденсатор подается на выходное гнездо «Пациент». В цепь выходного тока включен резистор. Падение напряжения на этом резисторе, пропорциональное амплитуде импульсов тока, подается в блок измерителя. Измеритель представляет собой пиковый детектор, напряжение которого модулирует по амплитуде колебания автогенератора. После усиления высокочастотные колебания детектируются, и постоянная составляющая, пропорциональная амплитуде импульсов в цепи пациента, измеряется миллиамперметром. Помимо генератора импульсного напряжения, аппарат имеет регулируемый источник постоянного тока для создания в выходной цепи дополнительной постоянной составляющей, усиливающей в ряде случаев эффективность импульсного тока. Постоянное напряжение создается с помощью мостового выпрямителя  с фильтровыми конденсаторами.

Структурное построение аппаратуры периферической электроанальгезии должно обеспечивать формирование адекватного воздействующего тока, а также отвечать требованиям по реализации необходимых режимов стимуляции. Данная задача решается путем схемотехнического проектирования отдельных каскадов электростимуляторов по заданным электрическим параметрам воздействия. В то же время при разработке аппаратуры периферической электроанальгезии необходимо учесть общие требования, предъявляемые к аппаратуре для медицинского при­менения. Кроме того, конкретная область использования электро­анальгезии в медицине, условия функционирования аппаратуры обуслав­ливают определенные особенности ее конструктивных и эксплуатаци­онных характеристик. Поэтому разработку технических средств для электроанальгезий необходимо проводить на основе медико-технических требований, базирующихся на результатах, полученных при анализе БТС ЭА, а также учитывающих медицинские аспекты использования аппа­ратуры.

Рассмотрим основные медико-технические требования к аппаратуре для периферической электроанальгезии, включающие конструктивные и эксплуатационные требования. Анализ области использования средств периферической электроанальгезии показывает, что сфера применения различных вариантов конструкций аппаратуры достаточно широка. Рас­пространенность болевых синдромов различной этиологии, разная сте­пень выраженности болей, неодинаковая продолжительность лечения, а также различие условий использования аппаратуры (стационар, поли­клиника, скорая медицинская помощь, лечение на дому) делают неце­лесообразной разработку универсальных многоцелевых электростимуляторов. Лечение острых болей постоперационного, посттравматического, нейрогенного характера, обезболивание в родах требует охвата стимуля­цией обширных зон, связанных с очагами боли. В этих случаях целесообразно использование аппаратов, обеспечивающих достаточно большой ток стимула и позволяющих применять электроды значительной площа­ди. Данный тип электростимуляторов предназначен для использования в специализированных палатах лечебных учреждений, где важное значение имеет способность аппаратуры работать непрерывно в течение длительного времени. Это обуславливает целесообразность выполнения аппаратуры в виде стационарных конструкций с питанием от сети переменного тока.

Обезболивание после травмы, снятие острых и хронических болей нейрогенного, артрогенного и другого происхождения предполагает использование электростимуляторов, в первую очередь, в условиях поликлиники и травмпунктов, а также при оказании скорой медицинской помощи или при лечении на дому. В данном случае необходимы кон­струкции электростимуляторов, имеющих малые габариты, массу и способных функционировать при питании от батарей или аккумуляторов. Использование периферической электроанальгезии в качестве компонента общей анестезии при хирургических вмешательствах, при лечении тяжелых болевых синдромов требует проведения длительных сеансов воздействия в условиях, при которых подбор параметров стимула по обычным показаниям затруднен в силу ограниченности или невозмож­ности контакта с больным. Для этих случаев необходима разработка аппаратуры с автоматической биорегулировкой параметров воздействия по одному из предложенных алгоритмов функционирования БТС ЭА. Это технически существенно усложняет электростимулятор, однако клинические возможности его применения становятся более широкими. Таким образом, реализация БТС ЭА в различных клинических условиях требует разработки аппаратуры различного функционального предназна­чения, содержащего следующие типы конструкций электростимуляторов:

·          стационарную с питанием от сети переменного тока для использования в палатах лечебных учреждений различного профиля;

·          портативную с питанием от сменных батарей для лечения в ус­ловиях учреждений скорой медицинской помощи и на дому по назначению врача.

Общая электроанестезия представляет собой воздействие электрическим током на центральную нервную систему с целью формирования наркотического состояния, достаточного для проведения хирургических вмешательств. Достоинствами метода, привлекающими внимание иссле­дователей, являются отсутствие токсического действия на организм, мгновенное достижение анальгезии, быстрый выход из состояния электронаркоза, возможность точного дозирования. Наряду с прямоугольными импульсами продолжительностью в сотни микросекунд и при частоте тока порядка сотен герц, используются интерференционные токи звуковой частоты с расстройкой порядка сотен герц, подаваемые через две пары электродов. В последнее время высокую эффективность показал метод общей электроанестезии, разработанный в Институте хирургии имени А. В. Вишневского. По этому методу для стимуляции ис­пользуется импульсный ток в виде серий импульсов высокой частоты с периодически переключаемой длительностью, что позволяет получить стабильную анестезию в течение многочасовых операций.

Физиологическое обоснование применения электрического воздействия при лечении болевых синдромов

Лечение хронических болевых синдрома по-прежнему остается одной из важнейших задач и сложнейшей проблемой медицины. Боль представляет собой многоплановый феномен, который, сигнализируя об опасности повреждения, выполняет в организме информационные и защитные функции, вместе с тем хроническая боль истощая силы организма, снижая сопротивляемость, способствуя развитию осложнений, становится механизмом патогенеза и основой для возникновения раз­личных патологических нарушений. Хронические болевые синдромы яв­ляются одной из наиболее частых причин нетрудоспособности человека. Защитная функция боли может быть наиболее полно проанализирована с позиций теории функциональных систем П. К. Анохина, согласно которой любая функциональная система имеет однотипную структуру, ядром которой является системообразующий фактор - полезный приспособительный результат. При отклонении жизненно важной функции от необходимого уровня включается специальный рецепторный аппарат, широко представленный в организме. Рецепторы являются первым звеном формирования так называемой обратной афферентации — физиологической обратной связи, играющей сигнальную роль в регуляции функций и в получении информации о результатах действий, совершенных функциональной системой. Обратная афферентация является основой, которая определяет целенаправленную деятельность каждой функциональной системы.

Для удержания полезного результата на заданном уровне каждая функциональная система имеет различные исполнительные механизм которые реализуются посредством поведенческой, вегетативной, гуморальной регуляции. Эффекторный аппарат функциональных систем является, в определенной степени, универсальным, т. к. одни и те исполнительные механизмы могут быть включены для выполнения различных функций организма. Системообразующий фактор каждой функциональной системы обусловлен определенной биологической потребностью организма. Если считать боль своеобразной отрицательной потребностью организма, то можно вести речь, по крайней мере двух приспособительных результатах, которые могут быть положен в основу построения концепции функциональной системы с участием боли: целостность покровных оболочек организма, т. е. защита от  повреждающих воздействий со стороны внешней среды, и необходимый уровень окислительных процессов в тканях организма т.е. защита воздействия веществ, которые нарушают химические тканевые процессы, поддерживающие нормальную жизнедеятельность. Сформирован на такой основе функциональная система с системообразующим фактором - болью показана на рис. 2. Под действием болевой импульсации, возникающей в рецепторном аппарате и передаваемой по каналам обратной афферентации, в организме возникает ряд специфических и неспецифических реакций, направленных на устранение причины возникновения боли и восстановление гомеостаза.

Данные реакции можно разделить на несколько характерных групп:

·          двигательные реакции, связанные с рефлекторной мышечной активностью, например, реакции «отдергивания»;

·          эмоционально-поведенческие и социально-поведенческие, обуславливающие процесс лечения;

·   вегетативные, вызывающие, например, расширение сосудов, уси­ление деятельности сердечно-сосудистой и дыхательной систем;

·   гематологические, связанные с ускорением свертываемости крови, лейкоцитозом;

·          гуморальные, определяемые повышением активности гормонов;

·          метаболические, вызывающие изменения обмена веществ.

Таким образом, данная функциональная система, охватывающая практически все основные физиологические процессы, целенаправленно защищает организм как от последствий болевого раздражения, так и от возможных его повторений. Оценка указанных реакций организма на боль позволяет найти физиологические корреляты болевого раздражения, которые имеют информационную значимость при исследовании боли и методов обезболивания.

Раздражители, вызывающие ощущение боли, могут быть различными по своей природе: механическими, химическими, электрическими, термическими. Кроме того, у человека боль может вызываться эмоцио­нальными и психическими факторами. Болевое ощущение в нор­мальных физиологических условиях формируется в результате раздраже­ния сложной афферентной системы, включающей рецепторный аппарат, афферентные волокна, передающие ноцицептивную информацию, спинальные зоны переключения, восходящие пути в структуры ЦНС.

В настоящее время существует несколько теорий рецепции и восприятия боли. Наиболее традиционными являются теории специфичности Фрея и теории неспецифического паттерна Гольдшейдера, предложенные в конце прошлого столетия.Вторая теория придает основное значение при формировании боли простран­ственно-временному соотношению афферентных сигналов в нервных проводниках различного типа. Ни одна из этих теорий до настоящего времени не отвергнута, более того, они продолжают подкрепляться со­ответствующими экспериментальными и клиническими данными, а поэ­тому имеют право на существование.

К рецепторам боли - ноцицепторам - относят низкопороговые и высокопороговые соматические рецепторы и терминали, передающие импульсацию по А-дельта и С-волокнам (по классификации Гассера), которые по механизму реагирования можно разделить на механорецепторы и хеморецепторы. Обработка ноцицептивных сигналов на уровне спинного мозга изучалась в работах Р. Мелзака и П. Уолла, явившихся по сути дела попыткой создать теорию боли, в которой, с одной стороны, учитывалась физиологическая специализация, а с другой - осуществлялся анализ различных по интенсивности импульсных потоков. Теория «воротного контроля» боли Р. Мелзака и П. Уолла предполагает, что нейронный механизм задних рогов спинного мозга (спинальные зоны переключения) осуществляет модуляцию потока импульсации, идущей от периферических волокон в ЦНС. Степень уменьшения или увеличения передачи импульсации определяется соотноше­нием активности волокон, несущих ноцицептивную и сенсорную им­пульсацию, а также влиянием тормозной нисходящей системы из высших структур мозга. Согласно модели «воротного контроля» боли, афферентные волокна проводят импульсацию в желатинозную субстанцию и в передаточные Т-клетки. Модулирующее влияние, оказываемое со стороны желатинозной субстанции на передачу импульсации через Т-клетки, усиливается при возбуждении толстых волокон и уменьшается при возбуждении тонких. Однако «воротная» теория боли не смогла в полной мере объяснить явлений, возникающих при развитии болевых синдромов и их лечении. Недостаток теории по мнению ряда авторов состоит в том, что в ней торможение проведения болевой импульсации объясняется, главным образом, пресинаптическими механизмами на спинальном уровне, а центральному влиянию отводится второстепенная роль.

Открытие в середине 70-х годов эндогенной системы контроля болевой чувствительности, а также выделение эндогенных веществ, выполняющих функции нейромодуляторов болевой импульсации - опиоидных пептидов (эндорфинов и энкефалинов), позволили раскрыть более тонкие механизмы формирования болевой чувствительности у че­ловека. В различных органах и тканях, в первую очередь в ЦНС, в структурах спинного мозга, в кишечнике, печени, предсердиях и др. были обнаружены так называемые опиатные рецепторы, с которыми взаимодействуют эндорфины и энкефалины.

                  1                                             +

                                  +

                                       

                                                 3                            4

Рисунок 3 - Модель «воротного» контроля боли: 1 - волокна большого диаметра, 2 - волокна малого диаметра, 3 - желатинозная субстанция,4 - Т-клетки, 5 - система центрального контроля, б - система действия

В свете современных представлений формирование болевого ощущения у человека происходит в результате взаимодействия двух антаго­нистически функционирующих систем организма — ноцицептивной и антиноцицептивной. Ноцицептивная система (НС) восходит от ноцицепторов к глубоким структурам мозга. НС содержит в своем со­ставе нейрохимический аппарат генерации специфических и неспеци­фических медиаторов болевой передачи — нейротрансмиттеров (НТ), который, располагаясь по ходу путей, проводящих ноцицепцию, пре­имущественно сосредотачивается в переключающих структурах. Типич­ными НТ являются: ацетилхолин, норадреналин, серотин. В тех же зонах представлены рецепторы антиноцицептивной системы (АНС), тормозящей передачу болевой импульсации за счет генерации нейромодуляторов (НМ) (рис. 4).

Рисунок 4 – Схема формирования болевого ощущения

Экспериментальные и клинические работы последних лет показали, что болевые ощущения у человека обусловлены изменением динамического соотношения между уровнями НМ и НТ. АНС и НС в процессе продукции НМ и НТ оказываются взаимосвязанными т. к. активация одной из систем приводит не только к усилению ее функциони­рования, но и вызывает торможение другой системы.

При воздействии ноцицептивного раздражителя происходит торможение структур АНС. Активация НС в рамках данных представлений может произойти без воздействий, угрожающих повреждением, например, вследствие угнетения активности АНС. Так, введение блокаторов НМ ведет к развитию гипералгезии, т.е. к уменьшению болевого порога и возникновению спонтанных болевых ощущений. Активация АНС, вызывающая срабатывание эндогенных механизмов антиноцицепции и приводящая к снижению болевой чувствительности, происходит при различных видах воздействия на организм. Этими механизмами могут быть объяснены анальгетические феномены, возникающие при акупунктуре, вибрационной и звуковой стимуляции, при чрескожной электронейростимуляции и стимуляции спинномозговых проводящих путей.

Все вышесказанное позволяет утверждать, что в ответ на болевое раздражение в организме возникает системная реакция, направленная на устранение раздражения и характеризующаяся возбуждением основ­ных физиологических систем. Передача болевого раздражения от ноци­цепторов к структурам ЦНС, ответственным за восприятие боли, про­исходит под контролем двух эндогенных систем организма - НС и АНС, взаимосвязанных при своем функционировании. Модуляция аф­ферентных потоков болевой импульсации возможна путем влияния на активность данных систем. Возбуждение сенсорных структур, связанных с областью болевого раздражения, возникающее при противоболевой электронейростимуляции, активирует АНС и вызывает соответственное изменение уровней НМ и НТ, приводящее к повышению болевого по­рога. Данные механизмы могут быть использованы для объяснения процессов регуляции боли при электронейростимуляции сенсорных структур в ходе периферической электроанальгезии.

ЛИТЕРАТУРА

1. Системы комплексной электромагнитотерапии: Учебное пособие для вузов/ Под ред А.М. Беркутова, В.И.Жулева, Г.А. Кураева, Е.М. Прошина. – М.: Лаборатория Базовых знаний, 2000г. – 376с. 2000 2. Электронная аппаратура для стимуляции органов и тканей /Под ред Р.И.Утямышева и М.Враны - М.: Энергоатомиздат, 2003.384с.. 2003 3. Электрическая стимуляция мозга и нервов у человека / Н.П.Бехтерева, С.В.Медведев, А.Н.Шандурина и др. – Л.:Наука, 1990. -263с. 4. Ливенсон А.Р. Электромедицинская аппаратура. :[Учебн. пособие] - Мн.: Медицина, 2001. - 344с. 2001 5. Катона З.  Электроника в медицине: Пер. с венг. / Под ред. Н.К.Розмахина - Мн.: Медицина 2002. - 140с. 2002



1. ЛАБОРАТОРНАЯ РАБОТА 10.
2. ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ Филиал ТюмГНГУ в г
3. Большой Ламрим Lm rim chen mo где подробнейшим образом описаны ступени на пути духовного совершенствования сог
4. Реферат- Мотивация адвокатского труда
5. 5 Проверка оборудования цеховой подстанции на стойкость к токам к
6. Демократические преобразования в Росии1
7. Параллельное проектирование В стереометрии изучаются пространственные фигуры однако на чертеже они изо.html
8. ~~н ~лшемі елді~ а~ша бірлігіне ша~ылатын алтын ~лшеміні~ саны; 2
9. Тема тип форма- Прогулка с Гномом итоговое подгрупповая Фамилия И
10. 131 Кура отварная 252 74
11. Практическая энциклопедия бухгалтера2
12. Борьба с бактериальным загрязнением.html
13. . Понятие философии её объект предмет и функции.
14. тема мониторинга
15. Бухгалтерская отчетность на предприятии
16. Тема- Урок развития речи обобщение по теме Имя существительное с использованием краеведческого матери
17. Санкт Петербургский Молочный Завод Пискаревский
18. тема РФ 1 уровень ~ Федеральный бюджет и бюджеты государственных внебюджетных фондов.html
19. тематикепредназначен для студентовспециальности 050109 математика 1.html
20. тематичне моделювання та обчислювальні методи Автореферат дисертації на здобуття наукового сту